JPH04163818A - Alloy type temperature fuse - Google Patents

Alloy type temperature fuse

Info

Publication number
JPH04163818A
JPH04163818A JP28983990A JP28983990A JPH04163818A JP H04163818 A JPH04163818 A JP H04163818A JP 28983990 A JP28983990 A JP 28983990A JP 28983990 A JP28983990 A JP 28983990A JP H04163818 A JPH04163818 A JP H04163818A
Authority
JP
Japan
Prior art keywords
alloy
temperature
weight
fuse
fuse element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28983990A
Other languages
Japanese (ja)
Other versions
JP2516469B2 (en
Inventor
Toshiaki Kawanishi
俊朗 川西
Yoshishiro Iwamoto
美城 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2289839A priority Critical patent/JP2516469B2/en
Publication of JPH04163818A publication Critical patent/JPH04163818A/en
Application granted granted Critical
Publication of JP2516469B2 publication Critical patent/JP2516469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/768Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit

Abstract

PURPOSE:To facilitate the manufacture of a temperature fuse having a specific melting point, capable of being finely drawn by using an alloy consisting of Zn, Cd, In and Sn in a specific alloy composition as a fuse element. CONSTITUTION:A temperature fuse is formed of an alloy, as an element, consisting of 0.8-5wt% of Zn, 10-15wt% of Cd. 42-50wt% of In and the remainder of Sn. In the temperature fuse, a solidus temperature is equal to a liquidus temperature, i.e., 85 deg.C. In an alloy composition, Zn is used to provide mechanical strength in finely drawing the alloy, wherein the strength becomes insufficient if an amount of Zn is under a specific value while a melting point is increased if the amount exceeds the specific value. Restriction of each component of Cd, In and Sn enables the liquidus and solidus temperatures of the alloy to be held within a predetermined range. Therefore, it is possible to easily manufacture a fuse element without any variation in melting point.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は合金型温度ヒユーズに関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to alloy type temperature fuses.

合金型温度ヒユーズにおいては、ヒユーズエレメントに
低融点可溶合金片を用いている。
In alloy type temperature fuses, a piece of a low melting point fusible alloy is used for the fuse element.

この合金型温度ヒユーズの作動メカニズムは、当該温度
ヒユーズによって保護しようとする電気機器が過電流に
よって発熱すると、その発生熱によって低融点可溶合金
片が溶断し、この溶断により機器への通電を遮断するこ
とにあり、その結果、当該電気機器の異常発熱を未然に
防止できる。
The operating mechanism of this alloy-type temperature fuse is that when the electrical equipment that the temperature fuse is intended to protect generates heat due to overcurrent, the generated heat melts the low-melting point fusible alloy piece, and this melting cuts off the power to the equipment. As a result, abnormal heat generation of the electrical equipment can be prevented.

上記低融点可溶合金片の溶断は、低融点可溶合金片の溶
融金属がその表面張力のために球状化して分断される結
果であり、低融点可溶合金の溶融温度が当該温度ヒユー
ズの作動温度となる。
The above melting of the low melting point fusible alloy flake is a result of the molten metal of the low melting point fusible alloy flake becoming spheroidized and divided due to its surface tension, and the melting temperature of the low melting point fusible alloy flake is higher than that of the temperature fuse. operating temperature.

従来、作動温度が100℃以下の合金型温度ヒユーズと
しては、溶融温度95℃のB i −P b −8n系
共晶合金をヒユーズエレメントとするもの、溶融温度7
2℃(固相線温度ニア0℃、液相線温度ニア2℃)のB
1−Pb−8n−Cd合金(Bi:50重重景、Pb:
25重景%、Sn:12゜5重量%、Cd:12.5重
量%)をヒユーズエレメントとするものが存在する。
Conventionally, alloy-type temperature fuses with an operating temperature of 100°C or less include those whose fuse element is a Bi-Pb-8n eutectic alloy with a melting temperature of 95°C, and fuses with a melting temperature of 7.
B at 2℃ (solidus temperature near 0℃, liquidus temperature near 2℃)
1-Pb-8n-Cd alloy (Bi: 50 heavy weight, Pb:
There is one in which the fuse element is 25% by weight, Sn: 12°5% by weight, and Cd: 12.5% by weight.

(解決しようとする課題) しかしながら、これら温度ヒユーズの作動温度の離隔中
は20℃以上にも達し、この間の中間温度を作動温度と
する温度ヒユーズの出現が望まれている。
(Problem to be Solved) However, the operating temperatures of these temperature fuses reach 20° C. or higher during the separation, and it is desired to develop a temperature fuse whose operating temperature is an intermediate temperature between these temperatures.

従来、融点が100℃以下の合金においては、通常、B
i、Pb、Sn、Cd、In等から成り、必ず、Biを
含有している。このBiは、合金の低融点化に不可欠な
元素として使用されているが、Biを配合すると合金が
脆弱化し、線径0.4〜1.0mmといった細線のヒユ
ーズエレメントの線引加工が著しく困難になる。
Conventionally, in alloys with a melting point of 100°C or less, B
i, Pb, Sn, Cd, In, etc., and always contains Bi. This Bi is used as an essential element to lower the melting point of the alloy, but when it is added, the alloy becomes brittle, making it extremely difficult to draw thin wire fuse elements with a wire diameter of 0.4 to 1.0 mm. become.

従来、上記の中間温度(95℃と72℃との間)に属す
る溶融温度の低融点はんだとして、Bi:39重重景、
Pb:31重量%、Sn:15重重景、Cd:15重量
%の合金組成(同相線温度=68℃、液相線温度=85
℃)が公知であるが、脆く、上記細線ヒユーズエレメン
トへの線引き加工は至難であり、例え、かかる細線を製
作できても、その機械的強度が低いために、温度ヒユー
ズ製造中でのヒユーズエレメントの断線が懸念され、湿
度ヒユーズの製造の困難化が避けられない。
Conventionally, as a low melting point solder with a melting temperature belonging to the above intermediate temperature (between 95°C and 72°C), Bi: 39 heavy weight,
Alloy composition of Pb: 31% by weight, Sn: 15% by weight, Cd: 15% by weight (commode temperature = 68 ° C., liquidus temperature = 85
℃) is known, but it is brittle and difficult to draw into the above-mentioned thin wire fuse element. Even if such a thin wire could be manufactured, its mechanical strength is low, so it cannot be used to draw the fuse element during the manufacture of temperature fuses. There is a concern that the wires may break, making it difficult to manufacture humidity fuses.

上記したように、低融点合金に通常使用されている元素
は、Bi、pb、Sn、Cd、In等であり、従来、新
たな合金組成の探索は、通常、これらの元素の組合せの
範囲内で、その配合を変えることによっておこなわれて
いる。
As mentioned above, the elements normally used in low melting point alloys are Bi, PB, Sn, Cd, In, etc., and conventionally, the search for new alloy compositions has usually been within the range of combinations of these elements. This is done by changing the composition.

而るに、本発明者等においては、上記の中間温度である
作動温度85℃の合金型温度ヒユーズを開発するために
鋭意探究した結果、Znの添加によって細線ヒユーズエ
レメントの線引き加工が容易であり、かつ、そのヒユー
ズエレメントをバラツキなく一定の温度(85℃)で溶
断できる合金組成を見出した。
However, as a result of intensive research into developing an alloy-type temperature fuse with an operating temperature of 85°C, which is the intermediate temperature mentioned above, the inventors of the present invention found that the addition of Zn makes it easy to draw a thin wire fuse element. We have also found an alloy composition that allows the fuse element to be fused at a constant temperature (85°C) without variation.

本発明の目的は、かかる知見に基づき85°Cで温度の
バラツキなく作動させ得、しかも製作が容易な合金型温
度ヒユーズを提供することにある。
Based on this knowledge, it is an object of the present invention to provide an alloy-type temperature fuse that can be operated at 85°C without temperature variation and is easy to manufacture.

(課題を解決するための手段) 本発明に係わる合金型温度ヒユーズはZn : 0゜8
〜5重量%、Cd:10〜15重景%、重量:42〜5
0重景%、残部Snから成る合金をヒユーズエレメント
とし、で用いたことを特徴とする構成である。
(Means for solving the problem) The alloy type temperature fuse according to the present invention is Zn: 0°8
~5% by weight, Cd: 10-15%, weight: 42-5
This structure is characterized in that an alloy consisting of 0 weight percent and the balance Sn is used as a fuse element.

本発明において使用する合金組成の中核は、Zn:2重
量%、Cd:12重量%、In546重量%、残部:S
nであり、その固相線温度と液相線温度とは実質上等し
く、85℃である。
The core of the alloy composition used in the present invention is Zn: 2% by weight, Cd: 12% by weight, In5 46% by weight, balance: S
n, and its solidus temperature and liquidus temperature are substantially equal, 85°C.

上記合金組成において、Znは合金を細線に線引き加工
する際の線引き張力に耐え得る機械的強度を付与するた
めに添加している。その添加量を0.8〜5重量%に限
定した理由は、0.8重量%以下では、その機械的強度
の保証が困難になり、5重量%以上では、合金融点を8
5℃に保つことが困難になるためである。
In the above alloy composition, Zn is added to provide mechanical strength that can withstand the drawing tension when drawing the alloy into a fine wire. The reason why the amount added is limited to 0.8 to 5% by weight is that if it is less than 0.8% by weight, it will be difficult to guarantee its mechanical strength, and if it is more than 5% by weight, the alloying point will be 8%.
This is because it becomes difficult to maintain the temperature at 5°C.

上記合金組成において、Cdの範囲を10〜15重量%
に、Inの範囲を42〜50重景%に重量nの範囲を残
部にそれぞれ限定した理由は、合金の液相線温度〜固相
線温度を83℃〜87℃の間に保持し、かつ、上記線引
きのための機械的強度を保持するためである。
In the above alloy composition, the range of Cd is 10 to 15% by weight.
The reason why the range of In was limited to 42 to 50 weight percent and the range of weight n to the remainder was to maintain the liquidus temperature to solidus temperature of the alloy between 83 °C and 87 °C, and This is to maintain the mechanical strength for the wire drawing.

合金型温度ヒユーズの形式としては、従来のすべての形
式を使用できる。代表的には、■−直線状に対向するリ
ード線間にヒユーズエレメントを溶接し、該ヒユーズエ
レメント上にフラックスを塗布し、このフラックスを塗
布したヒユーズエレメント上に筒状ケースを挿通し、筒
状ケースと各リード線との間を接着剤(例えば、エポキ
シ樹脂)で封止する形式、■互いに並行なリード線の先
端間にヒユーズエレメントを溶接し、該ヒユーズエレメ
ント上にフラックスを塗布し、このフラックスを塗布し
たヒユーズエレメントに、−側部開口のボックス状ケー
スを被せ、このケース開口とリード線との間を接着剤で
封止する形式、■互いに並行なリード線の先端間にヒユ
ーズエレメントを溶接し、該ヒユーズエレメント上にフ
ラックスを塗布し、このフラックスを塗布したヒユーズ
エレメントに、硬化性樹脂液のディッピング塗装によっ
てIf!!、114層を被覆する形式等を使用できる。
All conventional types of alloy temperature fuses can be used. Typically, a fuse element is welded between linearly opposing lead wires, flux is applied onto the fuse element, a cylindrical case is inserted over the fuse element coated with this flux, and the cylindrical A method in which the case and each lead wire are sealed with an adhesive (e.g., epoxy resin), ■ A fuse element is welded between the tips of the mutually parallel lead wires, and flux is applied onto the fuse element. A method in which a box-shaped case with an opening on the negative side is placed over a fuse element coated with flux, and the space between this case opening and the lead wires is sealed with adhesive; ■The fuse element is placed between the tips of the lead wires that are parallel to each other After welding, flux is applied onto the fuse element, and the fuse element coated with this flux is coated with a curable resin liquid by dipping.If! ! , 114 layers can be used.

上記ヒユーズエレメント上に塗布するフラックスには、
融点が上記の合金融点よりも低融点のものを使用する必
要があり、例えば、ロジン:90〜60重量部、ステア
リン酸:10〜40重量部、活性剤:0〜3重量部を使
用できる60ジンには、天然ロジン、変性ロジン(例え
ば、水添ロジン、不均化ロジン、重合ロジン)並びにこ
れらの精製ロジンを使用でき、活性剤には、ジエチルア
ミじの塩酸塩、臭酸塩等を使用できる。
The flux applied on the above fuse element includes:
It is necessary to use a material with a melting point lower than the above-mentioned alloying point. For example, rosin: 90 to 60 parts by weight, stearic acid: 10 to 40 parts by weight, and activator: 0 to 3 parts by weight can be used. Natural rosin, modified rosin (for example, hydrogenated rosin, disproportionated rosin, polymerized rosin), and purified rosins thereof can be used for the 60 gin, and the activator includes diethylamide hydrochloride, bromate, etc. Can be used.

(実施例の説明) 以下、本発明の実施例について説明する。(Explanation of Examples) Examples of the present invention will be described below.

実施例 Zn : 2重量%、Cd:12重重量、In:46重
量%、残部:Snの合金組成を用いて直径0゜55mm
の細線を線引き加工した。この合金細線を長さ4.0m
mに切断してヒユーズエレメントに形成し、このヒユー
ズエレメントを一直線配置の直径Q、55mmの銅リー
ド線間に溶接により橋設し、重合ロジン280重量部、
ステアリン酸:20重量部から成るフラックスをヒユー
ズエレメント上に塗布した。このフラックスを塗布した
ヒユーズエレメント上に外径:2.5mm、長さ:9.
0mmの筒状セラミックスケースを挿通し、該ケース両
端の各端と各リード線との間をエポキシ樹脂で封止した
Example Using an alloy composition of Zn: 2% by weight, Cd: 12% by weight, In: 46% by weight, balance: Sn, the diameter was 0° 55mm.
The thin lines were drawn. This alloy thin wire has a length of 4.0m.
280 parts by weight of polymerized rosin,
A flux consisting of 20 parts by weight of stearic acid was applied onto the fuse element. The fuse element coated with this flux has an outer diameter of 2.5 mm and a length of 9.
A 0 mm cylindrical ceramic case was inserted, and the space between each end of the case and each lead wire was sealed with epoxy resin.

上記において、合金の線引きによる細線化は、断線なく
スムーズに行ない得た。
In the above, thinning of the alloy by drawing the wire could be carried out smoothly without breakage.

又、実施例品200個をシリコンオイル中に浸漬し、各
実施例品につき0.1A以下の電流を通電し、シリコン
オイルを1℃/分の速度で温度上昇させ、各実施例品に
おいて電流が遮断した時の温度を測定したところ、最小
温度は84.8℃、最大温度は85.2℃であり、平均
値は85℃であった・ 比較例 合金として、液相線温度:85℃、固相線温度:68°
Cの市販の低融点はんだ(Bi  Pb−8n−Cd合
金(Bi:50重重量、Pb:25重量%、Sn:12
.5重量%、Cd:12.5重量%)を用い、実施例と
同一寸法、同一形状の合金型温度ヒユーズを製作した。
In addition, 200 example products were immersed in silicone oil, a current of 0.1 A or less was applied to each example product, and the temperature of the silicone oil was increased at a rate of 1°C/min. When the temperature was measured when the metal was cut off, the minimum temperature was 84.8°C, the maximum temperature was 85.2°C, and the average value was 85°C. As a comparative example alloy, liquidus temperature: 85°C , solidus temperature: 68°
C commercially available low melting point solder (Bi Pb-8n-Cd alloy (Bi: 50% by weight, Pb: 25% by weight, Sn: 12% by weight)
.. (Cd: 12.5% by weight), an alloy type temperature fuse having the same dimensions and shape as in the example was manufactured.

しかしながら、合金の線引きによる細線化は著しく困難
であった。そこで、回転ドラム式紡糸法により細線化し
た。また、比較例品につき、実施例品と同様にして作動
温度を測定したところ、73°C〜88℃の間でバラツ
キが観られた(液相線温度である85℃に達しても、作
動しない比較例品においては、ヒユーズエレメント表面
に厚い酸化皮膜が存在し、この酸化皮膜をフラックスに
よって満足に溶解除去できなかったものと推定される)
However, it has been extremely difficult to thin the alloy by drawing it. Therefore, we used a rotating drum spinning method to make the wire thinner. In addition, when the operating temperature of the comparative example product was measured in the same manner as the example product, a variation was observed between 73°C and 88°C (even when the liquidus temperature reached 85°C, the operating temperature It is assumed that in the comparative example product that does not have a thick oxide film on the surface of the fuse element, this oxide film could not be satisfactorily dissolved and removed by the flux.)
.

(発明の効果) 上述した通り本発明によれば、ヒユーズエレメントの製
作が容易であり、しがも、実質上バラツキなく85℃で
作動させ得る合金型温度ヒユーズを提供できる。
(Effects of the Invention) As described above, according to the present invention, it is possible to provide an alloy type temperature fuse that can easily manufacture a fuse element and can be operated at 85° C. with substantially no variation.

Claims (1)

【特許請求の範囲】[Claims] Zn:0.8〜5重量%、Cd:10〜15重量%、I
n:42〜50重量%、残部Snから成る合金をヒュー
ズエレメントとして用いたことを特徴とする合金型温度
ヒューズ。
Zn: 0.8-5% by weight, Cd: 10-15% by weight, I
An alloy-type thermal fuse characterized in that an alloy consisting of n: 42 to 50% by weight and the balance Sn is used as a fuse element.
JP2289839A 1990-10-26 1990-10-26 Alloy type temperature fuse Expired - Lifetime JP2516469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2289839A JP2516469B2 (en) 1990-10-26 1990-10-26 Alloy type temperature fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2289839A JP2516469B2 (en) 1990-10-26 1990-10-26 Alloy type temperature fuse

Publications (2)

Publication Number Publication Date
JPH04163818A true JPH04163818A (en) 1992-06-09
JP2516469B2 JP2516469B2 (en) 1996-07-24

Family

ID=17748439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2289839A Expired - Lifetime JP2516469B2 (en) 1990-10-26 1990-10-26 Alloy type temperature fuse

Country Status (1)

Country Link
JP (1) JP2516469B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294286C (en) * 2005-04-20 2007-01-10 北京航空航天大学 Iridium hafnium niobium high temperature alloy materials and method for preparing same
CN100362655C (en) * 2002-01-30 2008-01-16 霍尼韦尔国际公司 Thermal interface materials, and compositions comprising indium and zinc

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376704C (en) * 2003-05-29 2008-03-26 松下电器产业株式会社 Temperature fuse element, temperature fuse and battery using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104187A (en) * 1973-02-09 1974-10-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104187A (en) * 1973-02-09 1974-10-02

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362655C (en) * 2002-01-30 2008-01-16 霍尼韦尔国际公司 Thermal interface materials, and compositions comprising indium and zinc
CN1294286C (en) * 2005-04-20 2007-01-10 北京航空航天大学 Iridium hafnium niobium high temperature alloy materials and method for preparing same

Also Published As

Publication number Publication date
JP2516469B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
JP4230194B2 (en) Alloy type thermal fuse and wire for thermal fuse element
US6819215B2 (en) Alloy type thermal fuse and fuse element thereof
JP3990169B2 (en) Alloy type temperature fuse
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP2001266724A (en) Alloy-type thermal fuse
JP2819408B2 (en) Alloy type temperature fuse
JP3995058B2 (en) Alloy type temperature fuse
JP3761846B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JPH04163818A (en) Alloy type temperature fuse
US20050220661A1 (en) Method of using an alloy type thermal fuse, and alloy type thermal fuse
JP4409747B2 (en) Alloy type thermal fuse
JP2001266723A (en) Alloy-type thermal-fuse
JP2001143592A (en) Fuse alloy
US7160504B2 (en) Alloy type thermal fuse and fuse element thereof
JPH1140025A (en) Thermal alloy fuse
JP2001325876A (en) Fuse element
JP2001135216A (en) Alloy-type thermal fuse
JP2000182492A (en) Alloy-type temperature fuse
JP2010077459A (en) Element for thermal fuse, and alloy-type thermal fuse
JP2001143590A (en) Alloy fuse
JP2001143589A (en) Alloy fuse
JPS60255950A (en) Low melting point alloy for temperature fuse
JP2001143591A (en) Alloy fuse
JP2001143587A (en) Alloy fuse
JP2001143588A (en) Alloy fuse