JP2819408B2 - Alloy type temperature fuse - Google Patents

Alloy type temperature fuse

Info

Publication number
JP2819408B2
JP2819408B2 JP2033401A JP3340190A JP2819408B2 JP 2819408 B2 JP2819408 B2 JP 2819408B2 JP 2033401 A JP2033401 A JP 2033401A JP 3340190 A JP3340190 A JP 3340190A JP 2819408 B2 JP2819408 B2 JP 2819408B2
Authority
JP
Japan
Prior art keywords
weight
fuse element
alloy
examples
fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2033401A
Other languages
Japanese (ja)
Other versions
JPH03236130A (en
Inventor
律 西出
和泉 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2033401A priority Critical patent/JP2819408B2/en
Publication of JPH03236130A publication Critical patent/JPH03236130A/en
Application granted granted Critical
Publication of JP2819408B2 publication Critical patent/JP2819408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/768Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit

Landscapes

  • Fuses (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は合金型温度ヒューズに関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an alloy type thermal fuse.

<従来の技術> 温度ヒューズは、保護すべき電機機器が過電流により
発熱すると、その発生熱により作動して電機機器への通
電を遮断し、当該電機機器の損傷を未然に防止し、ひい
ては、火災の発生を事前に防止するものであり、合金型
とペレット型とに大別できる。前者の合金型温度ヒュー
ズにおいては、フラックスを塗布せる低沸点可溶合金片
をヒューズエレメントに使用し、過電流に基づき電機機
器の発熱によりヒューズエレメントを溶断し、機器への
通電を遮断するものであって、その作動機構は、低融点
可溶合金片が溶融し、各リード導体端を核として溶融金
属がその表面張力により球状化し、この球状化の進行に
よって溶融金属が分断されることにある。この場合、フ
ラックスは低融点可溶合金片の表面酸化を防止し、低融
点可溶合金片の表面に万一酸化皮膜が存在しても、加熱
による活性のために、この酸化皮膜を可溶化し、上記球
状化分断を保証する作用を営む。
<Prior art> When an electric device to be protected generates heat due to an overcurrent, the thermal fuse operates by the generated heat to cut off the current to the electric device, thereby preventing the electric device from being damaged, and This is to prevent the occurrence of fire in advance, and can be roughly classified into alloy type and pellet type. In the former alloy type thermal fuse, a low-boiling-point fusible alloy piece that can apply flux is used for the fuse element, and the fuse element is blown by the heat of the electrical equipment based on the overcurrent, and the power to the equipment is cut off. The operating mechanism is that the low-melting-point fusible alloy piece is melted, and the molten metal is spheroidized by its surface tension with each lead conductor end as a nucleus, and the molten metal is divided by the progress of the spheroidization. . In this case, the flux prevents the surface of the low melting point fusible alloy piece from being oxidized, and even if there is an oxide film on the surface of the low melting point fusible alloy piece, the oxide film is solubilized due to the activity by heating. And acts to guarantee the spheroidization.

従来、合金型温度ヒューズのヒューズエレメントとし
ては、(I)Pb:61〜65重量%、Sn:35〜39重量%からな
るSn−Sb系、(II)Sn:16〜20重量%、Pb:30〜34重量
%、Bi:48〜52重量%からなるSn−Pb−Bi系、(III)S
n:46〜50重量%、Pb:13〜19重量%、IN:33〜39重量%か
らなるSn−Pb−In系、(IV)Sn:48〜52重量%、Pb:30〜
34重量%、Cd:16〜20重量%からなるSn−Pb−Cd系、
(V)Sn:44〜48重量%、In:48〜52重量%、Bi:2〜6重
量%からなるSn−In−Bi系、(VI).Sn:44〜48重量%、
Pb:28〜32重量%、Cd:14〜18重量%、In:5〜9重量%か
らなるSn−Pb−Cd−In系(VII).Sn:11〜15重量%、Pb:
25〜29重量%、Bi:48〜52重量%、Cd:8〜12重量%、か
らなるSn−Pb−Bi−Cd系が公知である。これら公知の温
度ヒューズ用エレメントにおいては、固相線温度と液相
線温度とが実質上、一致し、この液相線温度で温度ヒュ
ーズを作動させている。
Conventionally, as a fuse element of an alloy type thermal fuse, there are (I) Sn-Sb system composed of 61 to 65% by weight of Pb and 35 to 39% by weight of Sn, (II) 16 to 20% by weight of Sn, Pb: Sn-Pb-Bi system consisting of 30 to 34% by weight and Bi: 48 to 52% by weight, (III) S
n: 46 to 50% by weight, Pb: 13 to 19% by weight, IN: 33 to 39% by weight Sn-Pb-In type, (IV) Sn: 48 to 52% by weight, Pb: 30 to 50% by weight
34% by weight, Cd: a Sn-Pb-Cd system consisting of 16 to 20% by weight,
(V) Sn: 44-48% by weight, In: 48-52% by weight, Bi: 2-6% by weight of Sn-In-Bi system, (VI). Sn: 44-48% by weight,
Pb: Sn-Pb-Cd-In system (VII) consisting of 28 to 32% by weight, Cd: 14 to 18% by weight, and In: 5 to 9% by weight. Sn: 11 to 15% by weight, Pb:
A Sn-Pb-Bi-Cd system comprising 25 to 29% by weight, Bi: 48 to 52% by weight, and Cd: 8 to 12% by weight is known. In these known thermal fuse elements, the solidus temperature and the liquidus temperature substantially coincide, and the thermal fuse is operated at this liquidus temperature.

<解決しようとする課題> 而して、ヒューズエレメントがこの液相線温度に達す
ると、固相のヒューズエレメントが溶融し、液相とな
り、この液相が表面張力によって上記の球状化分断を行
うが、その液相化はヒューズエレメント(線状)の外周
から中心部に向かって生じていき、中心部までが完全に
液相化されてから、上記の球状化分断が開始される。
<Problem to be Solved> When the fuse element reaches the liquidus temperature, the solid-phase fuse element is melted and becomes a liquid phase, and the liquid phase performs the above-described spheroidization and fragmentation by surface tension. However, the liquefaction occurs from the outer periphery of the fuse element (linear) toward the center, and the spheroidization is started after the center is completely liquefied.

しかしながら、上記合金をヒューズエレメントとする
従来の合金型温度ヒューズにおいては、ヒューズエレメ
ント表面が液相線温度に加熱されたのち球状化分断する
までに要する時間が長く、その時間の短縮化が望まれて
いる。
However, in the conventional alloy-type thermal fuse using the above-mentioned alloy as a fuse element, the time required for the surface of the fuse element to be heated to the liquidus temperature and then spheroidized is long, and it is desired to reduce the time. ing.

本発明の目的は、合金型温度ヒューズにおいて、ヒュ
ーズエレメント表面が液相線温度に加熱されたのち球状
化分断するまでに要する時間の短縮化を図ることにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to shorten the time required for a fuse element surface to be divided into spheroids after being heated to a liquidus temperature in an alloy type thermal fuse.

<課題を解決するための手段> 本発明に係る合金型温度ヒューズは、(I).Sn:61〜
65重量%、Pb:35〜39重量%、 (II).Sn:16〜20重量%、Pb:30〜34重量%、Bi:48〜52
重量%、 (III).Sn:46〜50重量%、Pb:13〜19重量%、In:33〜3
9重量%、 (IV).Sn:48〜52重量%、Pb:30〜34重量%、Cd:16〜20
重量%、 (V).Sn:44〜48重量%、In:48〜52重量%、Bi:2〜6
重量%、 (VI).Sn:44〜48重量%、Pb:28〜32重量%、Cd:14〜18
重量%、In:5〜9重量%、 (VII).Sn:11〜15重量%、Pb:25〜29重量%、Bi:48〜5
2重量%、Cd:8〜12重量%、 の何れかの低融点合金に、Cu、Sb、Bi、Cd、InまたはAg
の何れか1種または2種以上であって、かつ当該合金の
成分以外の金属を1重量%以下添加してなる合金をヒュ
ーズエレメントとすることを特徴とする構成である。
<Means for Solving the Problems> The alloy-type thermal fuse according to the present invention is characterized in that (I) .Sn: 61 ~
65% by weight, Pb: 35 to 39% by weight, (II) .Sn: 16 to 20% by weight, Pb: 30 to 34% by weight, Bi: 48 to 52%
(III). Sn: 46 to 50% by weight, Pb: 13 to 19% by weight, In: 33 to 3%
9% by weight, (IV). Sn: 48 to 52% by weight, Pb: 30 to 34% by weight, Cd: 16 to 20%
(V). Sn: 44 to 48% by weight, In: 48 to 52% by weight, Bi: 2 to 6%
% By weight, (VI). Sn: 44 to 48% by weight, Pb: 28 to 32% by weight, Cd: 14 to 18%
%, In: 5 to 9% by weight, (VII). Sn: 11 to 15% by weight, Pb: 25 to 29% by weight, Bi: 48 to 5%
2% by weight, Cd: 8 to 12% by weight, Cu, Sb, Bi, Cd, In or Ag
The fuse element may be any one or more of the above, and an alloy obtained by adding 1% by weight or less of a metal other than the component of the alloy.

本発明において、Cu、Sb、Bi、Cd、In、Ag等を添加す
る理由は、各合金において、固相線温度と液相線温度と
に差を生じさせるか、または差を拡大することにある。
各合金系の添加金属をCu、Sb、Bi、Cd、In、Agで、かつ
添加量を1重量%以下に限定した理由は、各合金系の液
相線温度を充分に保持して、各合金系ヒューズエレメン
トの作動温度を維持するためである。
In the present invention, the reason for adding Cu, Sb, Bi, Cd, In, Ag, etc., is to cause a difference between the solidus temperature and the liquidus temperature in each alloy, or to increase the difference. is there.
The reason that the additive metal of each alloy system is Cu, Sb, Bi, Cd, In, and Ag and the addition amount is limited to 1% by weight or less is that the liquidus temperature of each alloy system is sufficiently maintained and This is for maintaining the operating temperature of the alloy-based fuse element.

<作用> 本発明の構成によれば、作動温度に達した瞬時、ヒュ
ーズエレメントの表面部が液相線温度になるが、エレメ
ント中心部の温度は固相線温度と液相線温度との間にあ
って、その相状態は、合金組成低融点側成分の融液中に
高融点側成分の微小結晶が共存している状態であり、固
相に較べて著しく強度を低く、ヒューズエレメント全体
が液相化しなくてもある程度の深さまで液相化が進行す
ると、この液相の表面張力のためにその深さよりも内部
の上記の共存状態部分が破断されて、溶融ヒューズエレ
メントの球状化が開始されるのである。
<Operation> According to the configuration of the present invention, the surface of the fuse element reaches the liquidus temperature instantaneously when the operating temperature is reached, but the temperature at the center of the element falls between the solidus temperature and the liquidus temperature. The phase state is a state in which fine crystals of the high melting point component coexist in the melt of the low melting point component of the alloy composition, and the strength is significantly lower than that of the solid phase. If the liquid phase progresses to a certain depth even if it does not change, the above coexistence portion inside the depth is broken due to the surface tension of this liquid phase, and the spheroidization of the molten fuse element starts It is.

<実施例の説明> 以下、図面により本発明を説明する。Hereinafter, the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す縦断面図である。第
1図において、1,1は一対のリード線である。2はリー
ド線間に溶接により橋設したヒューズエレメントであ
る。3はヒューズエレメント上に塗布したフラックスで
ある。4はヒューズエレメント上に被せた絶縁筒であ
り、例えば、セラミックス管を使用することができる。
5,5は絶縁筒各端と各リード線との間を封止せる硬化性
樹脂、例えばエポキシ樹脂である。
FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention. In FIG. 1, 1, 1 is a pair of lead wires. Reference numeral 2 denotes a fuse element bridged between the lead wires by welding. 3 is a flux applied on the fuse element. Reference numeral 4 denotes an insulating cylinder covered on the fuse element. For example, a ceramic tube can be used.
Reference numerals 5 and 5 denote curable resins, for example, epoxy resins, for sealing between each end of the insulating cylinder and each lead wire.

上記ヒューズエレメントには、(I).Sn:61〜65重量
%、Pb:35〜39重量%、 (II).Sn:16〜20重量%、Pb:30〜34重量%、Bi:48〜52
重量%、 (III).Sn:46〜50重量%、Pb:13〜19重量%、In:33〜3
9重量%、 (IV).Sn:48〜52重量%、Pb:30〜34重量%、 (V).Sn:44〜48重量%、In:48〜52重量%、Bi:2〜6
重量%、 (VI).Sn:44〜48重量%、Pb:28〜32重量%、Cd:14〜18
重量%、In:5〜9重量%、 の何れかの低融点可溶合金に、Cu、Sb、Bi、Cd、Inまた
はAgの何れかの1種または2種以上であって、かつ当該
合金の成分以外の金属を1重量%以下添加してなる合金
を使用している。
The fuse elements include (I) .Sn: 61 to 65% by weight, Pb: 35 to 39% by weight, (II) .Sn: 16 to 20% by weight, Pb: 30 to 34% by weight, Bi: 48 to 52
(III). Sn: 46 to 50% by weight, Pb: 13 to 19% by weight, In: 33 to 3%
9% by weight, (IV). Sn: 48 to 52% by weight, Pb: 30 to 34% by weight, (V). Sn: 44 to 48% by weight, In: 48 to 52% by weight, Bi: 2 to 6%
% By weight, (VI). Sn: 44 to 48% by weight, Pb: 28 to 32% by weight, Cd: 14 to 18%
%, In: 5 to 9% by weight of a low melting point alloy of any one of Cu, Sb, Bi, Cd, In or Ag, and an alloy thereof. An alloy made by adding 1% by weight or less of a metal other than the above components is used.

上記温度ヒューズは、保護すべき電気機器に取着して
使用する。この取着状態において、電気機器が過電流の
ために発熱し、許容温度限度にまで加熱されると、ヒュ
ーズエレメントの表面が液相化されて、この液相化がエ
レメント内部に拡がっていき前述した表面張力による分
断が開始される。この場合、本発明に係る温度ヒューズ
においては、ヒューズエレメントとして、Cu、Sb、Bi、
Cd、InまたはAgの何れかの1種または2種以上であっ
て、かつ当該合金の成分以外の金属を添加することによ
り液相線温度と固相線温度とに差をつけたものを用い
て、固相から液相に至る間に中間相を存在させており、
ヒューズエレメント表面が液相になったとき、その液相
線温度よりやや低いヒューズエレメント中心部が中間相
状態にあり、この中間相は、融液に微小結晶が共存した
状態にあって、この共存状態の強度が極めて低いので、
ヒューズエレメントがある程度の深さまで液相化されれ
ば、その液相の球状化表面張力のために、ヒューズエレ
メント中心部の上記の共存状態部分が破断され、ヒュー
ズエレメント全体が液相化される以前に分断が開始さ
れ、それだけ早く電流を遮断できる。
The thermal fuse is used by being attached to an electric device to be protected. In this mounting state, when the electric equipment generates heat due to an overcurrent and is heated to the allowable temperature limit, the surface of the fuse element is liquefied, and this liquefaction spreads inside the element, and The division by the surface tension is started. In this case, in the thermal fuse according to the present invention, Cu, Sb, Bi,
Use one or more of Cd, In, or Ag and have a difference between the liquidus temperature and the solidus temperature by adding a metal other than the components of the alloy. Therefore, an intermediate phase exists between the solid phase and the liquid phase,
When the surface of the fuse element becomes a liquid phase, the center of the fuse element, which is slightly lower than the liquidus temperature, is in an intermediate phase, and this intermediate phase is in a state where microcrystals coexist in the melt. Since the intensity of the state is extremely low,
If the fuse element is liquefied to a certain depth, the above coexistence portion at the center of the fuse element is broken due to the spheroidized surface tension of the liquid phase, and before the entire fuse element is liquefied. The current is cut off and the current can be cut off earlier.

次に本発明の各種実施例を比較例との対比のもとで説
明する。
Next, various examples of the present invention will be described based on comparison with comparative examples.

実施例並びに比較例において使用した温度ヒューズの
型式は、第1図に示す直線タイプであり、ヒューズエレ
メントの長さは3mm、直径は0.6mmとし、リード線には、
直径0.5mmの銅線を用い、絶縁筒には内径(直径)1.4m
m、厚さ0.3mmのセラミックス管を用い、封止実施にはエ
ポキシ樹脂を、フラックスには、ジメチルアミン塩酸塩
を1重量%添加W・Wロジンを使用した。
The type of the thermal fuse used in the examples and comparative examples is a linear type shown in FIG. 1, the length of the fuse element is 3 mm, the diameter is 0.6 mm, and the lead wire is
Uses 0.5mm diameter copper wire, 1.4m inside diameter (diameter) for insulation tube
A ceramic tube having a thickness of 0.3 mm and a thickness of 0.3 mm was used, epoxy resin was used for sealing, and WW rosin containing 1% by weight of dimethylamine hydrochloride was used as a flux.

実施例1〜6 何れの実施例においても、Pb:37重量%、Sn:63重量%
の低融点可溶合金(I)をベースとし、実施例1ではBi
を、実施例2ではInを、実施例3ではCdを、実施例4で
はSdを、実施例5ではCuを、実施例6ではAgをそれぞれ
0.5重量%添加してなる合金をヒューズエレメントとし
て使用した。
Examples 1 to 6 In all Examples, Pb: 37% by weight, Sn: 63% by weight
Example 1 is based on the low melting point fusible alloy (I).
In Example 2, In was used in Example 3, Cd was used in Example 3, Sd was used in Example 4, Cu was used in Example 5, and Ag was used in Example 6.
An alloy containing 0.5% by weight was used as a fuse element.

実施例7 上記の低融点可溶合金(I)をベースとし、Bi、In、
Cd、Sb、Cu、Agをそれぞれ0.1重量%添加してなる合金
をヒューズエレメントとして使用した。
Example 7 Based on the low melting point fusible alloy (I), Bi, In,
An alloy containing 0.1% by weight of each of Cd, Sb, Cu, and Ag was used as a fuse element.

比較例1 上記の低融点可溶合金(I)をヒューズエレメントと
して使用した。
Comparative Example 1 The above low melting point soluble alloy (I) was used as a fuse element.

上記実施例1〜7並びに比較例1につき、温度188℃
のオイルバス中に浸漬し、浸漬直後から分断までの時間
を測定したところ、実施例品においては何れも1.5〜2.0
秒であったが、比較例品では4.5〜4.0秒で、実施例品は
比較例品よりも短時間であった。
For each of Examples 1 to 7 and Comparative Example 1, the temperature was 188 ° C.
When immersed in an oil bath, the time from immediately after immersion to the division was measured.
The time was 4.5 to 4.0 seconds for the comparative product, and was shorter than that of the comparative product.

実施例8〜13並びに比較例2 低融点可溶合金としてPb:32重量%、Sn:18重量%、B
i:50重量%を用い、各実施例における添加金属量(重量
%)を第1表の通りとした。
Examples 8 to 13 and Comparative Example 2 Pb: 32% by weight, Sn: 18% by weight, B
i: 50% by weight, and the amount of added metal (% by weight) in each Example is as shown in Table 1.

これらの実施例品並びに比較例品につき、オイルバス
温度も110℃とし、浸漬から分断までの時間を測定した
ところ、比較例品では5.0〜8.0秒であったが、実施例品
ではすべて3.0秒以下であった。
The oil bath temperature was also set to 110 ° C. for these examples and comparative examples, and the time from immersion to fragmentation was measured.Comparative examples were 5.0 to 8.0 seconds, but all examples were 3.0 seconds. It was below.

実施例14〜19並びに比較例3 低融点可溶合金としてPb:16.5重量%、Sn:48重量%、
In:35.5重量%を用い、各実施例における添加金属量
(重量%)を第2表の通りとした。
Examples 14 to 19 and Comparative Example 3 Pb: 16.5% by weight, Sn: 48% by weight as a low melting point fusible alloy,
In: 35.5% by weight was used, and the amount of added metal (% by weight) in each example was as shown in Table 2.

これらの実施例品並びに比較例品につき、オイルバス
温度を140℃とし、浸漬から分断までの時間を測定した
ところ、比較例品では4.0〜7.0秒であったが、実施例品
ではすべて3.0秒以下であった。
The oil bath temperature was set at 140 ° C. for these examples and comparative examples, and the time from immersion to fragmentation was measured.It was 4.0 to 7.0 seconds for the comparative examples, but 3.0 seconds for all the examples. It was below.

実施例20〜25並びに比較例4 低融点可溶合金としてPb:32重量%、Sn:50重量%、C
d:18重量%を用い、各実施例における添加金属量(重量
%)を第3表の通りとした。
Examples 20 to 25 and Comparative Example 4 Pb: 32% by weight, Sn: 50% by weight, C
d: 18% by weight, and the amount of added metal (% by weight) in each Example was as shown in Table 3.

これらの実施例品並びに比較例品につきオイルバス温
度を160℃とし、浸漬から分断までの時間を測定したと
ころ、比較例品では4.0〜7.0秒であったが、実施例品で
はすべて3.0秒以下であった。
The oil bath temperature was 160 ° C. for these examples and comparative examples, and the time from immersion to fragmentation was measured.The results were 4.0 to 7.0 seconds for the comparative examples, but not more than 3.0 seconds for all the examples. Met.

実施例26〜30並びに比較例4 低融点可溶合金としてSn:46重量%、In:50重量%、B
i:4重量%を用い、各実施例における添加金属量(重量
%)を第4表の通りとした。
Examples 26 to 30 and Comparative Example 4 As a low melting point fusible alloy, Sn: 46% by weight, In: 50% by weight, B
i: 4% by weight, and the amount of added metal (% by weight) in each Example is as shown in Table 4.

これらの実施例品並びに比較例品につき、オイルバス
温度を120℃とし、浸漬から分断までの時間を測定した
ところ、比較例品では5.0〜8.0秒であったが、実施例品
ではすべて3.0秒以下であった。
The oil bath temperature was set at 120 ° C. for these examples and comparative examples, and the time from immersion to fragmentation was measured, which was 5.0 to 8.0 seconds for comparative examples, but 3.0 seconds for all examples. It was below.

実施例31〜35並びに比較例5 低融点可溶合金としてPb:30重量%、Sn:46重量%、C
d:16重量%:In:7重量%を用い、各実施例における添加
金属量(重量%)を第5表の通りとした。
Examples 31 to 35 and Comparative Example 5 Pb: 30% by weight, Sn: 46% by weight, C
d: 16% by weight: In: 7% by weight, and the amount of added metal (% by weight) in each example was as shown in Table 5.

これらの実施例品並びに比較例品につき、オイルバス
温度を140℃とし、浸漬から分断までの時間を測定した
ところ、比較例品では6.0〜12.0秒であったが実施例品
ではすべて4.0秒以下であった。
The oil bath temperature was set to 140 ° C for these examples and comparative examples, and the time from immersion to fragmentation was measured.It was 6.0 to 12.0 seconds for comparative examples, but 4.0 seconds or less for all examples. Met.

実施例36〜40並びに比較例6 低融点可溶合金としてPb:27重量%、Sn:13重量%、C
d:10重量%:Bi:50重量%を用い、各実施例における添加
金属量(重量%)を第6表の通りとした。
Examples 36 to 40 and Comparative Example 6 Pb: 27% by weight, Sn: 13% by weight, C
d: 10% by weight: Bi: 50% by weight, and the amount of added metal (% by weight) in each Example was as shown in Table 6.

これらの実施例品並びに比較例品につきオイルバス温
度を80℃とし、浸漬から分断までの時間を測定したとこ
ろ、比較例品では6.0〜11.0秒であったが実施例品では
すべて4.0秒以下であった。
The oil bath temperature was set at 80 ° C. for these examples and comparative examples, and the time from immersion to fragmentation was measured.Comparative examples had 6.0 to 11.0 seconds, but all examples had less than 4.0 seconds. there were.

本発明の適用範囲は、上記した直線タイプに限定され
るものではない。例えば、第2図に示すように、平行な
一対のリード線1,1の先端部にヒューズエレメント2を
溶接により橋設し、ヒューズエレメント上にフラックス
3を塗布し、一端開口の絶縁ケース4をヒューズエレメ
ント上に被せ、ケース4の一端開口41とリード線1,1と
の間を硬化性樹脂5で封止する型式、第3図に示すよう
に、平行な一対のリード性1線1の先端部にヒューズエ
レメント2を溶接により橋設し、ヒューズエレメント上
にフラックス3を塗布し、これらの外部に硬化性樹脂5
をデッピング塗装する型式、或いは第4図に示すよう
に、耐熱性の絶縁基板6の片面上に一対の膜状電極7,7
を設け、各電極7にリード線1をハンダ付けし、これら
電極間にヒューズエレメント2を溶接により橋設し、ヒ
ューズエレメント上にフラックス3を塗布し、絶縁基板
の片面上に硬化性樹脂5をモールド被覆する型式等を使
用できる。
The application range of the present invention is not limited to the above-mentioned straight line type. For example, as shown in FIG. 2, a fuse element 2 is bridged by welding to the ends of a pair of parallel lead wires 1 and 1, a flux 3 is applied on the fuse element, and an insulating case 4 having one end opening is formed. A type in which the space between one end opening 41 of the case 4 and the lead wires 1 and 1 is sealed with a hardening resin 5 on a fuse element, and as shown in FIG. A fuse element 2 is bridged to the tip by welding, a flux 3 is applied on the fuse element, and a hardening resin 5
4 or a pair of film electrodes 7, 7 on one surface of a heat-resistant insulating substrate 6, as shown in FIG.
, A lead wire 1 is soldered to each electrode 7, a fuse element 2 is bridged between these electrodes by welding, a flux 3 is applied on the fuse element, and a curable resin 5 is applied on one surface of the insulating substrate. A mold coating type or the like can be used.

<発明の効果> 本発明に係る合金型温度ヒューズは上述した通りの構
成であり、従来のヒューズエレメントに対し、液相線温
度がほぼ等しく、この液相線温度と固相線温度とに差を
付けたヒューズエレメントを使用しているので、ヒュー
ズエレメント全体の液相化を待たずにエレメント表面か
らある程度の深さまで液相化が進んだ段階でエレメント
を分断させ得、ヒューズエレメントの分断をそれだけ早
く行わしめ得る。従って、温度ヒューズの電流遮断速度
を高速化でき、保護すべき機器の損傷度をそれだけ軽度
にとどめ得る。
<Effect of the Invention> The alloy type thermal fuse according to the present invention has the above-described configuration, and has a liquidus temperature substantially equal to that of the conventional fuse element, and a difference between the liquidus temperature and the solidus temperature. Since the fuse element with a mark is used, the element can be separated at the stage when the liquid phase has advanced to a certain depth from the element surface without waiting for the entire fuse element to be liquid, and the fuse element can be separated Can be done quickly. Therefore, the current cutoff speed of the thermal fuse can be increased, and the degree of damage to the equipment to be protected can be reduced accordingly.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図、第3図並びに第4図はそれぞれ本発明
の実施例を示す説明図である。 2……ヒューズエレメント。
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are explanatory diagrams each showing an embodiment of the present invention. 2 ... Fuse element.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(I).Sn:61〜65重量%、Pb:35〜39重量
%、 (II).Sn:16〜20重量%、Pb:30〜34重量%、Bi:48〜52
重量%、 (III).Sn:46〜50重量%、Pb:13〜19重量%、In:33〜3
9重量%、 (IV).Sn:48〜52重量%、Pb:30〜34重量%、Cd:16〜20
重量%、 (V).Sn:44〜48重量%、In:48〜52重量%、Bi:2〜6
重量%、 (VI).Sn:44〜48重量%、Pb:28〜32重量%、Cd:14〜18
重量%、In:5〜9重量%、 (VII).Sn:11〜15重量%、Pb:25〜29重量%、Bi:48〜5
2重量%、Cd:8〜12重量%、 の何れかの低融点合金に、Cu、Sb、Bi、Cd、InまたはAg
の何れか1種または2種以上であって、かつ当該合金の
成分以外の金属を1重量%以下添加してなる合金をヒュ
ーズエレメントとすることを特徴とする合金型温度ヒュ
ーズ。
(I) .Sn: 61 to 65% by weight, Pb: 35 to 39% by weight, (II). Sn: 16 to 20% by weight, Pb: 30 to 34% by weight, Bi: 48 to 52%
(III). Sn: 46 to 50% by weight, Pb: 13 to 19% by weight, In: 33 to 3%
9% by weight, (IV). Sn: 48 to 52% by weight, Pb: 30 to 34% by weight, Cd: 16 to 20%
(V). Sn: 44 to 48% by weight, In: 48 to 52% by weight, Bi: 2 to 6%
% By weight, (VI). Sn: 44 to 48% by weight, Pb: 28 to 32% by weight, Cd: 14 to 18%
%, In: 5 to 9% by weight, (VII). Sn: 11 to 15% by weight, Pb: 25 to 29% by weight, Bi: 48 to 5%
2% by weight, Cd: 8 to 12% by weight, Cu, Sb, Bi, Cd, In or Ag
An alloy-type thermal fuse, characterized in that the fuse element is an alloy of any one or more of the above and in which a metal other than the components of the alloy is added in an amount of 1% by weight or less.
JP2033401A 1990-02-13 1990-02-13 Alloy type temperature fuse Expired - Fee Related JP2819408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033401A JP2819408B2 (en) 1990-02-13 1990-02-13 Alloy type temperature fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033401A JP2819408B2 (en) 1990-02-13 1990-02-13 Alloy type temperature fuse

Publications (2)

Publication Number Publication Date
JPH03236130A JPH03236130A (en) 1991-10-22
JP2819408B2 true JP2819408B2 (en) 1998-10-30

Family

ID=12385576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033401A Expired - Fee Related JP2819408B2 (en) 1990-02-13 1990-02-13 Alloy type temperature fuse

Country Status (1)

Country Link
JP (1) JP2819408B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349240C (en) * 2002-11-26 2007-11-14 内桥艾斯泰克股份有限公司 Alloy type thermal fuse and material for a thermal fuse element
CN100422366C (en) * 2005-09-29 2008-10-01 西安航空发动机(集团)有限公司 Low-melting point alloy for machining connecting conduct, its production and use

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3990169B2 (en) * 2002-03-06 2007-10-10 内橋エステック株式会社 Alloy type temperature fuse
JP4101536B2 (en) * 2002-03-06 2008-06-18 内橋エステック株式会社 Alloy type thermal fuse
JP4162917B2 (en) * 2002-05-02 2008-10-08 内橋エステック株式会社 Alloy type temperature fuse
JP4360666B2 (en) * 2002-07-16 2009-11-11 内橋エステック株式会社 Alloy type thermal fuse and wire for thermal fuse element
JP4230194B2 (en) 2002-10-30 2009-02-25 内橋エステック株式会社 Alloy type thermal fuse and wire for thermal fuse element
JP4064217B2 (en) 2002-11-26 2008-03-19 内橋エステック株式会社 Alloy type thermal fuse and material for thermal fuse element
CN106282734B (en) * 2016-08-26 2018-05-08 杭州龙灿液态金属科技有限公司 Low melting point phase-change accumulation energy alloy, preparation process and application with high heat conductance
CN106884107B (en) * 2017-03-09 2018-05-22 宁波新瑞清科金属材料有限公司 A kind of liquid metal thermal interface material with anti-molten characteristic and preparation method thereof
CN110117737A (en) * 2019-06-10 2019-08-13 深圳市启晟新材科技有限公司 A kind of submarine engine pedestal vibration damping liquid metal material and its processing technology
CN110306098A (en) * 2019-07-23 2019-10-08 深圳市启晟新材科技有限公司 A kind of heat transfer of nuclear reactor 300-400 degree liquid metal and its control oxygen activity technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349240C (en) * 2002-11-26 2007-11-14 内桥艾斯泰克股份有限公司 Alloy type thermal fuse and material for a thermal fuse element
CN100422366C (en) * 2005-09-29 2008-10-01 西安航空发动机(集团)有限公司 Low-melting point alloy for machining connecting conduct, its production and use

Also Published As

Publication number Publication date
JPH03236130A (en) 1991-10-22

Similar Documents

Publication Publication Date Title
JP2819408B2 (en) Alloy type temperature fuse
US6911892B2 (en) Alloy type thermal fuse and fuse element thereof
EP1343187B1 (en) Alloy type thermal fuse and fuse element thereof
JP3841257B2 (en) Alloy type temperature fuse
JP3995058B2 (en) Alloy type temperature fuse
JP2004055164A (en) Alloy type thermal fuse and wire material for thermal fuse element
JP4409747B2 (en) Alloy type thermal fuse
JPH0412428A (en) Fuse element
JP2001266723A (en) Alloy-type thermal-fuse
JP2006299289A (en) Alloy type temperature-sensitive element material, and temperature fuse using the same
JPH0736315B2 (en) Square chip-shaped fuse parts
JP2516469B2 (en) Alloy type temperature fuse
JP4946419B2 (en) Thermal fuse and manufacturing method thereof
JP4101536B2 (en) Alloy type thermal fuse
JP2001143592A (en) Fuse alloy
JP2000182492A (en) Alloy-type temperature fuse
JP4435439B2 (en) Method for mounting fuse element and fuse built-in electric component
JPH1140025A (en) Thermal alloy fuse
JP2001325876A (en) Fuse element
JPH06342620A (en) Thermal fuse
JP4222055B2 (en) Alloy for thermal fuse
JPH04259720A (en) Alloy-type temperature fuse
JP2001135216A (en) Alloy-type thermal fuse
JP2001143589A (en) Alloy fuse
JPH03236132A (en) Alloy type temperature fuse

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees