JP2001143589A - Alloy fuse - Google Patents

Alloy fuse

Info

Publication number
JP2001143589A
JP2001143589A JP32756699A JP32756699A JP2001143589A JP 2001143589 A JP2001143589 A JP 2001143589A JP 32756699 A JP32756699 A JP 32756699A JP 32756699 A JP32756699 A JP 32756699A JP 2001143589 A JP2001143589 A JP 2001143589A
Authority
JP
Japan
Prior art keywords
temperature
weight
alloy
fuse
fuse element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32756699A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tanaka
嘉明 田中
Toshiaki Saruwatari
利章 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP32756699A priority Critical patent/JP2001143589A/en
Publication of JP2001143589A publication Critical patent/JP2001143589A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/768Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit

Abstract

PROBLEM TO BE SOLVED: To provide an alloy fuse that ensures the effective operation at about 80 deg.C with effectively inhibiting dispersion as well as having a significant heat cycle resistance. SOLUTION: A fuse element is made of an alloy composed of 20 to 40 wt.% of Pb, 10 to 25 wt.% of Sn, 3 to 10 wt.% of In, and the remaining part of Bi.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は作動温度が80℃前
後の合金型温度ヒュ−ズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy type temperature fuse having an operating temperature of about 80.degree.

【0002】[0002]

【従来の技術】合金型温度ヒュ−ズは、一対のリ−ド線
間に低融点可溶合金片(ヒュ−ズエレメント)を接続
し、低融点可溶合金片上にフラックスを塗布し、このフ
ラックス塗布合金片をケ−スまたは樹脂で封止した構成
であり、保護すべき電気機器に取り付けて使用され、電
気機器が過電流により発熱すると、その発生熱により低
融点可溶合金片が液相化され、その溶融金属が既に溶融
したフラックスとの共存下、表面張力により球状化さ
れ、球状化の進行により分断されて機器への通電が遮断
される。
2. Description of the Related Art In an alloy type temperature fuse, a low melting point fusible alloy piece (fusing element) is connected between a pair of lead wires, and a flux is applied on the low melting point fusible alloy piece. The flux coated alloy piece is sealed with a case or resin and used by attaching it to the electrical equipment to be protected. When the electrical equipment generates heat due to overcurrent, the low melting point fusible alloy piece is liquefied by the heat generated. The phase is phased, and the molten metal is sphericalized by surface tension in the coexistence with the already molten flux.

【0003】上記低融点可溶合金に要求される基本的な
要件は、機器の許容温度から求められる所定の融点を有
し、かつ固相線と液相線との間の固液共存域が狭いこと
である。すなわち、通常、合金においては、固相線と液
相線との間に固液共存域が存在し、この領域は、液相中
に固相粒体が分散した状態にあり液相様の性質をも備え
ているために、上記の球状化分断が発生する可能性があ
り、従って、液相線温度(この温度をTとする)以前に
固液共存域に属する温度範囲(ΔTとする)で、低融点
可溶合金片が球状化分断される可能性がある。而して、
かかる低融点可溶合金片を用いた温度ヒュ−ズにおいて
は、ヒュ−ズエレメント温度が(T−ΔT)〜Tとなる
温度範囲で動作するものとして取り扱わなければなら
ず、ΔTが小であるほど、すなわち、固液共存域が狭い
ほど、温度ヒュ−ズの作動温度範囲のバラツキを小とし
て、温度ヒュ−ズを所定の設定温度で作動させることが
できるのである。
[0003] The basic requirements for the low melting point fusible alloy are that the alloy has a predetermined melting point determined from the allowable temperature of the equipment, and the solid-liquid coexistence zone between the solidus line and the liquidus line. It is narrow. That is, usually, in an alloy, a solid-liquid coexistence region exists between the solidus line and the liquidus line, and this region is in a state in which solid particles are dispersed in the liquid phase and has a liquid-like property. , The above-mentioned spheroidization may occur. Therefore, the temperature range (here, ΔT) belonging to the solid-liquid coexistence region before the liquidus temperature (this temperature is T). Therefore, there is a possibility that the low melting point fusible alloy piece is spheroidized and divided. Thus,
In a temperature fuse using such a low melting point fusible alloy piece, the fuse element temperature must be treated as operating within a temperature range of (T-ΔT) to T, and ΔT is small. In other words, the smaller the solid-liquid coexistence area, the smaller the variation in the operating temperature range of the temperature fuse, and the more the temperature fuse can be operated at a predetermined set temperature.

【0004】[0004]

【発明が解決しようとする課題】従来、作動温度が10
0℃以下の合金型温度ヒュ−ズとして、溶融温度95℃
のBi−Pb−Sn系共晶合金をヒュ−ズエレメントと
するもの、溶融温度72℃(固相線温度70℃、液相線
温度72℃)のBi−Pb−Sn−Cd合金(Bi50
重量%、Pb25重量%、Sn12.5重量%、Cd1
2.5重量%)をヒュ−ズエレメントとするものが汎用
されている。しかしながら、これらの温度ヒュ−ズの作
動温度の離隔巾が20℃以上にも達し、これらの中間温
度である80℃を作動温度とする温度ヒュ−ズの開発が
要求されるている。
Conventionally, an operating temperature of 10
Melting temperature 95 ° C as alloy type temperature fuse below 0 ° C
A Bi-Pb-Sn-based eutectic alloy as a fuse element, and a Bi-Pb-Sn-Cd alloy (Bi50) having a melting temperature of 72 ° C (solidus temperature 70 ° C, liquidus temperature 72 ° C).
Wt%, Pb 25 wt%, Sn 12.5 wt%, Cd1
(2.5% by weight) as a fuse element is widely used. However, the separation between the operating temperatures of these temperature fuses has reached 20 ° C. or more, and the development of temperature fuses having an operating temperature of 80 ° C., an intermediate temperature between them, is required.

【0005】従来、固液共存域が80℃にある低融点可
溶合金として、Bi−In−Sn共晶合金(共晶点温度
81℃、共晶組成Bi:54.02重量%,In:2
9.68重量%,Sn:16.3重量%)が知られてい
るが、約54℃で固相変態を発生し、80℃前後を許容
温度とする機器では、この固相変態点を越えた温度に至
る範囲のヒ−トサイクルに曝される可能性があるから、
ヒュ−ズエレメントが繰返し変態歪を受けて早期に破断
され易い。
Conventionally, as a low melting point fusible alloy having a solid-liquid coexistence region at 80 ° C., a Bi-In—Sn eutectic alloy (eutectic point temperature 81 ° C., eutectic composition Bi: 54.02% by weight, In: 2
9.68% by weight, Sn: 16.3% by weight). However, solid-state transformation occurs at about 54 ° C., and an apparatus having an allowable temperature of about 80 ° C. exceeds this solid-state transformation point. Exposure to heat cycles in the temperature range up to
The fuse element is easily broken at an early stage due to repeated transformation strain.

【0006】本発明の目的は、80℃前後でバラツキを
よく抑制して充分正確に作動させ得、しかも耐ヒ−トサ
イクル性に優れた合金型温度ヒュ−ズを提供することに
ある。
An object of the present invention is to provide an alloy-type temperature fuse which can be operated sufficiently accurately at around 80 ° C. with good suppression of variation, and which is excellent in heat cycle resistance.

【0007】[0007]

【課題を解決するための手段】本発明の合金型温度ヒュ
−ズは、Pb20〜40重量%、Sn10〜25重量
%、In3〜10重量%、残部がBiである組成の低融
点可溶合金をヒュ−ズエレメントとすることを特徴とす
る構成であり、前記合金組成100重量部に対しAgを
0.5〜5重量部添加することもできる。
The alloy type temperature fuse according to the present invention is a low melting point fusible alloy having a composition of 20 to 40% by weight of Pb, 10 to 25% by weight of Sn, 3 to 10% by weight of In and the balance of Bi. Is a fuse element, and 0.5 to 5 parts by weight of Ag can be added to 100 parts by weight of the alloy composition.

【0008】[0008]

【発明の実施の形態】本発明に係る温度ヒュ−ズのヒュ
−ズエレメントの基準組成は、Pb30重量%,Sn1
6重量%,In6重量%、Bi48重量%であり、この
組成の液相線温度は82℃、固液共存域幅は4℃であ
る。本発明に係る温度ヒュ−ズのヒュ−ズエレメントの
合金組成中、Pb20〜40重量%、Sn10〜25重
量%は合金に線引き加工に必要な延性を付与し、残部B
i及びIn3〜10重量%は、この延性を保持させつつ
液相線温度を80℃に近付け、固液共存域巾を5℃以内
に抑えるものである。このヒュ−ズエレメントの液相線
温度は80℃〜76℃、固液共存幅は4℃以下である。
温度ヒュ−ズのヒュ−ズエレメントと機器との間には、
その間の熱抵抗のために約2℃の温度差が生じ、固液共
存域巾4℃,液相線温度80℃〜76℃のもとでの温度
ヒュ−ズの作動温度は82℃〜74℃である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reference composition of the fuse element of the temperature fuse according to the present invention is Pb 30% by weight, Sn1.
The composition has a liquidus temperature of 82 ° C. and a solid-liquid coexistence zone width of 4 ° C. In the alloy composition of the fuse element of the temperature fuse according to the present invention, 20 to 40% by weight of Pb and 10 to 25% by weight of Sn impart the ductility necessary for wire drawing to the alloy, and the balance B
i and In of 3 to 10% by weight bring the liquidus temperature close to 80 ° C. and keep the solid-liquid coexistence range within 5 ° C. while maintaining this ductility. The fuse element has a liquidus temperature of 80 ° C. to 76 ° C. and a solid-liquid coexistence width of 4 ° C. or less.
Between the fuse element of the temperature fuse and the device,
A temperature difference of about 2 ° C. is generated due to the thermal resistance during this time, and the operating temperature of the temperature fuse under the solid-liquid coexistence zone width of 4 ° C. and the liquidus temperature of 80 ° C. to 76 ° C. is 82 ° C. to 74 ° C. ° C.

【0009】本発明に係る温度ヒュ−ズにおいては、上
記の合金組成100重量部にAgを0.5〜5重量部添
加することにより、低い比抵抗に調整できる。
In the temperature fuse according to the present invention, a low specific resistance can be adjusted by adding 0.5 to 5 parts by weight of Ag to 100 parts by weight of the above alloy composition.

【0010】本発明に係る温度ヒュ−ズのヒュ−ズエレ
メントは、合金母材の線引きにより製造され、断面丸形
のまま、または、さらに扁平に圧縮加工して使用でき
る。
The fuse element of the temperature fuse according to the present invention is manufactured by drawing an alloy base material, and can be used as it is in a round cross section or in a flattened form.

【0011】本発明の合金型温度ヒュ−ズの形式には、
ケ−ス型、基板型、或いは、樹脂ディッピング型の何れ
をも使用できる。ケ−ス型としては、互いに一直線で対
向するリ−ド線間に線状片のヒュ−ズエレメントを溶接
し、ヒュ−ズエレメント上にフラックスを塗布し、この
フラックス塗布ヒュ−ズエレメント上にセラミックス筒
を挿通し、該筒の各端と各リ−ド線との間を接着剤、例
えばエポキシ樹脂で封止したアクシャルタイプ、また
は、平行リ−ド線間の先端に線状片のヒュ−ズエレメン
トを溶接し、ヒュ−ズエレメント上にフラックスを塗布
し、このフラックス塗布ヒュ−ズエレメント上に扁平を
セラミックキャップを被せ、このキャップの開口とリ−
ド線との間をエポキシ樹脂で封止したラジアルタイプを
使用できる。
The type of the alloy type temperature fuse of the present invention includes:
Any of a case type, a substrate type, and a resin dipping type can be used. As a case type, a fuse element of a linear piece is welded between lead wires that are opposed to each other in a straight line, a flux is applied on the fuse element, and a flux is applied on the fuse-coated fuse element. An axial type in which a ceramic tube is inserted and each end of the tube and each lead wire are sealed with an adhesive, for example, an epoxy resin, or a linear piece is attached to the end between parallel lead wires. The fuse element is welded, a flux is applied on the fuse element, a flat ceramic cap is placed on the flux-coated fuse element, and an opening of the cap and a lead are provided.
A radial type in which the space between the conductor and the lead wire is sealed with an epoxy resin can be used.

【0012】上記の樹脂ディッピング型としては、セラ
ミックキャップの包囲に代え、フラックス塗布ヒュ−ズ
エレメント上にエポキシ樹脂液への浸漬によるエポキシ
樹脂被覆層を設けたラジアルタイプを使用できる。
As the resin dipping type, a radial type in which an epoxy resin coating layer is provided on a flux-coated fuse element by immersion in an epoxy resin liquid, instead of surrounding the ceramic cap.

【0013】上記の基板型としては、片面に一対の層状
電極を設けた絶縁基板のその電極間先端に線状片のヒュ
−ズエレメントを溶接し、ヒュ−ズエレメント上にフラ
ックスを塗布し、各電極の後端にリ−ド線を接続し、絶
縁基板片面上にエポキシ樹脂被覆層を設けたものを使用
でき、アクシャルまたはラジアルの何れの方式にもでき
る。
In the above substrate type, a fuse element of a linear piece is welded to a tip between the electrodes of an insulating substrate having a pair of layered electrodes provided on one side, and a flux is applied on the fuse element. A structure in which a lead wire is connected to the rear end of each electrode and an epoxy resin coating layer is provided on one surface of an insulating substrate can be used, and either an axial or radial system can be used.

【0014】上記のフラックスには、通常、融点がヒュ
−ズエレメントの融点よりも低いものが使用され、例え
ば、ロジン90〜60重量部、ステアリン酸10〜40
重量部、活性剤0〜3重量部を使用できる。この場合、
ロジンには、天然ロジン、変性ロジン(例えば、水添ロ
ジン、不均化ロジン、重合ロジン)またはこれらの精製
ロジンを使用でき、活性剤には、ジエチルアミンの塩酸
塩や臭化水素酸塩等を使用できる。
As the above flux, a flux whose melting point is lower than that of the fuse element is usually used. For example, 90 to 60 parts by weight of rosin, 10 to 40 parts of stearic acid.
Parts by weight, 0 to 3 parts by weight of activator can be used. in this case,
As the rosin, natural rosin, modified rosin (for example, hydrogenated rosin, disproportionated rosin, polymerized rosin) or these purified rosins can be used. As the activator, diethylamine hydrochloride, hydrobromide, or the like can be used. Can be used.

【0015】本発明によれば、動作温度が80℃前後の
耐ヒ−トサイクル性に優れた合金型温度ヒュ−ズを良好
な歩留まりで供することができる。このことは次の実施
例からも明らかである。
According to the present invention, it is possible to provide an alloy type temperature fuse having an excellent heat cycle resistance at an operating temperature of about 80 ° C. with a good yield. This is clear from the following examples.

【0016】[0016]

【実施例】〔実施例1〕合金組成はPb:30重量%,
Sn:16重量%,In:6重量%,Bi:48重量%
であり、液相線温度が82℃、固液共存液巾が4℃であ
る。この合金組成の母材を線引きして直径0.6mmの
線に加工した。1ダイスについての引落率を6.5%と
し、線引き速度を30m/minとしたが、断線は皆無
であった。この線の比抵抗を測定したところ、55μΩ
・cmであった。この線を長さ6mmに切断してヒュ−
ズエレメントとし、筒型温度ヒュ−ズを作成した。リ−
ド線には外径0.6mmの錫メッキ銅線を、筒体には内
径1.5mmのセラミックス筒を、フラックスにはロジ
ン80重量部とステアリン酸20重量部の組成を、接着
剤には常温硬化のエポキシ樹脂を使用した。
EXAMPLES Example 1 The alloy composition was Pb: 30% by weight,
Sn: 16% by weight, In: 6% by weight, Bi: 48% by weight
The liquidus temperature is 82 ° C., and the solid-liquid coexisting liquid width is 4 ° C. The base material of this alloy composition was drawn and processed into a line having a diameter of 0.6 mm. The drop rate for one die was 6.5%, and the drawing speed was 30 m / min, but there was no disconnection. When the specific resistance of this wire was measured, it was 55 μΩ
Cm. Cut this line to a length of 6 mm and
A cylindrical temperature fuse was prepared as a cooling element. Lee
For the lead wire, a tin-plated copper wire with an outer diameter of 0.6 mm, for the cylinder, a ceramic cylinder with an inner diameter of 1.5 mm, for the flux, a composition of 80 parts by weight of rosin and 20 parts by weight of stearic acid, and for the adhesive, An epoxy resin cured at room temperature was used.

【0017】この実施例品50箇を、0.1アンペアの
電流を通電しつつ、昇温速度1℃/分のオイルバスに浸
漬し、溶断による通電遮断時のオイル温度を測定したと
ころ、82±2℃の範囲内であリ、所定の温度でバラツ
キをよく抑えて充分正確に作動させ得た。また、この実
施例品50箇について、65℃×30分と−40℃×3
0分を1サイクルとするヒ−トサイクル試験を500サ
イクル行ったが、ヒュ−ズエレメントの断線や顕著な比
抵抗変動は認められず、優れた耐ヒ−トサイクル性を呈
した。更に、このヒ−トサイクル試験を行った試料50
箇について、断線や顕著な抵抗値変動を呈したものはな
く、前記のオイルバス浸漬・溶断試験を行ったが、通電
遮断時のオイル温度は前記と同様82±2℃の範囲内で
あった。
Fifty samples of this example were immersed in an oil bath at a temperature-raising rate of 1 ° C./min while applying a current of 0.1 amperes. Within a range of ± 2 ° C., it was possible to operate sufficiently accurately at a predetermined temperature while suppressing variations. In addition, about 50 items of this example, 65 ° C. × 30 minutes and −40 ° C. × 3
A heat cycle test was performed 500 times with 0 minute as one cycle, but no breakage of the fuse element or a remarkable change in specific resistance was observed, and excellent heat cycle resistance was exhibited. Further, a sample 50 subjected to this heat cycle test was used.
No breakage or remarkable fluctuation in resistance value was observed for any of the sections, and the oil bath immersion and fusing test was performed. The oil temperature at the time of power interruption was within the range of 82 ± 2 ° C. as described above. .

【0018】〔比較例1〕Bi−In−Sn共晶合金
(共晶点温度81℃、共晶組成Bi:54.02重量
%,In:29.68重量%,Sn:16.3重量%)
の合金組成を母材として実施例と同様にして直径0.6
mmの線に加工し、筒型温度ヒュ−ズを製作した。図1
は、この合金組成のDSC曲線を示し(基準試料:酸化
アルミニウム8.700mg、加熱速度10℃/分),
固相線温度が80.1℃、液相線温度が81.1℃であ
り、50.6℃〜56.6℃の間に固相変態が生じてい
る。この比較例品50箇を、0.1アンペアの電流を通
電しつつ、昇温速度1℃/分のオイルバスに浸漬し、溶
断による通電遮断時のオイル温度を測定したところ、8
1±3℃の範囲内であリ、所定の温度でバラツキをよく
抑えて作動させ得た。しかしながら、この比較例品50
箇について、65℃×30分と−40℃×30分を1サ
イクルとするヒ−トサイクル試験を500サイクル行っ
たところ、ヒュ−ズエレメントの大部分に断線や顕著な
比抵抗変動が生じた。この原因は前記固相変態に基づき
ヒ−トサイクル毎に応力が発生し、繰返し応力による変
形もしくは疲労破断であると推定され、温度ヒュ−ズと
して不適格である。
[Comparative Example 1] Bi-In-Sn eutectic alloy (eutectic point temperature 81 ° C, eutectic composition Bi: 54.02 wt%, In: 29.68 wt%, Sn: 16.3 wt% )
Using the alloy composition of
A cylindrical temperature fuse was manufactured by processing the wire into a mm line. FIG.
Shows a DSC curve of this alloy composition (reference sample: aluminum oxide 8.700 mg, heating rate 10 ° C./min),
The solidus temperature is 80.1 ° C, the liquidus temperature is 81.1 ° C, and the solid state transformation occurs between 50.6 ° C and 56.6 ° C. 50 pieces of this comparative example were immersed in an oil bath at a heating rate of 1 ° C./min while applying a current of 0.1 amperes, and the oil temperature was measured when the current was cut off by fusing.
The temperature was within the range of 1 ± 3 ° C., and the operation was able to be performed at a predetermined temperature while suppressing the variation. However, this comparative example 50
When 500 heat cycle tests were carried out for each of the test items, one cycle consisting of 65 ° C. × 30 minutes and -40 ° C. × 30 minutes, most of the fuse elements were disconnected and remarkable fluctuations in specific resistance occurred. . This is presumed to be caused by the occurrence of stress at each heat cycle based on the solid phase transformation, deformation or fatigue rupture due to repeated stress, and is not suitable as a temperature fuse.

【0019】〔比較例2〕合金組成をPb:32重量
%,Sn:16重量%,In:2重量%,Bi:50重
量%とした。この合金組成は、固相線温度が90℃以上
であり、80℃前後を作動温度とする合金型温度ヒュ−
ズとしては不適格である。
Comparative Example 2 The alloy composition was Pb: 32% by weight, Sn: 16% by weight, In: 2% by weight, and Bi: 50% by weight. This alloy composition has a solidus temperature of 90 ° C. or higher and an alloy mold temperature hue having an operating temperature of about 80 ° C.
Is ineligible.

【0020】〔比較例3〕合金組成をPb:28重量
%,Sn:14重量%,In:12重量%,Bi:46
重量%とした。この合金組成は、液相線温度が70℃以
下であり、80℃前後を作動温度とする合金型温度ヒュ
−ズとしては不適格である。
Comparative Example 3 The alloy composition was as follows: Pb: 28% by weight, Sn: 14% by weight, In: 12% by weight, Bi: 46
% By weight. This alloy composition has a liquidus temperature of 70 ° C. or less, and is unsuitable as an alloy-type temperature fuse having an operating temperature of around 80 ° C.

【0021】[0021]

【発明の効果】本発明によれば、高精度作動を保証で
き、かつ耐ヒ−トサイクル性に優れた動作温度80℃前
後の合金型温度ヒュ−ズを提供できる。
According to the present invention, it is possible to provide an alloy-type temperature fuse having an operating temperature of about 80 ° C., which can guarantee high-precision operation and has excellent heat cycle resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Bi−In−Sn共晶合金のDSC曲線を示す
図面である。
FIG. 1 is a drawing showing a DSC curve of a Bi-In-Sn eutectic alloy.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Pb20〜40重量%、Sn10〜25重
量%、In3〜10重量%、残部がBiである組成の低
融点可溶合金をヒュ−ズエレメントとすることを特徴と
する合金型温度ヒュ−ズ。
An alloy mold temperature characterized by using a low melting point fusible alloy having a composition of 20 to 40% by weight of Pb, 10 to 25% by weight of Sn, 3 to 10% by weight of In, and the balance of Bi as a fuse element. Fuse.
【請求項2】Pb20〜40重量%、Sn10〜25重
量%、In3〜10重量%、残部がBiの100重量部
に対しAgを0.5〜5重量部添加した組成の低融点可
溶合金をヒュ−ズエレメントとすることを特徴とする合
金型温度ヒュ−ズ。
2. A low melting point fusible alloy having a composition in which 20 to 40% by weight of Pb, 10 to 25% by weight of Sn, 3 to 10% by weight of In, and 0.5 to 5 parts by weight of Ag are added to 100 parts by weight of Bi. Is a fuse element.
JP32756699A 1999-11-18 1999-11-18 Alloy fuse Pending JP2001143589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32756699A JP2001143589A (en) 1999-11-18 1999-11-18 Alloy fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32756699A JP2001143589A (en) 1999-11-18 1999-11-18 Alloy fuse

Publications (1)

Publication Number Publication Date
JP2001143589A true JP2001143589A (en) 2001-05-25

Family

ID=18200507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32756699A Pending JP2001143589A (en) 1999-11-18 1999-11-18 Alloy fuse

Country Status (1)

Country Link
JP (1) JP2001143589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117737A (en) * 2019-06-10 2019-08-13 深圳市启晟新材科技有限公司 A kind of submarine engine pedestal vibration damping liquid metal material and its processing technology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117737A (en) * 2019-06-10 2019-08-13 深圳市启晟新材科技有限公司 A kind of submarine engine pedestal vibration damping liquid metal material and its processing technology

Similar Documents

Publication Publication Date Title
JP2004152558A (en) Alloy type thermal fuse and wire material for thermal fuse element
JP4001757B2 (en) Alloy type temperature fuse
US6774761B2 (en) Alloy type thermal fuse and fuse element thereof
JP3841257B2 (en) Alloy type temperature fuse
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP2819408B2 (en) Alloy type temperature fuse
JP3995058B2 (en) Alloy type temperature fuse
JP2001291459A (en) Alloy temperature fuse
JP2004043894A (en) Alloy type thermal fuse and wire member for thermal fuse element
JP4409705B2 (en) Alloy type temperature fuse
JP2001143589A (en) Alloy fuse
JP4409747B2 (en) Alloy type thermal fuse
JP2001143592A (en) Fuse alloy
JP4101536B2 (en) Alloy type thermal fuse
JP2001195963A (en) Alloy temperature fuse
JP2001135216A (en) Alloy-type thermal fuse
JP2001135215A (en) Alloy-type thermal fuse
JPH1140025A (en) Thermal alloy fuse
JP2001143587A (en) Alloy fuse
JP2005171371A (en) Alloy type thermal fuse and wire material for thermal fuse element
JP2000182492A (en) Alloy-type temperature fuse
JP2001143590A (en) Alloy fuse
JP2001143591A (en) Alloy fuse
JP2001143588A (en) Alloy fuse
JPH04259720A (en) Alloy-type temperature fuse