JPH1140025A - Thermal alloy fuse - Google Patents
Thermal alloy fuseInfo
- Publication number
- JPH1140025A JPH1140025A JP21253097A JP21253097A JPH1140025A JP H1140025 A JPH1140025 A JP H1140025A JP 21253097 A JP21253097 A JP 21253097A JP 21253097 A JP21253097 A JP 21253097A JP H1140025 A JPH1140025 A JP H1140025A
- Authority
- JP
- Japan
- Prior art keywords
- fuse
- temperature
- alloy
- weight
- fuse element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H2037/768—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H37/761—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
Landscapes
- Fuses (AREA)
Abstract
Description
【0001】本発明は合金型温度ヒュ−ズに関するもの
である。The present invention relates to an alloy type temperature fuse.
【0002】合金型温度ヒュ−ズは、一対のリ−ド線間
に低融点可溶合金片(ヒュ−ズエレメント)を接続し、
低融点可溶合金片上にフラックスを塗布し、このフラッ
クス塗布合金片を絶縁体で包囲した構成であり、保護す
べき電気機器に取り付けて使用される。[0002] An alloy type temperature fuse has a low melting point fusible alloy piece (fuse element) connected between a pair of lead wires.
The flux is applied on the low melting point fusible alloy piece, and the flux coated alloy piece is surrounded by an insulator, and is used by being attached to an electric device to be protected.
【0003】この場合、電気機器が過電流により発熱す
ると、その発生熱により低融点可溶合金片が液相化さ
れ、その溶融金属が既に溶融したフラックスとの共存
下、表面張力により球状化され、球状化の進行により分
断されて機器への通電が遮断される。In this case, when electric equipment generates heat due to overcurrent, the low melting point fusible alloy piece is liquefied by the generated heat, and the molten metal is made spherical by surface tension in the coexistence with the already melted flux. Is cut off by the progress of spheroidization, and the power supply to the device is cut off.
【0004】上記低融点可溶合金に要求される要件の一
つは、固相線と液相線との間の固液共存域が狭いことで
ある。すなわち、通常、合金においては、固相線と液相
線との間に固液共存域が存在し、この領域においては、
液相中に固相粒体が分散した状態にあり、液相様の性質
も備えているために、上記の球状化分断が発生する可能
性があり、従って、液相線温度(この温度をTとする)
以前に固液共存域に属する温度範囲(ΔTとする)で、
低融点可溶合金片が球状化分断される可能性がある。而
して、かかる低融点可溶合金片を用いた温度ヒュ−ズに
おいては、ヒュ−ズエレメント温度が(T−ΔT)〜T
となる温度範囲で動作するものとして取り扱わなければ
ならず、従って、ΔTが小であるほど、すなわち、固液
共存域が狭いほど、温度ヒュ−ズの作動温度範囲のバラ
ツキを小として、温度ヒュ−ズを所定の設定温度で作動
させることができる。従って、温度ヒュ−ズのヒュ−ズ
エレメントとして使用される合金には、まず固液共存域
が狭いことが要求される。更に、温度ヒュ−ズのヒュ−
ズエレメントは、線状片の形態で使用されるから、線引
加工が可能であることが要求される。[0004] One of the requirements required for the low melting point fusible alloy is that the solid-liquid coexistence region between the solidus line and the liquidus line is narrow. That is, usually, in an alloy, a solid-liquid coexistence region exists between the solidus line and the liquidus line, and in this region,
Since the solid particles are dispersed in the liquid phase and have a liquid-like property, the above-mentioned spheroidization may occur. T)
Previously, in the temperature range belonging to the solid-liquid coexistence region (referred to as ΔT),
There is a possibility that the low-melting-point fusible alloy piece is spheroidized and divided. Thus, in the temperature fuse using the low melting point fusible alloy piece, the fuse element temperature is (T-ΔT) to T
Therefore, the smaller the ΔT, that is, the narrower the solid-liquid coexistence area, the smaller the variation in the operating temperature range of the temperature fuse, and the lower the temperature fuse. Can be operated at a predetermined set temperature. Therefore, the alloy used as the fuse element of the temperature fuse must first have a narrow solid-liquid coexistence region. In addition, the fuse of the temperature fuse
Since the drawing element is used in the form of a linear piece, it is required to be capable of drawing.
【0005】[0005]
【発明が解決しようとする課題】従来、作動温度が10
0℃以下の合金型温度ヒュ−ズとしは、溶融温度95℃
のBi−Pb−Sn系共晶合金をヒュ−ズエレメントと
するもの、溶融温度72℃(固相線温度70℃、液相線
温度72℃)のBi−Pb−Sn−Cd合金(Bi50
重量%、Pb25重量%、Sn12.5重量%、Cd1
2.5重量%)をヒュ−ズエレメントとするものが汎用
されている。しかしながら、これらの温度ヒュ−ズの作
動温度の離隔巾は20℃以上にも達し、これらの間の中
間温度を作動温度とする温度ヒュ−ズが要求される。Conventionally, an operating temperature of 10
An alloy mold temperature fuse of 0 ° C or less has a melting temperature of 95 ° C.
A Bi-Pb-Sn-based eutectic alloy as a fuse element, and a Bi-Pb-Sn-Cd alloy (Bi50) having a melting temperature of 72 ° C (solidus temperature 70 ° C, liquidus temperature 72 ° C).
Wt%, Pb 25 wt%, Sn 12.5 wt%, Cd1
(2.5% by weight) as a fuse element is widely used. However, the separation between the operating temperatures of these temperature fuses reaches 20 ° C. or more, and a temperature fuse having an intermediate temperature between them as the operating temperature is required.
【0006】従来、固液共存域が80℃〜90℃の間に
在り、その領域の巾が温度ヒュ−ズの作動上許容できる
範囲(4℃以内)にある低融点はんだとして、Bi−I
n−Sn共晶合金(共晶点温度82℃、共晶組成Sn4
6重量%,In50重量%,Bi4重量%)が公知であ
るが、脆性が高く、ヒュ−ズエレメントとしての加工が
至難であり、温度ヒュ−ズのヒュ−ズエレメントとして
の使用は困難である。Hitherto, Bi-I has been known as a low melting point solder having a solid-liquid coexisting region between 80 ° C. and 90 ° C. and having a width within an allowable range (within 4 ° C.) for the operation of a temperature fuse.
n-Sn eutectic alloy (eutectic point temperature 82 ° C, eutectic composition Sn4
(6% by weight, In 50% by weight, Bi 4% by weight) are known, but they are very brittle, making it difficult to work as a fuse element, and it is difficult to use a temperature fuse as a fuse element. .
【0007】そこで、本出願人においては、基準組成が
Sn1.0重量%,In52.5重量%,残部Biの液
相線温度87℃、固液共存域巾3℃の合金をヒュ−ズエ
レメントとする合金型温度ヒュ−ズを既に提案した(平
成5年特許願第139398号)。しかしながら、この
合金型温度ヒュ−ズでは、ヒュ−ズエレメントの電気抵
抗がやや高く、電流容量上の使用制限を受けることがあ
る。この電気抵抗の比較的に高いことの主な原因は、B
i量が多く、Sn量が少ないことにあるが、上記基準組
成の系でBiを減少し、Snを増加したのでは、作動温
度86℃〜90℃の条件から逸脱してしまう。Therefore, the applicant of the present invention has proposed a fuse element having a reference composition of 1.0% by weight of Sn, 52.5% by weight of In, the balance of Bi having a liquidus temperature of 87 ° C., and a solid-liquid coexistence region width of 3 ° C. Have already been proposed (Patent Application No. 139398 of 1993). However, in this alloy type temperature fuse, the electric resistance of the fuse element is slightly high, and there is a case where the use is restricted due to the current capacity. The main reason for this relatively high electrical resistance is that B
The amount of i is large and the amount of Sn is small. However, if Bi is reduced and Sn is increased in the system having the above-described reference composition, the operating temperature deviates from 86 ° C to 90 ° C.
【0008】本発明の目的は、作動温度が86℃〜90
℃で、しかも低抵抗の合金型温度ヒュ−ズを容易に製作
できる合金型温度ヒュ−ズを提供することにある。It is an object of the present invention to operate at an operating temperature of 86.degree.
It is an object of the present invention to provide an alloy type temperature fuse which can easily produce an alloy type temperature fuse having a low temperature and a low resistance.
【0009】[0009]
【課題を解決するための手段】本発明の合金型温度ヒュ
−ズは、低融点可溶合金をヒュ−ズエレメントとする温
度ヒュ−ズにおいて、低融点可溶合金の合金組成が、B
i0.3〜6重量%、Cd10〜18重量%、Sn35
〜48重量%、残部Inであることを特徴とする構成で
ある。An alloy type temperature fuse according to the present invention is a temperature fuse having a low melting point fusible alloy as a fuse element.
i 0.3 to 6% by weight, Cd 10 to 18% by weight, Sn35
~ 48% by weight, with the balance being In.
【0010】[0010]
【発明の実施の形態】本発明の合金型温度ヒュ−ズの形
式には、ケ−ス型、基板型、或いは、樹脂ディッピング
型の何れをも使用できる。ケ−ス型としては、互いに一
直線で対向するリ−ド線間に線状片のヒュ−ズエレメン
トを溶接し、ヒュ−ズエレメント上にフラックスを塗布
し、このフラックス塗布ヒュ−ズエレメント上にセラミ
ックス筒を挿通し、該筒の各端と各リ−ド線との間を接
着剤、例えばエポキシ樹脂で封止したアクシャルタイ
プ、または、平行リ−ド線間の先端に線状片のヒュ−ズ
エレメントを溶接し、ヒュ−ズエレメント上にフラック
スを塗布し、このフラックス塗布ヒュ−ズエレメント上
に扁平をセラミックキャップを被せ、このキャップの開
口とリ−ド線との間をエポキシ樹脂で封止したラジアル
タイプを使用できる。BEST MODE FOR CARRYING OUT THE INVENTION As the type of the alloy type temperature fuse of the present invention, any of a case type, a substrate type and a resin dipping type can be used. As a case type, a fuse element of a linear piece is welded between lead wires that are opposed to each other in a straight line, a flux is applied on the fuse element, and a flux is applied on the fuse-coated fuse element. An axial type in which a ceramic tube is inserted and each end of the tube and each lead wire are sealed with an adhesive, for example, an epoxy resin, or a linear piece is attached to the end between parallel lead wires. The fuse element is welded, a flux is applied on the fuse element, a flat ceramic cap is placed on the fuse-coated fuse element, and an epoxy resin is placed between the opening of the cap and the lead wire. Radial type sealed with can be used.
【0011】上記の樹脂ディッピング型としては、セラ
ミックキャップの包囲に代え、フラックス塗布ヒュ−ズ
エレメント上にエポキシ樹脂液への浸漬によるエポキシ
樹脂被覆層を設けたラジアルタイプを使用できる。As the resin dipping type, a radial type in which an epoxy resin coating layer is provided on a flux-coated fuse element by immersion in an epoxy resin liquid, instead of surrounding the ceramic cap.
【0012】上記の基板型としては、片面に一対の層状
電極を設けた絶縁基板のその電極間先端に線状片のヒュ
−ズエレメントを溶接し、ヒュ−ズエレメント上にフラ
ックスを塗布し、各電極の後端にリ−ド線を接続し、絶
縁基板片面上にエポキシ樹脂被覆層を設けたものを使用
でき、アクシャルまたはラジアルの何れの方式にもでき
る。In the above-mentioned substrate type, a fuse element of a linear piece is welded to a tip between the electrodes of an insulating substrate having a pair of layered electrodes provided on one surface, and a flux is applied on the fuse element. A structure in which a lead wire is connected to the rear end of each electrode and an epoxy resin coating layer is provided on one surface of an insulating substrate can be used, and either an axial or radial system can be used.
【0013】上記ヒュ−ズエレメントには、Bi0.3
〜6重量%、Cd10〜18重量%、Sn35〜48重
量%、残部In、好ましくは、Bi0.5〜4重量%、
Cd12〜14重量%、Sn39〜42重量%、残部I
nの合金母材を線引きしたものを使用し、断面丸形のま
ま、または、さらに扁平に圧縮加工して使用できる。The fuse element includes Bi0.3
-6% by weight, Cd 10-18% by weight, Sn 35-48% by weight, balance In, preferably Bi 0.5-4% by weight,
Cd 12-14% by weight, Sn 39-42% by weight, balance I
The alloy base material of n can be used by drawing, and it can be used as it is with a round cross-section or by further flattening.
【0014】上記の合金組成の基準組成はBi:2.9
重量%,Cd:13.6重量%,Sn:40.8重量
%,In:42.7重量%であり、液相線温度は87
℃、固液共存域巾は4℃である。The reference composition of the above alloy composition is Bi: 2.9.
%, Cd: 13.6% by weight, Sn: 40.8% by weight, In: 42.7% by weight, and the liquidus temperature was 87%.
℃, the solid-liquid coexistence zone width is 4 ℃.
【0015】合金型温度ヒュ−ズにおいては、温度ヒュ
−ズ表面とヒュ−ズエレメントとの間の熱抵抗のため
に、ヒュ−ズエレメント温度に較べ温度ヒュ−ズ表面温
度がほぼ1℃高くなり、上記標準組成をヒュ−ズエレメ
ントとする温度ヒュ−ズの作動温度は90℃〜86℃と
なる。In the alloy type temperature fuse, the temperature fuse surface temperature is approximately 1 ° C. higher than the fuse element temperature due to the thermal resistance between the temperature fuse surface and the fuse element. The operating temperature of the temperature fuse using the above standard composition as a fuse element is 90 ° C to 86 ° C.
【0016】上記組成の合金においては、Sn及びIn
により線引きに必要な延性が与えられ、Bi及びCdに
より融点が90℃近くにされ、89℃〜85℃の融点
(固相線と液相線との間の温度)に設定される。上記C
dとその配合量は、Biを0.3〜6重量%という少量
とし、Snを35〜48重量%という比較的多量のもと
で、温度ヒュ−ズの動作温度の巾を±2℃(88℃を中
心として)以内に納めることを可能にしており、Snに
対しBiを充分に少量とすることにより、ヒュ−ズエレ
メントの充分な低電気抵抗化を達成できる。In the alloy having the above composition, Sn and In
Gives the ductility required for drawing, and Bi and Cd bring the melting point close to 90 ° C. and set it to a melting point of 89 ° C. to 85 ° C. (the temperature between the solidus line and the liquidus line). The above C
With respect to d and its compounding amount, the range of the operating temperature of the temperature fuse is ± 2 ° C. under a relatively large amount of Bi of 0.3 to 6% by weight and a relatively large amount of Sn of 35 to 48% by weight. (At around 88 ° C.), and by sufficiently reducing Bi with respect to Sn, a sufficiently low electric resistance of the fuse element can be achieved.
【0017】なお、上記のフラックスには、通常、融点
がヒュ−ズエレメントの融点よりも低いものが使用さ
れ、例えば、ロジン90〜60重量部、ステアリン酸1
0〜40重量部、活性剤0〜3重量部を使用できる。こ
の場合、ロジンには、天然ロジン、変性ロジン(例え
ば、水添ロジン、不均化ロジン、重合ロジン)またはこ
れらの精製ロジンを使用でき、活性剤には、ジエチルア
ミンの塩酸塩や臭酸塩等を使用できる。As the above flux, a flux whose melting point is lower than that of the fuse element is usually used. For example, 90 to 60 parts by weight of rosin, stearic acid 1
0-40 parts by weight, 0-3 parts by weight of activator can be used. In this case, a natural rosin, a modified rosin (for example, hydrogenated rosin, disproportionated rosin, polymerized rosin) or a purified rosin thereof can be used as the rosin, and a hydrochloride or a bromate of diethylamine can be used as the activator. Can be used.
【0018】本発明によれば、動作温度が86℃〜90
℃で、かつ低抵抗の合金型温度ヒュ−ズを良好な歩留ま
りで製造することができる。このことは次の実施例から
も明らかである。According to the present invention, the operating temperature is from 86.degree.
It is possible to produce an alloy type temperature fuse having a low resistance at a temperature of ° C. with a good yield. This is clear from the following examples.
〔実施例1〕Bi:2.9重量%,Cd:13.6重量
%,Sn:40.8重量%,In:42.7重量%の合
金組成の母材を線引きして直径0.6mmの線に加工し
た。1ダイスについての引落率を6.5%とし、線引き
速度を45m/minとしたが、断線は皆無であった。
この線の抵抗値を測定したところ、0.6Ω/mであっ
た。この線を長さ6mmに切断してヒュ−ズエレメント
とし、筒型温度ヒュ−ズを作成した。リ−ド線には外径
0.6mmの錫メッキ銅線を、筒体には内径1.5mm
のセラミックス筒を、フラックスにはロジン80重量部
とステアリン酸20重量部の組成を、接着剤には常温硬
化のエポキシ樹脂を使用した。Example 1 A base material having an alloy composition of Bi: 2.9% by weight, Cd: 13.6% by weight, Sn: 40.8% by weight, and In: 42.7% by weight was drawn to have a diameter of 0.6 mm. Was processed into a line. The drop rate for one die was 6.5%, and the drawing speed was 45 m / min, but there was no disconnection.
When the resistance value of this wire was measured, it was 0.6 Ω / m. This wire was cut into a length of 6 mm to form a fuse element, and a cylindrical temperature fuse was prepared. A tin-plated copper wire with an outer diameter of 0.6 mm is used for the lead wire, and an inner diameter of 1.5 mm is used for the cylinder.
The ceramic cylinder of No. 1 was composed of 80 parts by weight of rosin and 20 parts by weight of stearic acid as flux, and epoxy resin cured at room temperature as adhesive.
【0019】この実施例品50箇を、0.1アンペアの
電流を通電しつつ、昇温速度1℃/1分のオイルバスに
浸漬し、溶断による通電遮断時のオイル温度を測定した
ところ、88±1℃の範囲内であった。また、上記した
合金組成の範囲内であれば、動作温度を88℃を中心と
して±2℃の範囲内に納め得ることを確認した。Fifty samples of this example were immersed in an oil bath at a heating rate of 1 ° C./1 minute while applying a current of 0.1 amperes, and the oil temperature was measured when the current was cut off by fusing. It was within the range of 88 ± 1 ° C. Further, it was confirmed that the operating temperature could be kept within a range of ± 2 ° C. around 88 ° C. within the range of the alloy composition described above.
【0020】〔比較例1〕Sn1.0重量%、In5
2.5重量%、Bi46.5重量%の合金組成の母材を
使用した以外、実施例と同様にして、線引きした直径
0.6mmの線をヒュ−ズエレメントとして筒型温度ヒ
ュ−ズを作成した。温度特性は実施例1とほぼ同じであ
ったが、ヒュ−ズエレメントの抵抗値は、1.9Ω/m
で、比較例の3倍以上であった。Comparative Example 1 Sn 1.0% by weight, In5
In the same manner as in the example except that a base material having an alloy composition of 2.5% by weight and Bi 46.5% by weight was used, a cylindrical temperature fuse was formed using a drawn wire having a diameter of 0.6 mm as a fuse element. Created. The temperature characteristics were almost the same as in Example 1, but the resistance value of the fuse element was 1.9 Ω / m.
, Which was at least three times that of the comparative example.
【0021】〔比較例2〕低融点可溶合金に、Sn46
重量%,In50重量%,Bi4重量%、共晶点温度8
2℃の合金を用いた。線引きによる細線化か困難なた
め、回転ドラム式防糸法により細線化し、この細線をヒ
ュ−ズエレメントとして実施例と同様にして筒型温度ヒ
ュ−ズを作成して作動温度を測定したところ、ヒュ−ズ
エレメントが共晶点温度82℃に達しても溶断しないも
のが多数存在した。これは、回転ドラム式防糸法のため
にヒュ−ズエレメント表面に厚い酸化皮膜が形成され、
この酸化皮膜が鞘となってヒュ−ズエレメントが溶断さ
れ困難くなるためであると推定される。[Comparative Example 2] Sn46 was added to the low melting point fusible alloy.
Wt%, In50 wt%, Bi4 wt%, eutectic point temperature 8
An alloy at 2 ° C. was used. Since it was difficult to make the wire thinner by drawing, it was made thinner by a rotary drum type yarn prevention method, and a cylindrical temperature fuse was formed as a fuse element in the same manner as in the embodiment, and the operating temperature was measured. Many fuse elements did not melt even when the eutectic point temperature reached 82 ° C. This is because a thick oxide film is formed on the fuse element surface due to the rotating drum type yarn protection method,
This is presumed to be because the oxide film becomes a sheath, and the fuse element is melted and becomes difficult.
【0022】[0022]
【発明の効果】本発明によれば、低融点可溶合金母材の
能率のよい線引きでヒュ−ズエレメントを製造し、この
ヒュ−ズエレメントを用いて動作温度が86℃〜90℃
で、かつ低抵抗で電流容量を充分に大きくできる合金型
温度ヒュ−ズを提供できる。According to the present invention, a fuse element is manufactured by efficiently drawing a low-melting-point fusible alloy base material, and an operating temperature of 86 ° C. to 90 ° C. is used by using the fuse element.
In addition, it is possible to provide an alloy type temperature fuse having a low resistance and a sufficiently large current capacity.
Claims (1)
る温度ヒュ−ズにおいて、低融点可溶合金の合金組成
が、Bi0.3〜6重量%、Cd10〜18重量%、S
n35〜48重量%、残部Inであることを特徴とする
合金型温度ヒュ−ズ。In a temperature fuse using a low-melting-point fusible alloy as a fuse element, the alloy composition of the low-melting-point fusible alloy is 0.3 to 6% by weight of Bi, 10 to 18% by weight of Cd,
An alloy-type temperature fuse characterized in that n is 35 to 48% by weight and the balance is In.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21253097A JPH1140025A (en) | 1997-07-23 | 1997-07-23 | Thermal alloy fuse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21253097A JPH1140025A (en) | 1997-07-23 | 1997-07-23 | Thermal alloy fuse |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1140025A true JPH1140025A (en) | 1999-02-12 |
Family
ID=16624208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21253097A Pending JPH1140025A (en) | 1997-07-23 | 1997-07-23 | Thermal alloy fuse |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1140025A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1424713A1 (en) * | 2002-11-26 | 2004-06-02 | Uchihashi Estec Co., Ltd. | Alloy type thermal fuse and material for a thermal fuse element |
CN111979434A (en) * | 2020-08-07 | 2020-11-24 | 广东先导稀材股份有限公司 | Preparation method of low-melting-point alloy |
-
1997
- 1997-07-23 JP JP21253097A patent/JPH1140025A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1424713A1 (en) * | 2002-11-26 | 2004-06-02 | Uchihashi Estec Co., Ltd. | Alloy type thermal fuse and material for a thermal fuse element |
CN100349241C (en) * | 2002-11-26 | 2007-11-14 | 内桥艾斯泰克股份有限公司 | Alloy type thermal fuse and material for a thermal fuse element |
CN111979434A (en) * | 2020-08-07 | 2020-11-24 | 广东先导稀材股份有限公司 | Preparation method of low-melting-point alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4001757B2 (en) | Alloy type temperature fuse | |
JP3990169B2 (en) | Alloy type temperature fuse | |
JP3841257B2 (en) | Alloy type temperature fuse | |
JP3995058B2 (en) | Alloy type temperature fuse | |
JP2819408B2 (en) | Alloy type temperature fuse | |
JP2004176105A (en) | Alloy type thermal fuse, and material for thermal fuse element | |
JP3761846B2 (en) | Alloy type thermal fuse and wire for thermal fuse element | |
JP2004055164A (en) | Alloy type thermal fuse and wire material for thermal fuse element | |
JP4409705B2 (en) | Alloy type temperature fuse | |
JP4409747B2 (en) | Alloy type thermal fuse | |
JPH1140025A (en) | Thermal alloy fuse | |
JP4101536B2 (en) | Alloy type thermal fuse | |
JP2001143592A (en) | Fuse alloy | |
JP2001195963A (en) | Alloy temperature fuse | |
JP2516469B2 (en) | Alloy type temperature fuse | |
JP3403993B2 (en) | Fuse with flux | |
JP2001135216A (en) | Alloy-type thermal fuse | |
JP2001143591A (en) | Alloy fuse | |
JP2001135215A (en) | Alloy-type thermal fuse | |
JP4162940B2 (en) | Alloy type thermal fuse and wire for thermal fuse element | |
JP2001143590A (en) | Alloy fuse | |
JP2001143588A (en) | Alloy fuse | |
JP2000182492A (en) | Alloy-type temperature fuse | |
JP2001143589A (en) | Alloy fuse | |
JP2001143587A (en) | Alloy fuse |