JP2001325876A - Fuse element - Google Patents

Fuse element

Info

Publication number
JP2001325876A
JP2001325876A JP2000143461A JP2000143461A JP2001325876A JP 2001325876 A JP2001325876 A JP 2001325876A JP 2000143461 A JP2000143461 A JP 2000143461A JP 2000143461 A JP2000143461 A JP 2000143461A JP 2001325876 A JP2001325876 A JP 2001325876A
Authority
JP
Japan
Prior art keywords
fuse element
temperature
fuse
lead
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000143461A
Other languages
Japanese (ja)
Other versions
JP4429476B2 (en
Inventor
Tomokuni Mitsui
朋晋 三井
Norisuke Hattori
教祐 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2000143461A priority Critical patent/JP4429476B2/en
Publication of JP2001325876A publication Critical patent/JP2001325876A/en
Application granted granted Critical
Publication of JP4429476B2 publication Critical patent/JP4429476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To properly achieve lead-free state in Sn system of a fuse element embedded in electrical parts, such as a tantalum capacitor, while satisfactorily ensuring stable implementation of fuse-embedded electrical parts by lead-free solder and prevention of carbonization and/or burning of the electrical parts at fuse-fusing action. SOLUTION: Hypercomplex alloy of liquidus temperature of 300 deg.C to 550 deg.C, in which two kinds or more of other metallic elements such as Ag, Cu, Ni, Ge, Al are combined with Sn, is worked into a small diameter wire.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヒュ−ズ素子に関
し、特に、コンデンサやトランジスタ等の電気部品に内
蔵して使用するヒュ−ズ素子として有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuse element, and more particularly to a fuse element useful as a fuse element incorporated in an electric component such as a capacitor or a transistor.

【0002】[0002]

【従来の技術】電気部品においては、電流ヒュ−ズ素子
を電気部品本体に接続し、これらを樹脂モ−ルド等によ
り封止することがある。例えば、タンタルコンデンサに
おいては、万一の極性誤装着による過電流を未然に防止
するために、コンデンサ素子にヒュ−ズ素子を接続し、
これらを樹脂でモ−ルドしている。また、パワ−トラン
ジスタにヒュ−ズ素子を接続し、これらを樹脂で封止す
ることも知られている。
2. Description of the Related Art In an electric component, a current fuse element is sometimes connected to an electric component main body, and these are sealed with a resin mold or the like. For example, in a tantalum capacitor, a fuse element is connected to a capacitor element in order to prevent an overcurrent caused by incorrect polarity mounting.
These are molded with resin. It is also known to connect a fuse element to a power transistor and seal them with a resin.

【0003】これらのヒュ−ズ内蔵電気部品において
は、ヒュ−ズ溶断時のヒュ−ズ素子の発熱温度で加熱さ
れる。而して、その電気部品本体やモ−ルド樹脂の炭化
・燃焼を防止するために、その発熱温度を所定温度以下
に抑える必要がある。すなわち、溶断電流をi、溶断時
間をtm、ヒュ−ズ素子の溶断時温度をTm、同じく抵
抗をR、同じくヒュ−ズ素子の単位長さ当たりの熱容量
をK、周囲温度をθとすると、ほぼ
[0003] These electronic components with a built-in fuse are heated at the temperature at which the fuse element is heated when the fuse is blown. Therefore, in order to prevent carbonization and combustion of the electric component body and the mold resin, it is necessary to suppress the heat generation temperature to a predetermined temperature or less. That is, assuming that the fusing current is i, the fusing time is tm, the fusing temperature of the fuse element is Tm, the resistance is R, the heat capacity per unit length of the fuse element is K, and the ambient temperature is θ. Almost

【数1】 tm=K(Tm−θ)/Ri (1) が成立し、Tmを所定温度以下に抑える必要がある。[Number 1] tm = K (Tm-θ) / Ri 2 (1) is satisfied, it is necessary to suppress the Tm below a predetermined temperature.

【0004】上記のヒュ−ズ内蔵電気部品は、通常リフ
ロ−法またはフロ−法により、回路基板に実装される。
[0004] The above-mentioned electric component with a built-in fuse is usually mounted on a circuit board by a reflow method or a flow method.

【0005】[0005]

【発明が解決しようとする課題】従来、リフロ−法やフ
ロ−法には、Pb−Sn系はんだが使用されており、そ
の実装温度は220℃〜230℃とされていた。従来、
上記ヒュ−ズ素子には、実装温度よりも高い固相線温度
の合金を使用するとの前提に基づき、Pb−1〜10S
n、Pb−0.5〜10Sn−1〜5Ag、Pb−1〜
20In、Pb−1〜20In−1〜5Ag、Pb−
0.5〜5In−0.1〜5Cu等のPb系合金(融点
260℃〜330℃)を使用している。これらの合金系
のヒュ−ズ素子では、固相線温度が前記実装温度よりも
高いから、ヒュ−ズ内蔵電気部品の安全な実装を保証で
きる。また、液相線温度が330℃程度であり、ヒュ−
ズ素子の前記溶断時温度Tmを充分に低くでき、ヒュ−
ズ素子を、電気部品本体やモ−ルド樹脂の炭化・燃焼を
発生させることなく、安全に溶断作動させることができ
る。
Conventionally, Pb-Sn based solder has been used in the reflow method and the flow method, and the mounting temperature has been set at 220 to 230 ° C. Conventionally,
Based on the premise that an alloy having a solidus temperature higher than the mounting temperature is used for the fuse element, Pb-1 to 10S
n, Pb-0.5-10Sn-1-5Ag, Pb-1
20In, Pb-1-20In-1-5Ag, Pb-
Pb-based alloys (melting point: 260 ° C. to 330 ° C.) such as 0.5 to 5 In-0.1 to 5 Cu are used. In these alloy-based fuse elements, since the solidus temperature is higher than the mounting temperature, it is possible to guarantee the safe mounting of the fuse built-in electrical components. Also, the liquidus temperature is about 330 ° C.
The temperature Tm at the time of fusing of the fuse element can be sufficiently lowered,
The fuse element can be safely blown without causing carbonization and combustion of the electric component body and the mold resin.

【0006】ところで、近来、廃棄された電子・電気機
器からの鉛イオンの溶出による環境汚染を防止するため
に、鉛フリ−はんだの使用が要請され、Sn−Ag系、
Sn−Cu系、Sn−In系、Sn−Bi系等の鉛フリ
−はんだが開発されている。これらの鉛フリ−はんだを
使用しての実装温度は、Pb−Snはんだ使用の場合よ
りも高く、最高で280℃が予定されている。このはん
だの鉛フリ−化に対応して、上記ヒュ−ズ素子において
も、鉛フリ−化が要請されるが、従来のように固相線温
度が実装温度よりも高い合金を使用することを前提とし
てヒュ−ズ素子の鉛フリ−化を行うと、実装温度280
℃よりも高い固相線温度の合金がヒュ−ズ素子に使用さ
れることになる。而して、そのヒュ−ズ素子の液相線温
度が従来のPb系ヒュ−ズ素子の液相線温度よりもかな
り高くなり、前記ヒュ−ズ素子の溶断時温度Tmが高く
なって、ヒュ−ズ溶断時に電気部品本体若しくはモ−ル
ド樹脂に炭化・燃焼が生じ易くなって危険である。
[0006] Recently, in order to prevent environmental pollution due to elution of lead ions from discarded electronic and electrical equipment, use of lead-free solder has been demanded.
Lead-free solders such as Sn-Cu, Sn-In and Sn-Bi have been developed. The mounting temperature using these lead-free solders is higher than that using Pb-Sn solder, and is expected to be 280 ° C. at the maximum. In response to the lead-free solder, the fuse element is required to be lead-free. However, it is necessary to use an alloy having a solidus temperature higher than the mounting temperature as in the related art. Assuming that the fuse element is lead-free, the mounting temperature is 280.
Alloys having a solidus temperature higher than ° C. will be used for fuse elements. Thus, the liquidus temperature of the fuse element becomes considerably higher than the liquidus temperature of the conventional Pb-based fuse element, and the fusing temperature Tm of the fuse element becomes higher. -It is dangerous because carbonization and combustion are likely to occur in the electric component body or mold resin at the time of fusing.

【0007】本発明の目的は、タンタルコンデンサ等の
電気部品に内蔵させるヒュ−ズ素子において、ヒュ−ズ
内蔵電気部品の鉛フリ−はんだによる安定な実装やヒュ
−ズ溶断作動時の電気部品の炭化・燃焼防止を満足に保
証しつつ、そのヒュ−ズ素子のSn系での鉛フリ−化を
良好に達成することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fuse element incorporated in an electric component such as a tantalum capacitor, and to stably mount the electric component with a built-in fuse with lead-free solder and to operate the electric component when the fuse is blown. An object of the present invention is to achieve a satisfactory lead-free Sn-based fuse element in the fuse element while sufficiently preventing carbonization and combustion.

【0008】[0008]

【課題を解決するための手段】本発明に係るヒュ−ズ素
子は、Snに、Ag、Cu、Ni、Ge、Al等の他金
属元素の二種以上を配合した液相線温度300℃〜55
0℃の多元合金を細線に加工したことを特徴とする構成
であり、他の金属元素の配合量はAg:5〜30重量
%、Cu:1〜15重量%、Ni:0.5〜5重量%、
Ge:1〜10重量%、Al:1〜10重量%とされ
る。本発明に係るヒュ−ズ素子の好適な構成は、Ag5
〜30重量%、Cu1〜15重量%、残部Snである多
元合金を細線に加工したことを特徴とする。
The fuse element according to the present invention has a liquidus temperature of 300 ° C. or more in which Sn is mixed with two or more other metal elements such as Ag, Cu, Ni, Ge, and Al. 55
This is a configuration characterized by processing a multi-element alloy at 0 ° C. into a fine wire, and the compounding amounts of other metal elements are Ag: 5 to 30% by weight, Cu: 1 to 15% by weight, Ni: 0.5 to 5%. weight%,
Ge: 1 to 10% by weight, Al: 1 to 10% by weight. A preferred configuration of the fuse element according to the present invention is Ag5.
-30% by weight, 1-15% by weight of Cu, and the rest Sn as a multi-element alloy processed into a thin wire.

【0009】〔作用〕固相線温度がほぼ210℃〜23
0℃であり、鉛フリ−はんだによる実装温度260℃〜
280℃よりも低いが、ヒュ−ズ素子の液相線温度が3
00℃以上であってその実装温度よりも高くされている
ために、実装時にヒュ−ズ素子が完全な液状に成らずに
半溶融状態になり、ヒュ−ズ電極に対する濡れ性が悪
く、かつヒュ−ズ素子の線径が50μm〜150μmと
細く表面張力による線状保持力(線径をr、表面張力を
fとすれば、f/r)が大きいために、後述の実施例か
ら明らかなように、ヒュ−ズ素子の実質的な損傷なく、
ヒュ−ズ素子内蔵電気部品を実装できる。
[Action] The solidus temperature is about 210 ° C. to 23 ° C.
0 ° C, mounting temperature of 260 ° C with lead-free solder
Although it is lower than 280 ° C, the liquidus temperature of the fuse element is 3
Since the temperature is higher than 00 ° C. and higher than the mounting temperature, the fuse element does not become a complete liquid at the time of mounting, but becomes a semi-molten state, has poor wettability to the fuse electrode, and has a poor fuse property. Since the wire element has a small wire diameter of 50 μm to 150 μm and has a large linear holding force (f / r where r is the wire diameter and f is the surface tension) due to the surface tension, it will be apparent from the examples described later. In addition, without substantial damage of the fuse element,
Electrical components with built-in fuse elements can be mounted.

【0010】また、ヒュ−ズ素子の液相線温度を550
℃以下としてあるから、後述の実施例から明らかなよう
に、前記のTmを600℃以下に抑えることができ、電
気部品本体若しくはモ−ルド樹脂を炭化・燃焼させるこ
となく、ヒュ−ズ素子を安全に溶断作動させ得る。ま
た、Snと上記の他金属元素一種との2元合金で液相温
度を300℃〜550℃とするには、他金属元素の配合
量を多くする必要があり、例えばSn−Ag二元合金の
場合、Ag配合量を10〜55重量%以上にする必要が
あり、Ag25重量%以上で合金の脆弱化が顕著になる
が、本発明に係るヒュ−ズ素子では、Snに、Ag、C
u、Ni、Ge、Al等の他金属元素を二種以上配合し
ており、後述の実施例と比較例との対比から明らかなよ
うに、他金属元素の少ない配合量で液相線温度を上げる
ことができ、ヒュ−ズ素子の脆弱化をそれだけよく抑え
得、実装時の曲げや製線時のボビン巻取り時にヒュ−ズ
素子が折損するのを良好に防止できる。
Further, the liquidus temperature of the fuse element is set to 550.
C. or less, the Tm can be suppressed to 600.degree. C. or less and the fuse element can be formed without carbonizing or burning the electric component body or the mold resin, as is apparent from the examples described later. Can be safely blown. In addition, in order to set the liquidus temperature to 300 ° C. to 550 ° C. in a binary alloy of Sn and one of the other metal elements, it is necessary to increase the blending amount of the other metal element. In the case of (1), the amount of Ag needs to be 10 to 55% by weight or more, and when the amount of Ag is 25% by weight or more, the alloy is remarkably weakened. However, in the fuse element according to the present invention, Sn, Ag, C
u, Ni, Ge, Al, etc., two or more other metal elements are blended. As is clear from the comparison between Examples and Comparative Examples described later, the liquidus temperature can be reduced with a small amount of other metal elements. It is possible to prevent the fuse element from becoming brittle and to prevent the fuse element from being broken at the time of bending at the time of mounting or winding the bobbin at the time of wire drawing.

【0011】[0011]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は、本発明に係るヒ
ュ−ズ素子を内蔵させたコンデンサの一例を示してい
る。図1において、1はタンタルコンデンサ素子、2は
陽極リ−ド導体である。3は配線板であり、一対の電極
31,32を有し、その電極間に本発明に係るヒュ−ズ
素子aを接続し、一方の電極31をコンデンサ素子1の
陰極に接合し、他方の電極32にリ−ド導体4を接合し
てある。5は封止樹脂層、例えばエポキシ樹脂層であ
る。上記ヒュ−ズ素子と電極との接合には、抵抗溶接、
ワイヤボ−ルボンディング、ウェッジボンディング等を
用いることができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a capacitor incorporating a fuse element according to the present invention. In FIG. 1, 1 is a tantalum capacitor element, and 2 is an anode lead conductor. Reference numeral 3 denotes a wiring board having a pair of electrodes 31 and 32, a fuse element a according to the present invention is connected between the electrodes, one electrode 31 is joined to the cathode of the capacitor element 1, and the other is connected. The lead conductor 4 is joined to the electrode 32. Reference numeral 5 denotes a sealing resin layer, for example, an epoxy resin layer. The fuse element and the electrode are joined by resistance welding,
Wire ball bonding, wedge bonding, or the like can be used.

【0012】上記のコンデンサは、IC、トランジス
タ、チップ抵抗等の他の電気部品と共に鉛フリ−はんだ
を使用してリフロ−法やフロ−法によって回路板に温度
230℃〜280℃で実装される。
The above capacitor is mounted on a circuit board at a temperature of 230.degree. C. to 280.degree. C. by a reflow method or a flow method using lead-free solder together with other electric components such as an IC, a transistor, and a chip resistor. .

【0013】本発明に係るヒュ−ズ素子の合金には、S
nにAg、Cu、Ni、Ge、Al等の他金属元素の二
種以上を配合して液相線温度を300℃〜550℃に調
整した多元合金が使用され、他金属元素の配合量がA
g:5〜30重量%、Cu:1〜15重量%、Ni:
0.5〜5重量%、Ge:1〜10重量%、Al:1〜
10重量%とされる。下限値未満では、液相線温度が3
00℃以下となり、上限値を越えると、液相線温度が5
50℃以上となるからである。また、線径は通常50μ
m〜150μmとされる。
The alloy of the fuse element according to the present invention includes S
A multi-component alloy in which two or more kinds of other metal elements such as Ag, Cu, Ni, Ge, and Al are mixed into n and the liquidus temperature is adjusted to 300 ° C. to 550 ° C. is used. A
g: 5 to 30% by weight, Cu: 1 to 15% by weight, Ni:
0.5 to 5% by weight, Ge: 1 to 10% by weight, Al: 1 to 1%
It is 10% by weight. Below the lower limit, the liquidus temperature is 3
When the temperature exceeds 00 ° C and exceeds the upper limit, the liquidus temperature becomes 5 ° C.
This is because the temperature will be 50 ° C. or higher. The wire diameter is usually 50μ.
m to 150 μm.

【0014】このヒュ−ズ素子では、固相温度が214
℃〜230℃であり、前記実装温度230℃〜280℃
のもとで半溶融状態になり、液相中に固相粒体が混在し
た状態となり、濡れ性が悪く、実装加熱中での電極への
濡れ広がりによるヒュ−ズ素子の細りを僅かにとどめ
得、実装終了時での冷却凝固でほぼ元の太さに保持でき
る。従って、上記のヒュ−ズ内蔵コンデンサを、ヒュ−
ズ素子の固相線温度温度よりも高い実装温度240℃〜
280℃という鉛フリ−はんだによるリフロ−法または
フロ−法でも、ヒュ−ズ素子を安定に保持しつつ実装で
きる。
In this fuse element, the solid phase temperature is 214
° C to 230 ° C, and the mounting temperature is 230 ° C to 280 ° C.
Under the condition, the solid phase particles are mixed in the liquid phase, the wettability is poor, and the thinning of the fuse element due to the spread of the wettability to the electrodes during mounting heating is slightly suppressed. It is possible to maintain the original thickness by cooling and solidifying at the end of mounting. Therefore, the above-mentioned fuse built-in capacitor is
Mounting temperature 240 ° C higher than the solidus temperature of the
Even with the reflow method or the flow method using lead-free solder at 280 ° C., the fuse element can be mounted while being held stably.

【0015】上記したヒュ−ズ素子をタンタルコンデン
サに内蔵させる理由は、万一の極性誤接続によって過電
流が流れるのを防止するためであり、遮断電流をi、遮
断時間をtm、ヒュ−ズ素子の溶断時温度をTm、同じ
く抵抗をR、同じくヒュ−ズ素子の単位長さ当たりの熱
容量をK、周囲温度をθとすると、ほぼ前記の式(1)
が成立する。而るに、本発明に係るヒュ−ズ素子におい
ては、後述の実施例から明らかなように、線径50μm
φ〜150μmφのもとで、2〜6Aを数msecの遮断時
間で、かつ、ヒュ−ズ素子の溶断時温度600℃以下で
過電流を遮断でき、タンタル焼結体の発煙温度600℃
以下で安全に溶断作動させ得る。
The reason why the fuse element is incorporated in the tantalum capacitor is to prevent an overcurrent from flowing due to an erroneous connection of the polarity. The interruption current is i, the interruption time is tm, and the fuse is not used. Assuming that the temperature at the time of fusing of the element is Tm, the resistance is R, the heat capacity per unit length of the fuse element is K, and the ambient temperature is θ, the above equation (1) is obtained.
Holds. The fuse element according to the present invention has a wire diameter of 50 μm
Under φ ~ 150μmφ, overcurrent can be cut off at 2-6A with a cut-off time of several milliseconds and at the time of fusing of the fuse element below 600 ° C, and the smoke temperature of the tantalum sintered body is 600 ° C.
The fusing operation can be safely performed in the following.

【0016】本発明に係るヒュ−ズ素子は、前記したよ
うにタンタルコンデンサに装着して使用することの外、
回路板のヒュ−ズ電極にヒュ−ズ素子単体を前記したリ
フロ−法またはフロ−法により実装する形態でも使用す
ることができる。また、本発明に係るヒュ−ズ素子は、
リフロ−法またはフロ−法により実装した後での補修や
あと付けでも、鏝で安全にはんだ付けすることもでき
る。これらの場合、ヒュ−ズ素子が曲げをうけるが、充
分な柔軟性を有し、折損なく、スム−ズに、装着、実装
またはあと付けできる。
The fuse element according to the present invention can be mounted on a tantalum capacitor as described above.
The fuse element alone may be mounted on the fuse electrode of the circuit board by the above-mentioned reflow method or flow method. Further, the fuse element according to the present invention includes:
Even after repairing or mounting after mounting by the reflow method or the flow method, it is also possible to safely solder with a trowel. In these cases, the fuse element is subject to bending, but has sufficient flexibility and can be smoothly mounted, mounted or retrofitted without breakage.

【0017】本発明に係るヒュ−ズ素子は、充分な柔軟
性を有する多元合金を使用しているから、前記50〜1
50μmφの線引き加工をスム−ズに行うことができ
る。この線引き加工の外、回転液中紡糸法によっても製
造できる。すなわち、回転ドラムの内周面に遠心力によ
り形成保持された冷却液層に、ノズルから噴射した溶融
ジェットを冷却液層の周速と同速・同方向で入射させ、
この液層入射ジェットを冷却液層で急冷・凝固させて紡
糸することもできる。この場合、ノズルから冷却液層に
至る空間でのジェットは、ノズルの円形形状が溶融金属
の表面張力により保持されて円形断面となる。更に、ジ
ェットの表面張力による円形保持力を冷却液層の動圧
(ジェットを扁平化しようとする圧力)よりも大とする
ように、冷却液層周速、ジェットの冷却液層入射角等を
調整してあり、冷却液層に入射されたジェットも、断面
円形を保持しつつ冷却・凝固されていく。従って、線径
50μmφ〜150μmφという細線のヒュ−ズ素子を
容易に製造できる。これらの製線中、ボビンへの巻取り
を必要とするか、充分な柔軟性のために、折損なく、ス
ム−ズに巻き取ることができる。
The fuse element according to the present invention uses a multi-component alloy having sufficient flexibility.
50 μmφ wire drawing can be performed smoothly. In addition to this drawing process, it can also be manufactured by spinning in a rotating liquid. That is, the molten liquid jet formed from the nozzle is incident on the cooling liquid layer formed and held by centrifugal force on the inner peripheral surface of the rotating drum at the same speed and in the same direction as the peripheral speed of the cooling liquid layer,
The liquid layer incident jet can be quenched and solidified in a cooling liquid layer and spun. In this case, the jet in the space from the nozzle to the cooling liquid layer has a circular cross-section because the circular shape of the nozzle is held by the surface tension of the molten metal. Further, the peripheral speed of the cooling liquid layer, the incident angle of the cooling liquid layer of the jet, and the like are set so that the circular holding force due to the surface tension of the jet is larger than the dynamic pressure of the cooling liquid layer (the pressure for flattening the jet). The jet that has been adjusted and incident on the cooling liquid layer also cools and solidifies while maintaining a circular cross section. Therefore, a fuse element having a fine wire having a wire diameter of 50 μmφ to 150 μmφ can be easily manufactured. During the wire drawing, winding onto a bobbin is required, or because of sufficient flexibility, it can be wound smoothly without breakage.

【0018】[0018]

【実施例】〔実施例1〜6〕内径500mm,巾45m
mのドラムを200rpmで回転させて約1600ml
の水を層状に形成し、この冷却液層中に、ヒ−タにて溶
融させた組成材を窒素ガス加圧により、石英ガラスノズ
ルからジェットとして上記冷却液層周速と同速度で噴射
して紡糸する方法により、表1に示すSn−Ag−Cu
合金で線径ほぼ100μmφの細線を製造し、これをヒ
ュ−ズ素子とした。
[Examples] [Examples 1 to 6] Inside diameter 500 mm, width 45 m
m is rotated at 200 rpm to about 1600 ml
Water is formed in a layered form, and a composition melted by a heater is jetted into the cooling liquid layer as a jet from a quartz glass nozzle at the same speed as the peripheral speed of the cooling liquid layer by pressurizing nitrogen gas. According to the spinning method, Sn-Ag-Cu shown in Table 1 was used.
A thin wire having a wire diameter of about 100 μmφ was manufactured from the alloy, and this was used as a fuse element.

【0019】〔比較例1〕表1に示すように、合金をS
n−40重量%Agの二元とした以外、上記実施例に同
じとした。
Comparative Example 1 As shown in Table 1, the alloy was S
The same as in the above example, except that n-40 wt% Ag was binary.

【0020】これらの実施例品及び比較例品の固相線温
度及び液相線温度、抵抗値変化率、電流遮断特性(遮断
時間及び温度)及び柔軟性を測定したところ、表1の通
りであった(試料数20個の平均値)。
The solidus temperature and liquidus temperature, the rate of change in resistance, the current interruption characteristics (interruption time and temperature), and the flexibility of these examples and comparative examples were measured. (Average value of 20 samples).

【0021】なお、測定方法は次ぎの通りである。 〔固相線温度及び液相線温度〕DSCによる測定条件は
加熱速度10℃/minとした。 〔抵抗値変化率〕温度280℃のもとでの実装の可否を
評価するためのものである。図2に示すように、セラミ
ック基板61にAgペ−ストの塗布・焼成により対電極
62,62を設け、両電極間にヒュ−ズ素子aを載置
し、更に各電極62に錫メッキ銅線63を溶接し、その
溶接熱で各電極とヒュ−ズ素子aとの間を溶接した試料
を10分間、280℃に保持し、10分時の初期に対す
る抵抗値変化率を測定した。 〔遮断電流特性〕ヒュ−ズ素子に5Aの電流を通電し、
遮断時間と遮断時のヒュ−ズ素子温度を測定した。 〔柔軟性〕長さ約100mmのヒュ−ズ素子を180°
で折り曲げ、折れなかったときを合格、折れたときを不
合格とした。
The measuring method is as follows. [Solidus temperature and liquidus temperature] The measurement conditions by DSC were a heating rate of 10 ° C / min. [Rate of change in resistance value] This is for evaluating the possibility of mounting at a temperature of 280 ° C. As shown in FIG. 2, counter electrodes 62 and 62 are provided on a ceramic substrate 61 by applying and firing an Ag paste, a fuse element a is placed between the electrodes, and tin-plated copper is further provided on each electrode 62. A wire 63 was welded, and a sample in which each electrode and the fuse element a were welded by the welding heat was kept at 280 ° C. for 10 minutes, and the resistance change rate with respect to the initial value at 10 minutes was measured. [Interruption current characteristics] A current of 5 A flows through the fuse element.
The cut-off time and the fuse element temperature at the time of cut-off were measured. [Flexibility] 180 ° fuse element about 100mm long
When the test piece was bent and not broken, the test was passed.

【0022】[0022]

【表1】 [Table 1]

【0023】本発明に係るヒュ−ズ素子においては、溶
け始め温度(固相線温度)が実装最高280℃より低く
ても、液相線温度が300℃以上であり、温度280℃
のもとでは完全に液化せずに半溶融状態となり、かかる
半溶融状態では濡れ性が低くて細くなり難く、本発明に
係るヒュ−ズ素子を内蔵させた電気部品を280℃とい
う高い温度のもとで実装してもそのヒュ−ズ素子を実質
的な細り無く安定に保持できる。このことは、抵抗変化
率が10%以下と充分に小さいことから確認できる。
In the fuse element according to the present invention, even if the melting start temperature (solidus temperature) is lower than the maximum mounting temperature of 280 ° C., the liquidus temperature is 300 ° C. or more and the temperature is 280 ° C.
In the semi-molten state, the electric component incorporating the fuse element according to the present invention has a high temperature of 280 ° C. Even if the fuse element is originally mounted, the fuse element can be stably held without substantial thinning. This can be confirmed from a sufficiently small resistance change rate of 10% or less.

【0024】また、本発明に係るヒュ−ズ素子において
は、液相線温度が550℃以下であり充分に低く、溶断
時のヒュ−ズ素子の温度を600℃以下に抑え得て電気
部品や封止樹脂の炭化・燃焼を防止できることは、表1
の電流遮断特性の溶断時温度からも確認できる。また、
比較例1との対比から、二元合金で実施例相当の特性を
得るには、柔軟性の悪化が避けられず、コンデンサへの
装着作業や製線上から工業的使用が困難であるが、本発
明によれば、かかる障害なく円滑に工業的使用できるこ
とが明らかである。
Further, in the fuse element according to the present invention, the liquidus temperature is 550 ° C. or less, which is sufficiently low, and the temperature of the fuse element at the time of fusing can be suppressed to 600 ° C. or less. Table 1 shows that the carbonization and combustion of the sealing resin can be prevented.
It can also be confirmed from the temperature at the time of fusing of the current interrupting characteristics. Also,
From the comparison with Comparative Example 1, in order to obtain the characteristics equivalent to the example with the binary alloy, it is inevitable that the flexibility is deteriorated, and it is difficult to mount the capacitor on a capacitor or to use it industrially from the viewpoint of wire drawing. According to the invention, it is clear that industrial use can be made smoothly without such obstacles.

【0025】〔実施例7〕実施例3のSn−20Ag−
5Cuに対し、Sn−20Ag−1Niとした以外、上
記実施例3に同じとした。
[Embodiment 7] Sn-20Ag- of Embodiment 3
The same as Example 3 above except that Sn-20Ag-1Ni was used for 5Cu.

【0026】〔実施例8〕実施例3のSn−20Ag−
5Cuに対し、Sn−20Ag−4Geとした以外、上
記実施例3に同じとした。
Embodiment 8 Sn-20Ag- of Embodiment 3
The same as Example 3 above, except that Sn-20Ag-4Ge was used for 5Cu.

【0027】これらの実施例品の固相線温度及び液相線
温度、抵抗値変化率、電流遮断特性(遮断時間及び温
度)及び柔軟性を測定したところ、表2の通りであっ
た。
The solidus temperature and liquidus temperature, resistance value change rate, current interruption characteristics (interruption time and temperature), and flexibility of these examples were measured.

【表2】 実施例3と実施例7や8との対比から、Cuに対するN
iやGeの置換有用性が確認できる。Alについても、
同様に確認済みである。
[Table 2] From the comparison between Example 3 and Examples 7 and 8, N
The substitution usefulness of i and Ge can be confirmed. For Al,
Also confirmed.

【0028】〔実施例9〕合金組成をSn−5Cu−1
Niとした以外、上記実施例1に同じとした。
Example 9 The alloy composition was changed to Sn-5Cu-1.
It was the same as Example 1 except that Ni was used.

【0029】〔比較例2〕[Comparative Example 2]

【0030】合金組成をSn−20Cuとした以外、上
記実施例1に同じとした。この実施例品及び比較例2の
固相線温度及び液相線温度、抵抗値変化率、電流遮断特
性(遮断時間及び温度)及び柔軟性を測定したところ、
表3の通りであった。
Example 1 was the same as Example 1 except that the alloy composition was Sn-20Cu. When the solidus temperature and liquidus temperature, the rate of change in resistance value, the current interruption characteristics (interruption time and temperature), and the flexibility of this example and comparative example 2 were measured,
Table 3 shows the results.

【表3】 実施例9と比較例2との対比から、Sn−Cu二元の劣
柔軟性をSn−Cu−Niの三元により解消できること
が明らかである。Sn−Cu−Niや上記Sn−Ag−
Cuの外、Sn−Cu−Ge、Sn−Cu−Alについ
ても、その有効性を確認済みである。
[Table 3] It is clear from the comparison between Example 9 and Comparative Example 2 that the poor flexibility of the Sn—Cu binary can be eliminated by the ternary Sn—Cu—Ni. Sn-Cu-Ni or Sn-Ag-
In addition to Cu, Sn-Cu-Ge and Sn-Cu-Al have also been confirmed to be effective.

【0031】〔実施例10〕合金組成をSn−5.5G
e−4.5Alとした以外、上記実施例1に同じとし
た。
Example 10 The alloy composition was changed to Sn-5.5G.
The same as Example 1 except that e-4.5Al was used.

【0032】〔実施例11〕合金組成をSn−8Ge−
7Alとした以外、上記実施例1に同じとした。
Example 11 The alloy composition was changed to Sn-8Ge-
Same as Example 1 except that 7Al was used.

【0033】これらの実施例品の固相線温度及び液相線
温度、抵抗値変化率、電流遮断特性(遮断時間及び温
度)及び柔軟性を測定したところ、表4の通りであっ
た。
The solidus temperature and liquidus temperature, the rate of change in resistance, the current interruption characteristics (interruption time and temperature), and the flexibility of these examples were measured.

【表4】 これらの実施例から、Sn−Ge−Alの三元系が、上
記Sn−Ag−Cu、Sn−Ag−Ge、Sn−Ag−
Niと同様に有効であることが明らかである。これら以
外の請求項1に属する三元系の有効性も確認済みであ
る。
[Table 4] From these examples, it can be seen that the ternary system of Sn-Ge-Al is Sn-Ag-Cu, Sn-Ag-Ge, Sn-Ag-
It is clear that it is as effective as Ni. Other than these, the effectiveness of the ternary system according to claim 1 has been confirmed.

【0034】[0034]

【発明の効果】本発明によれば、タンタルコンデンサ等
の電気部品に内蔵させるヒュ−ズ素子において、ヒュ−
ズ内蔵電気部品の鉛フリ−はんだによる安定な実装及び
ヒュ−ズ溶断作動時の電気部品の炭化・燃焼防止、更に
は、ヒュ−ズ素子の容易な取扱いや製線性等の点を満足
に保証しつつそのヒュ−ズ素子のSn系での鉛フリ−化
を可能にでき、鉛フリ−化による環境保全上、極めて有
用である。
According to the present invention, there is provided a fuse element incorporated in an electric component such as a tantalum capacitor.
Stable mounting of electrical components with lead-free solder and prevention of carbonization and burning of electrical components during fuse fusing operation, as well as easy handling of fuse elements and satisfactory wireability. In addition, it is possible to make the fuse element lead-free in the Sn system, which is extremely useful in environmental protection by lead-free.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るヒュ−ズ内蔵電気部品の一例を示
す図面である。
FIG. 1 is a drawing showing an example of a fuse built-in electrical component according to the present invention.

【図2】抵抗変化率の測定試料を示す図面である。FIG. 2 is a drawing showing a sample for measuring a rate of change in resistance.

【符号の説明】[Explanation of symbols]

a ヒュ−ズ素子 1 コンデンサ素子 5 封止樹脂層 a fuse element 1 capacitor element 5 sealing resin layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Snに、Ag、Cu、Ni、Ge、Alの
二種以上を配合した液相線温度300℃〜550℃の多
元合金を細線に加工したことを特徴とするヒュ−ズ素
子。
1. A fuse element wherein a multi-element alloy having a liquidus temperature of 300 ° C. to 550 ° C., in which two or more of Ag, Cu, Ni, Ge, and Al are blended with Sn, is processed into a thin wire. .
【請求項2】Agが5〜30重量%、Cuが1〜15重
量%、Niが0.5〜5重量%、Geが1〜10重量
%、Alが1〜10重量%である請求項1記載のヒュ−
ズ素子。
2. Ag is 5 to 30% by weight, Cu is 1 to 15% by weight, Ni is 0.5 to 5% by weight, Ge is 1 to 10% by weight, and Al is 1 to 10% by weight. Hue described in 1
Element.
【請求項3】Ag5〜30重量%、Cu1〜15重量
%、残部Snである多元合金を細線に加工したことを特
徴とするヒュ−ズ素子。
3. A fuse element wherein a multi-element alloy which is 5 to 30% by weight of Ag, 1 to 15% by weight of Cu and the balance Sn is processed into a fine wire.
JP2000143461A 2000-05-16 2000-05-16 Fuse element for built-in electrical parts Expired - Fee Related JP4429476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143461A JP4429476B2 (en) 2000-05-16 2000-05-16 Fuse element for built-in electrical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143461A JP4429476B2 (en) 2000-05-16 2000-05-16 Fuse element for built-in electrical parts

Publications (2)

Publication Number Publication Date
JP2001325876A true JP2001325876A (en) 2001-11-22
JP4429476B2 JP4429476B2 (en) 2010-03-10

Family

ID=18650277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143461A Expired - Fee Related JP4429476B2 (en) 2000-05-16 2000-05-16 Fuse element for built-in electrical parts

Country Status (1)

Country Link
JP (1) JP4429476B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040582A1 (en) * 2004-10-15 2006-04-20 Alpha Fry Limited Solder alloy
JP2014523064A (en) * 2011-06-17 2014-09-08 エルジー・ケム・リミテッド Soldering connector, battery module including the same, and battery pack
KR101449068B1 (en) 2009-12-01 2014-10-14 현대자동차주식회사 Fuse combined with plug in type connector
CN104303336A (en) * 2012-08-02 2015-01-21 株式会社Lg化学 Secondary-battery connecting part, and battery module and battery pack including same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040582A1 (en) * 2004-10-15 2006-04-20 Alpha Fry Limited Solder alloy
GB2433944A (en) * 2004-10-15 2007-07-11 Alpha Fry Ltd Solder alloy
GB2433944B (en) * 2004-10-15 2008-12-24 Alpha Fry Ltd Solder alloy
KR101449068B1 (en) 2009-12-01 2014-10-14 현대자동차주식회사 Fuse combined with plug in type connector
JP2014523064A (en) * 2011-06-17 2014-09-08 エルジー・ケム・リミテッド Soldering connector, battery module including the same, and battery pack
CN104303336A (en) * 2012-08-02 2015-01-21 株式会社Lg化学 Secondary-battery connecting part, and battery module and battery pack including same
EP2827404A4 (en) * 2012-08-02 2015-10-07 Lg Chemical Ltd Secondary-battery connecting part, and battery module and battery pack including same

Also Published As

Publication number Publication date
JP4429476B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP3533017B2 (en) Lead-free alloy for solder joint
JP4770733B2 (en) Solder and mounted products using it
JP4722751B2 (en) Powder solder material and bonding material
JP2006255784A (en) Unleaded solder alloy
EP3112080A1 (en) Lead-free solder alloy, solder material, and joined structure
US6819215B2 (en) Alloy type thermal fuse and fuse element thereof
KR102242388B1 (en) Solder alloy, solder bonding material and electronic circuit board
JP2004176106A (en) Alloy type thermal fuse, and material for thermal fuse element
US6774761B2 (en) Alloy type thermal fuse and fuse element thereof
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP2001266724A (en) Alloy-type thermal fuse
JP4818641B2 (en) Fuse element
WO2020067307A1 (en) Lead-free solder alloy
JP2001325876A (en) Fuse element
JP2007313548A (en) Cream solder
JP4409747B2 (en) Alloy type thermal fuse
JP4435439B2 (en) Method for mounting fuse element and fuse built-in electric component
JP4425760B2 (en) Fuse element
JP3708252B2 (en) Solder alloy powder for reflow mounting of electronic parts
JP2516469B2 (en) Alloy type temperature fuse
JP2001266734A (en) Fuse element
JP4101536B2 (en) Alloy type thermal fuse
JP2001195963A (en) Alloy temperature fuse
JP2001143592A (en) Fuse alloy
JP2000135557A (en) Lead free heat resistant solder and soldering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4429476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees