JP2001143588A - Alloy fuse - Google Patents

Alloy fuse

Info

Publication number
JP2001143588A
JP2001143588A JP32756599A JP32756599A JP2001143588A JP 2001143588 A JP2001143588 A JP 2001143588A JP 32756599 A JP32756599 A JP 32756599A JP 32756599 A JP32756599 A JP 32756599A JP 2001143588 A JP2001143588 A JP 2001143588A
Authority
JP
Japan
Prior art keywords
temperature
weight
alloy
fuse
fuse element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32756599A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tanaka
嘉明 田中
Toshiaki Saruwatari
利章 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP32756599A priority Critical patent/JP2001143588A/en
Publication of JP2001143588A publication Critical patent/JP2001143588A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/768Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit

Landscapes

  • Fuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alloy fuse that ensures the effective operation at a temperature of 70 to 77 deg.C even with a diameter below 500 μm. SOLUTION: A fuse element is made of an alloy composed of 25 to 35 wt.% of Bi, 1.5 to 7.5 wt.% of Pb, and the remaining part of In.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は作動温度が70℃〜
77℃の合金型温度ヒュ−ズに関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an operating temperature of 70.degree.
It relates to a 77 ° C. alloy type temperature fuse.

【0002】[0002]

【従来の技術】合金型温度ヒュ−ズは、一対のリ−ド線
間に低融点可溶合金片(ヒュ−ズエレメント)を接続
し、低融点可溶合金片上にフラックスを塗布し、このフ
ラックス塗布合金片を絶縁体で包囲した構成であり、保
護すべき電気機器に取り付けて使用され、電気機器が過
電流により発熱すると、その発生熱により低融点可溶合
金片が液相化され、その溶融金属が既に溶融したフラッ
クスとの共存下、表面張力により球状化され、球状化の
進行により分断されて機器への通電が遮断される。
2. Description of the Related Art In an alloy type temperature fuse, a low melting point fusible alloy piece (fusing element) is connected between a pair of lead wires, and a flux is applied on the low melting point fusible alloy piece. The flux coated alloy piece is surrounded by an insulator, and it is used by attaching it to the electrical equipment to be protected.When the electrical equipment generates heat due to overcurrent, the low melting point fusible alloy piece is liquefied by the generated heat, In the coexistence of the molten metal and the flux that has already been melted, the molten metal is spheroidized by surface tension.

【0003】上記低融点可溶合金に要求される基本的な
条件は、保護しようとする機器の許容温度から求められ
る融点を有し、その融点の固相線と液相線との間の固液
共存域巾が狭いことである。すなわち、通常、合金にお
いては、固相線と液相線との間に固液共存域巾が存在
し、この領巾においては、液相中に固相粒体が分散した
状態にあり、液相様の性質も備えているために、上記の
球状化分断が発生する可能性があり、従って、液相線温
度(この温度をTとする)以前に固液共存域巾に属する
温度範囲(ΔTとする)で、低融点可溶合金片が球状化
分断される可能性がある。而して、かかる低融点可溶合
金片を用いた温度ヒュ−ズにおいては、ヒュ−ズエレメ
ント温度が(T−ΔT)〜Tとなる温度範囲で動作する
ものとして取り扱わなければならず、従って、ΔTが小
であるほど、すなわち、固液共存域巾が狭いほど、温度
ヒュ−ズの動作温度範囲のバラツキを小として、温度ヒ
ュ−ズを所定の設定温度で正確に動作させ得るのであ
る。
[0003] The basic condition required for the above low melting point fusible alloy is that it has a melting point determined from the permissible temperature of the equipment to be protected, and has a melting point between the solidus and liquidus at that melting point. The width of the liquid coexistence area is narrow. That is, in an alloy, there is usually a solid-liquid coexistence zone width between the solidus line and the liquidus line. In this area, the solid phase particles are dispersed in the liquid phase, and the liquid phase Because of the above-mentioned properties, the above-mentioned spheroidization may occur. Therefore, the temperature range (ΔT) belonging to the solid-liquid coexistence zone width before the liquidus temperature (T is this temperature) is considered. ), There is a possibility that the low-melting-point fusible alloy piece is spheroidized and divided. Therefore, the temperature fuse using such a low melting point fusible alloy piece must be treated as operating at a temperature range in which the fuse element temperature is (T-ΔT) to T. , .DELTA.T, that is, the narrower the solid-liquid coexistence area width, the smaller the variation in the operating temperature range of the temperature fuse, and the more accurately the temperature fuse can be operated at a predetermined set temperature. .

【0004】従来、動作温度がほぼ70℃の合金型温度
ヒュ−ズとしては、溶融温度72℃(固相線温度70
℃、液相線温度72℃)のBi−Pb−Sn−Cd合金
(Bi50重量%、Pb25重量%、Sn12.5重量
%、Cd12.5重量%)をヒュ−ズエレメントとした
ものが使用されている。
Conventionally, an alloy type temperature fuse having an operating temperature of about 70 ° C. has a melting temperature of 72 ° C. (solidus temperature of 70 ° C.).
(Bi-Pb-Sn-Cd alloy (50% by weight of Bi, 25% by weight of Pb, 12.5% by weight of Sn, 12.5% by weight of Cd and 12.5% by weight of Cd)) having a fuse element. ing.

【0005】[0005]

【発明が解決しようとする課題】近来、温度ヒュ−ズの
薄型化のために、ヒュ−ズエレメントの細線化が要求さ
れ、例えば300μmφもの細線化が求められている。
しかし、前記のBi−Pb−Sn−Cd合金(Bi50
重量%、Pb25重量%、Sn12.5重量%、Cd1
2.5重量%)では、Biの配合量が多いために脆性が
高く、線引き加工が難しく、ヒュ−ズエレメントを30
0μmφといった細径にすることは至難である。
In recent years, in order to make the temperature fuse thinner, the fuse element has been required to be thinner, for example, as thin as 300 μmφ.
However, the aforementioned Bi-Pb-Sn-Cd alloy (Bi50
Wt%, Pb 25 wt%, Sn 12.5 wt%, Cd1
(2.5% by weight), the brittleness is high due to the large amount of Bi, the wire drawing is difficult, and the fuse element is 30%.
It is very difficult to make the diameter as small as 0 μmφ.

【0006】かかるヒュ−ズエレメントの細線化のもと
では、ヒュ−ズエレメントの電気抵抗値がかなり増加
し、定格通電時でも、ヒュ−ズエレメントがジュ−ル発
熱により相当高温になり、誤作動の発生が懸念される。
すなわち、ヒュ−ズエレメントのジュ−ル発熱による温
度上昇をΔθ、ヒュ−ズエレメントの融点をTとする
と、温度(T−Δθ)で温度ヒュ−ズが動作されること
になるから、ヒュ−ズエレメントの電気抵抗値が高くな
ってΔθを無視できなくなると、機器が所定の許容温度
に達するまえに通電遮断されてしまうことがあり、電気
抵抗値を低くして上記Δθを僅小に抑える必要がある。
[0006] Under such thinning of the fuse element, the electric resistance value of the fuse element is considerably increased, and even at the time of rated energization, the fuse element becomes considerably high in temperature due to Joule heat, thereby causing an error. There is concern about the occurrence of operation.
That is, assuming that the temperature rise due to the Joule heat generation of the fuse element is Δθ and the melting point of the fuse element is T, the temperature fuse is operated at the temperature (T−Δθ). If the electrical resistance of the storage element increases and Δθ cannot be ignored, the power may be cut off before the equipment reaches a predetermined allowable temperature, and the electrical resistance is reduced to minimize the above Δθ. There is a need.

【0007】本発明の目的は、作動温度70℃〜77℃
のもとでの正確な作動を、500μmφ未満の細径のヒ
ュ−ズエレメントでも保証できる合金型温度ヒュ−ズを
提供することにある。
An object of the present invention is to provide an operating temperature of 70 ° C. to 77 ° C.
An object of the present invention is to provide an alloy type temperature fuse that can guarantee accurate operation under the above conditions even with a fuse element having a small diameter of less than 500 μmφ.

【0008】[0008]

【課題を解決するための手段】本発明に係る合金型温度
ヒュ−ズは、Bi25〜35重量%、Pb1.5〜7.
5重量%、残部Inの組成の合金をヒュ−ズエレメント
としたことを特徴とする構成であり、前記合金組成10
0重量部に対しAgを0.5〜5重量部添加することも
できる。
The alloy type temperature fuse according to the present invention is composed of 25 to 35% by weight of Bi and 1.5 to 7% of Pb.
An alloy having a composition of 5% by weight and a balance of In is used as a fuse element.
0.5 to 5 parts by weight of Ag can be added to 0 parts by weight.

【0009】[0009]

【発明の実施の形態】本発明に係る温度ヒュ−ズにおい
て、ヒュ−ズエレメントには、外径500μmφ未満で
200μmφ以上の円形線、または当該円形線と同一断
面積の扁平線を使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the temperature fuse according to the present invention, a circular wire having an outer diameter of less than 500 μmφ and a diameter of 200 μmφ or more or a flat wire having the same cross-sectional area as the circular wire can be used as the fuse element.

【0010】このヒュ−ズエレメントの合金は、Bi2
5〜35重量%、Pb1.5〜7.5重量%、残部In
のBi−Pb−In系であり、基準組成は、Bi32.
7重量%,Pb3.8重量%,In63.5重量%であ
り,その液相線温度は75℃,固液共存域巾は4℃であ
る。
The alloy of the fuse element is Bi2
5 to 35% by weight, Pb 1.5 to 7.5% by weight, balance In
Is a Bi-Pb-In type, and the reference composition is Bi32.
7 wt%, Pb 3.8 wt%, In 63.5 wt%, the liquidus temperature is 75 ° C., and the solid-liquid coexistence zone width is 4 ° C.

【0011】前記Pb1.5〜7.5重量%及び残部I
nにより線引きに必要な延性と充分に低い電気抵抗が付
与され、Bi25〜35重量%により前記の延性と低抵
抗性とが保持されつつ融点が68℃〜75℃の固液共存
域に設定される。かかる合金組成の最も高い液相線温度
は75℃、最も低い固相線温度は68℃で、固液共存域
巾は平均で4℃程度である。温度ヒュ−ズのヒュ−ズエ
レメントと機器との間には、その間の熱抵抗のために約
2℃の温度差が生じるから、この基準組成を使用した温
度ヒュ−ズの作動温度は70℃〜77℃である。前記ヒ
ュ−ズエレメントの比抵抗は、ほぼ30〜40μΩ・c
mである。
The above Pb 1.5 to 7.5% by weight and the balance I
The ductility required for drawing and a sufficiently low electric resistance are imparted by n, and the melting point is set to a solid-liquid coexistence region of 68 ° C. to 75 ° C. while maintaining the above ductility and low resistivity by 25 to 35% by weight of Bi. You. The highest liquidus temperature of such an alloy composition is 75 ° C, the lowest solidus temperature is 68 ° C, and the solid-liquid coexistence zone width is about 4 ° C on average. Since the temperature difference between the fuse element of the temperature fuse and the equipment is about 2 ° C due to the thermal resistance therebetween, the operating temperature of the temperature fuse using this reference composition is 70 ° C. ~ 77 ° C. The specific resistance of the fuse element is approximately 30 to 40 μΩ · c.
m.

【0012】上記合金組成100重量部にAgを0.5
〜5重量部添加することにより、比抵抗を前記30〜4
0μΩ・cmよりも一段と低くすることができ、例え
ば、2重量部添加することにより、比抵抗を25μΩ・
cm程度と低くできる。
Ag is added to 100 parts by weight of the above-mentioned alloy composition.
By adding 5 to 5 parts by weight, the specific resistance can be increased to 30 to 4 parts by weight.
0 μΩ · cm can be further reduced. For example, by adding 2 parts by weight, the specific resistance is 25 μΩ · cm.
cm.

【0013】本発明に係る温度ヒュ−ズのヒュ−ズエレ
メントは、合金母材の線引きにより製造され、断面丸形
のまま、または、さらに扁平に圧縮加工して使用でき
る。
The fuse element of the temperature fuse according to the present invention is manufactured by drawing an alloy base material, and can be used as it is in a round cross section or in a flattened form.

【0014】図1の(イ)は本発明に係る薄型の合金型
温度ヒュ−ズを示す平面説明図、図1の(ロ)は図1の
(イ)におけるロ−ロ断面図であり、厚み100〜30
0μmのプラスチックベ−スフィルム11に厚み100
〜200μmの帯状リ−ド導体3,3を接着剤または融
着により固着し、帯状リ−ド導体間に線径500μmφ
未満のヒュ−ズエレメント4を接続し、このヒュ−ズエ
レメント4にフラックス5を塗布し、このフラックス塗
布ヒュ−ズエレメントを厚み100〜300μmのプラ
スチックカバ−フィルム12の接着剤または融着による
固着で封止してある。
FIG. 1A is an explanatory plan view showing a thin alloy-type temperature fuse according to the present invention, and FIG. 1B is a cross-sectional view taken along the line in FIG. Thickness 100-30
A 100 μm thick plastic base film 11
The band-shaped lead conductors 3 to 3 having a thickness of about 200 μm are fixed by an adhesive or fusion bonding, and the wire diameter is 500 μmφ between the band-shaped lead conductors.
And a flux 5 is applied to the fuse element 4, and the flux-coated fuse element is fixed to the plastic cover film 12 having a thickness of 100 to 300 μm by an adhesive or fusion. Sealed with.

【0015】本発明の合金型温度ヒュ−ズは、ケ−ス
型、基板型、或いは、樹脂ディッピング型の形態でも実
施できる。ケ−ス型としては、互いに一直線で対向する
リ−ド線間に線状片のヒュ−ズエレメントを溶接し、ヒ
ュ−ズエレメント上にフラックスを塗布し、このフラッ
クス塗布ヒュ−ズエレメント上にセラミックス筒を挿通
し、該筒の各端と各リ−ド線との間を接着剤、例えばエ
ポキシ樹脂で封止したアキシャルタイプ、または、平行
リ−ド線間の先端に線状片のヒュ−ズエレメントを溶接
し、ヒュ−ズエレメント上にフラックスを塗布し、この
フラックス塗布ヒュ−ズエレメント上に扁平をセラミッ
クキャップを被せ、このキャップの開口とリ−ド線との
間をエポキシ樹脂で封止したラジアルタイプを使用でき
る。
The alloy type temperature fuse of the present invention can be implemented in a case type, a substrate type or a resin dipping type. As a case type, a fuse element of a linear piece is welded between lead wires that are opposed to each other in a straight line, a flux is applied on the fuse element, and a flux is applied on the fuse-coated fuse element. An axial type in which a ceramic cylinder is inserted and each end of the cylinder and each lead wire are sealed with an adhesive, for example, an epoxy resin, or a line-shaped piece is attached to the end between parallel lead wires. Welding the fuse element, applying a flux on the fuse element, placing a flat ceramic cap on the flux-coated fuse element, and applying an epoxy resin between the opening of the cap and the lead wire. A sealed radial type can be used.

【0016】上記の樹脂ディッピング型としては、セラ
ミックキャップの包囲に代え、フラックス塗布ヒュ−ズ
エレメント上にエポキシ樹脂液への浸漬によるエポキシ
樹脂被覆層を設けたラジアルタイプを使用できる。
As the resin dipping type, a radial type in which an epoxy resin coating layer is provided on a flux-coated fuse element by immersion in an epoxy resin liquid, instead of surrounding the ceramic cap, can be used.

【0017】上記の基板型としては、片面に一対の層状
電極を設けた絶縁基板のその電極間先端に線状片のヒュ
−ズエレメントを溶接し、ヒュ−ズエレメント上にフラ
ックスを塗布し、各電極の後端にリ−ド線を接続し、絶
縁基板片面上にエポキシ樹脂被覆層を設けたものを使用
でき、アキシャルまたはラジアルの何れの方式にもでき
る。
In the above-mentioned substrate type, a fuse element of a linear piece is welded to an end between the electrodes of an insulating substrate having a pair of layered electrodes provided on one surface, and a flux is applied on the fuse element. A structure in which a lead wire is connected to the rear end of each electrode and an epoxy resin coating layer is provided on one surface of an insulating substrate can be used, and either an axial or radial system can be used.

【0018】上記のフラックスには、通常、融点がヒュ
−ズエレメントの融点よりも低いものが使用され、例え
ば、ロジン90〜60重量部、ステアリン酸10〜40
重量部、活性剤0〜3重量部を使用できる。この場合、
ロジンには、天然ロジン、変性ロジン(例えば、水添ロ
ジン、不均化ロジン、重合ロジン)またはこれらの精製
ロジンを使用でき、活性剤には、ジエチルアミンの塩酸
塩や臭化水素酸塩等を使用できる。
As the above-mentioned flux, a flux whose melting point is lower than that of the fuse element is usually used, for example, 90 to 60 parts by weight of rosin, 10 to 40 parts of stearic acid.
Parts by weight, 0 to 3 parts by weight of activator can be used. in this case,
As the rosin, natural rosin, modified rosin (for example, hydrogenated rosin, disproportionated rosin, polymerized rosin) or these purified rosins can be used. As the activator, diethylamine hydrochloride, hydrobromide, or the like can be used. Can be used.

【0019】[0019]

【実施例】〔実施例〕Bi:32.7重量%,Pb:
3.8重量%,In:63.5重量%の合金組成を使用
した。この合金の液相線温度は75℃,固液共存域巾は
4℃である。この合金組成の母材を線引きして直径30
0μmφの線に加工した。1ダイスについての減面率を
6.5%とし、線引き速度を30m/minとしたが、
断線は皆無であった。この線の比抵抗を測定したとこ
ろ、34μΩ・cmであった。この線を長さ4mmに切
断してヒュ−ズエレメントとし、基板型温度ヒュ−ズを
作成した。フラックスにはロジン80重量部とステアリ
ン酸20重量部とジエチルアミン臭化水素酸塩1重量部
の組成を、樹脂材には常温硬化のエポキシ樹脂を使用し
た。
EXAMPLES [Example] Bi: 32.7% by weight, Pb:
An alloy composition of 3.8% by weight and In: 63.5% by weight was used. The liquidus temperature of this alloy is 75 ° C., and the solid-liquid coexistence zone width is 4 ° C. The base material of this alloy composition is drawn to have a diameter of 30
It was processed into a 0 μmφ line. The area reduction rate for one die was 6.5%, and the drawing speed was 30 m / min.
There was no disconnection. When the specific resistance of this wire was measured, it was 34 μΩ · cm. This wire was cut into a length of 4 mm to form a fuse element, and a substrate-type temperature fuse was prepared. A composition of 80 parts by weight of rosin, 20 parts by weight of stearic acid, and 1 part by weight of diethylamine hydrobromide was used as a flux, and an epoxy resin cured at room temperature was used as a resin material.

【0020】この実施例品50箇について、0.1アン
ペアの電流を通電しつつ、昇温速度1℃/分のオイルバ
スに浸漬し、溶断による通電遮断時のオイル温度を測定
したところ、73±1℃の範囲内であった。更に、実施
例品50箇を、1アンペアの電流を通電しつつ約65℃
の雰囲気中に1000時間放置してエージングしても、
溶断したものはなく、自己発熱に起因する誤動作は回避
できていた。これらについて、前記と同様に、溶断によ
る通電遮断時のオイル温度を測定したところ、実質的に
前記の73±1℃の範囲内であった。
The 50 samples of this embodiment were immersed in an oil bath at a heating rate of 1 ° C./min while applying a current of 0.1 amperes, and the oil temperature was measured when the current was cut off by fusing. It was within the range of ± 1 ° C. In addition, about 50 ° C. was applied to 50 pieces of the example product while applying a current of 1 amp.
Aging for 1000 hours in the atmosphere of
There was no blowout, and a malfunction caused by self-heating could be avoided. For these, the oil temperature at the time of energization cutoff due to fusing was measured in the same manner as described above, and was found to be substantially within the above-mentioned 73 ± 1 ° C.

【0021】〔比較例1〕低融点可溶合金に、前記溶融
温度72℃(固相線温度70℃、液相線温度72℃)の
Bi−Pb−Sn−Cd合金(Bi50重量%、Pb2
5重量%、Sn12.5重量%、Cd12.5重量%)
を用い、減面率5.0%、線引き速度を20m/min
で300μmφの細線への線引きを試みたが、断線が多
発し、至難であったので、回転ドラム式紡糸法により直
径300μmφの細線に加工した。この線の比抵抗は、
69μΩ・cmであった。この細線をヒュ−ズエレメン
トとして実施例と同様にして基板型温度ヒュ−ズを作成
し、0.1アンペアの電流を通電しつつ、昇温速度1℃
/1分のオイルバスに浸漬し、溶断による通電遮断時の
オイル温度を測定したところ、液相線温度72℃以上に
達しても溶断しないものが多数存在した。これは、回転
ドラム式紡糸法のためにヒュ−ズエレメント表面に厚い
酸化皮膜が形成され、この酸化皮膜が鞘となってヒュ−
ズエレメントが溶断され難くなるためであると推定され
る。
Comparative Example 1 A Bi-Pb-Sn-Cd alloy (Bi50% by weight, Pb2) having a melting point of 72 ° C. (solidus temperature 70 ° C., liquidus temperature 72 ° C.) was added to a low melting point fusible alloy.
(5% by weight, Sn 12.5% by weight, Cd 12.5% by weight)
, Using a surface reduction rate of 5.0% and a drawing speed of 20 m / min.
Was tried to draw a thin wire having a diameter of 300 μmφ. However, the wire was frequently broken and it was extremely difficult. The specific resistance of this line is
It was 69 μΩ · cm. A substrate-type temperature fuse was prepared using the thin wire as a fuse element in the same manner as in the embodiment.
When the oil temperature at the time of energization cutoff due to fusing was measured by immersing in a / 1 minute oil bath, there were many that did not melt even when the liquidus temperature reached 72 ° C or higher. This is because a thick oxide film is formed on the fuse element surface due to the rotating drum spinning method, and this oxide film serves as a sheath to form the fuse.
This is presumed to be due to the fact that the element is less likely to be blown.

【0022】〔比較例2〕Bi:33.0重量%,P
b:8.0重量%,In:59.0重量%の合金組成を
使用した。実施例と同様にして線引きにより直径300
μmφの線に加工した。この線の比抵抗を測定したとこ
ろ、49μΩ・cmであった。実施例と同様にして基板
型温度ヒュ−ズを製作し、1アンペア通電下で約65℃
の雰囲気中、1000時間のエージングを施したとこ
ろ、殆どが自己発熱により溶断していた。
Comparative Example 2 Bi: 33.0% by weight, P
An alloy composition of b: 8.0% by weight and In: 59.0% by weight was used. 300 mm in diameter by drawing in the same manner as in the example.
It was processed into a μmφ line. When the specific resistance of this wire was measured, it was 49 μΩ · cm. A substrate-type temperature fuse was manufactured in the same manner as in the embodiment, and was heated to about 65 ° C. under a current of 1 amp.
When aging was performed for 1000 hours in the atmosphere described above, most of the aging was caused by self-heating.

【0023】[0023]

【発明の効果】本発明に係る合金型温度ヒュ−ズは、固
液共存域が74℃〜68℃、固液共存域巾が5℃以内
で、比抵抗が30〜40μΩ・cm程度の低い比抵抗の
合金をヒュ−ズエレメントとしているから、ヒュ−ズエ
レメント径が300μmという細径であっても、自己発
熱による誤作動をよく排除して70℃〜77℃の所定の
温度にて機器の通電を遮断でき、しかもヒュ−ズエレメ
ントがCdのような有害金属を含有せず、作動温度70
℃〜77℃の薄型合金型温度ヒュ−ズとして極めて有用
である。
The alloy type temperature fuse according to the present invention has a low solid-liquid coexistence region of 74 to 68 ° C., a solid-liquid coexistence region width of 5 ° C. or less, and a specific resistance of about 30 to 40 μΩ · cm. Since the fuse element is made of an alloy having a specific resistance, even if the fuse element diameter is as small as 300 μm, malfunctions due to self-heating are well eliminated and the apparatus is operated at a predetermined temperature of 70 ° C. to 77 ° C. Can be cut off, and the fuse element does not contain harmful metals such as Cd.
It is extremely useful as a thin alloy-type temperature fuse having a temperature of from 70 to 77 ° C.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る合金型温度ヒュ−ズの一例を示す
図面である。
FIG. 1 is a drawing showing an example of an alloy type temperature fuse according to the present invention.

【符号の説明】[Explanation of symbols]

4 ヒュ−ズエレメント 4 fuse element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Bi25〜35重量%、Pb1.5〜7.
5重量%、残部Inの組成の合金をヒュ−ズエレメント
としたことを特徴とする合金型温度ヒュ−ズ。
1. 25 to 35% by weight of Bi, 1.5 to 7% of Pb.
An alloy type temperature fuse, wherein an alloy having a composition of 5% by weight and the balance of In is used as a fuse element.
【請求項2】Bi25〜35重量%、Pb1.5〜7.
5重量%、残部Inの100重量部にAgを0.5〜5
重量部添加した組成の合金をヒュ−ズエレメントとした
ことを特徴とする合金型温度ヒュ−ズ。
2. Bi 25-35% by weight, Pb 1.5-7.
5% by weight, the balance of 100 to 100 parts by weight of In is 0.5 to 5% of Ag.
An alloy-type temperature fuse characterized in that an alloy having a composition added in parts by weight is used as a fuse element.
JP32756599A 1999-11-18 1999-11-18 Alloy fuse Pending JP2001143588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32756599A JP2001143588A (en) 1999-11-18 1999-11-18 Alloy fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32756599A JP2001143588A (en) 1999-11-18 1999-11-18 Alloy fuse

Publications (1)

Publication Number Publication Date
JP2001143588A true JP2001143588A (en) 2001-05-25

Family

ID=18200496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32756599A Pending JP2001143588A (en) 1999-11-18 1999-11-18 Alloy fuse

Country Status (1)

Country Link
JP (1) JP2001143588A (en)

Similar Documents

Publication Publication Date Title
JP4001757B2 (en) Alloy type temperature fuse
JP2004176106A (en) Alloy type thermal fuse, and material for thermal fuse element
JP3990169B2 (en) Alloy type temperature fuse
JP3841257B2 (en) Alloy type temperature fuse
JP4162917B2 (en) Alloy type temperature fuse
JP4369008B2 (en) Alloy type temperature fuse
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP2004176105A (en) Alloy type thermal fuse, and material for thermal fuse element
JP3995058B2 (en) Alloy type temperature fuse
JP3761846B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP4409705B2 (en) Alloy type temperature fuse
JP4409747B2 (en) Alloy type thermal fuse
JPH0412428A (en) Fuse element
JP2001195963A (en) Alloy temperature fuse
JP2001143592A (en) Fuse alloy
JP2001143588A (en) Alloy fuse
JP4101536B2 (en) Alloy type thermal fuse
JP2001143591A (en) Alloy fuse
JP2001143590A (en) Alloy fuse
JP2001143587A (en) Alloy fuse
JPH1140025A (en) Thermal alloy fuse
JP4162940B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP4162941B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP2001135215A (en) Alloy-type thermal fuse
JP2001243861A (en) Fuse with flux