JP3995058B2 - Alloy type temperature fuse - Google Patents
Alloy type temperature fuse Download PDFInfo
- Publication number
- JP3995058B2 JP3995058B2 JP13939893A JP13939893A JP3995058B2 JP 3995058 B2 JP3995058 B2 JP 3995058B2 JP 13939893 A JP13939893 A JP 13939893A JP 13939893 A JP13939893 A JP 13939893A JP 3995058 B2 JP3995058 B2 JP 3995058B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- fuse
- alloy
- fuse element
- temperature fuse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H2037/768—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H37/761—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
Landscapes
- Fuses (AREA)
Description
【産業上の利用分野】
【0001】
本発明は合金型温度ヒュ−ズに関するものである。
【従来の技術】
【0002】
合金型温度ヒュ−ズにおいては、一対のリ−ド線間に低融点可溶合金片(ヒュ−ズエレメント)を橋設し、低融点可溶合金片上にフラックスを塗布し、このフラックス塗布合金片を絶縁体で包囲してあり、保護すべき電気機器に取り付けて使用される。
【0003】
この場合、電気機器が過電流により発熱すると、その発生熱により低融点可溶合金片が液相化され、その溶融金属がフラックスとの共存下、表面張力により球状化され、球状化の進行により分断されて機器への通電が遮断される。
【0004】
上記低融点可溶合金に要求される要件の一つは、固相線と液相線との間の固液共存域が狭いことである。
すなわち、通常、合金においては、固相線と液相線との間に固液共存域が存在し、この領域においては、液相中に固相粒体が分散した状態にあり、液相様の性質も備えているために、上記の球状化分断が発生する可能性があり、従って、液相線温度(この温度をTとする)以前に固液共存域に属する温度範囲(ΔTとする)で、低融点可溶合金片が球状化分断される可能性がある。而して、かかる低融点可溶合金片を用いた温度ヒュ−ズにおいては、ヒュ−ズエレメント温度が(T−ΔT)〜Tとなる温度範囲で動作するものとして取り扱わなければならず、従って、ΔTが小であるほど、すなわち、固液共存域が狭いほど、温度ヒュ−ズの作動温度範囲のバラツキを小として、温度ヒュ−ズを所定の設定温度で作動させることができる。
【0005】
従って、温度ヒュ−ズのヒュ−ズエレメントとして使用される合金には、まず固液共存域が狭いことが要求される。
また、ヒュ−ズエレメントの電気抵抗が高いと、ヒュ−ズエレメントの自己発熱に基づく温度上昇が大となり、機器の温度上昇が機器の運行上障害とならない範囲内であっても、ヒュ−ズエレメントの温度が融点に達し、温度ヒュ−ズが作動してしまうことがあり、かかる誤作動排除のために、充分に低抵抗であることが要求される。
更に、温度ヒュ−ズのヒュ−ズエレメントは、線状片の形態で使用されるから、線引加工が可能であることが要求される。
【0006】
【発明が解決しようとする課題】
従来、実用化されている合金型温度ヒュ−ズには、動作温度73.5±2.5℃、98±2℃、112±3℃、126±3℃、130±2℃、145±2℃並びに164.5±2.5℃のものが存在する。
【0007】
而るに、動作温度73.5±2.5℃と98±2℃との差が、他の動作温度差(ほぼ15℃)に較べて広すぎ、この間の温度を保護温度とする電気機器の適切な保護を全うし難く、動作温度が80℃〜90℃にある合金型温度ヒュ−ズの出現が望まれている。
【0008】
In−Sn−Bi三元合金の液相面図において、In−Sn二元共晶点E 0 118℃からIn−Sn−Bi三元共晶点E 1 59℃に至る液相面ラインが在り、点E 0 から点E 1 まではSn量減及びBi量増により液相線温度を118℃→59℃に下げることができ、従って、この過程において液相線温度80℃〜90℃の三元組成を特定することが可能であるが、これでは固液共存巾が広過ぎ、細線加工が難しく、満足なものを得ることが困難である。
【0009】
かかる現況下、本発明者において、作動温度が80℃〜90℃の範囲に属する合金型温度ヒュ−ズを得るべく、鋭意検討したところ、InとBiとを主成分とし、これにSnを添加剤として微量加えた合金組成をヒュ−ズエレメントに使用することにより、作動温度が86℃〜89℃の合金型温度ヒュ−ズを前記した性能上、製作上の要件を充足して得ることができた。
【0010】
本発明の目的は、かかる成果を基礎として、作動温度が86℃〜89℃の合金型温度ヒュ−ズを容易に製作できる合金型温度ヒュ−ズを提供することにある。
【0011】
【課題を解決するための手段】
本発明の合金型温度ヒュ−ズは、低融点可溶合金の線状片をヒュ−ズエレメントとする温度ヒュ−ズにおいて、低融点可溶合金の合金組成が、Sn:0.3〜1.5重量%、In:51〜54重量%、残部Biであることを特徴とする構成である。
【0012】
【作用】
基準組成Sn:1.0重量%,In:52.5重量%,Bi:46.5重量%の液相線温度が87℃、固液共存域巾が3℃であり、通常ヒュ−ズエレメントの溶断温度よりも約2℃高い温度が温度ヒュ−ズの動作温度となり、動作温度86〜89℃の合金型温度ヒュ−ズが得られる。
【0013】
【実施例】
本発明の合金型温度ヒュ−ズの形式には、ケ−ス型、基板型、或いは、樹脂ディッピング型の何れをも使用できる。
ケ−ス型においては、互いに一直線上に対向するリ−ド線間に線状片のヒュ−ズエレメントが溶接により橋設され、ヒュ−ズエレメント上にフラックスが塗布され、このフラックス塗布ヒュ−ズエレメント上にセラミックス筒が挿通され、該筒の各端と各リ−ド線との間がエポキシ樹脂で封止される。または、平行リ−ド線間の先端に線状片のヒュ−ズエレメントが溶接により橋設され、ヒュ−ズエレメント上にフラックスが塗布され、このフラックス塗布ヒュ−ズエレメント上に扁平なセラミックキャップが被せられ、このキャップの開口とリ−ド線との間がエポキシ樹脂で封止される。
【0014】
上記樹脂ディッピング型においては、セラミックキャップの包囲に代え、フラックス塗布ヒュ−ズエレメント上にエポキシ樹脂液への浸漬によるエポキシ樹脂被覆層が設けられる。
【0015】
上記基板型においては、片面に一対の層状電極を設けた絶縁基板のその電極間先端に線状片のヒュ−ズエレメントが溶接により橋設され、ヒュ−ズエレメント上にフラックスが塗布され、各電極の後端にリ−ド線が接続され、絶縁基板片面上にエポキシ樹脂被覆層が設けられる。
【0016】
ヒュ−ズエレメントには、Sn:0.3〜1.5重量%、In:51〜54重量%、残部Biの合金母材を線引きすることにより得られ、断面丸形のまま、または、さらに扁平に圧縮加工して使用される。
【0017】
上記の合金組成に対する基準組成、Sn:1.0重量%,In:52.5重量%,残部Biの液相線温度は87℃、固液共存域巾は3℃である。
【0018】
合金型温度ヒュ−ズにおいては、温度ヒュ−ズ表面とヒュ−ズエレメントとの間の熱抵抗のために、ヒュ−ズエレメント温度に較べ温度ヒュ−ズ表面温度がほぼ2℃高くなり、上記標準組成をヒュ−ズエレメントとする温度ヒュ−ズの作動温度は89℃〜86℃となる。
【0019】
上記組成の合金においては、Inにより線引きに必要な延性が与えられ、Biにより融点が90℃に近い低融合金とされ、Snにより上記の延性を保持しつつ84℃〜87℃の融点(固相線と液相線との間の温度)に設定される。
【0020】
上記合金組成におけるSn,In,Bi等の上限と下限は、温度ヒュ−ズの動作温度の巾を±3℃(87.5℃を中心として)以内に納めるのに必要な限定である。
【0021】
本発明によれば、動作温度が86℃〜89℃にある合金型温度ヒュ−ズを良好な歩留まりで製造することができる。このことは次の実施例からも明らかである。
【0022】
実施例
Sn:1.0重量%、In:52.5重量%、残部Biの合金組成の母材を線引きして直径0.6mmの線に加工した。1ダイスについての引落率を6.5%とし、線引き速度を45m/minとしたが、断線は皆無であった。
この線の抵抗値を測定したところ、1.9Ω/mであり、既存の合金型温度ヒュ−ズのヒュ−ズエレメントの抵抗値と同オ−ダであり、抵抗上、何ら問題はなかった。
【0023】
この線を長さ6mmに切断してヒュ−ズエレメントとし、筒型温度ヒュ−ズを作成した。リ−ド線には外径0.6mmの錫メッキ銅線を、筒体には内径1.5mmのセラミックス筒を使用した。
【0024】
この実施例品50箇を、0.1アンペアの電流を通電しつつ、昇温速度1℃/1分のオイルバスに浸漬し、溶断による通電遮断時のオイル温度を測定したところ、87±1℃の範囲内であった。
【0025】
また、上記した合金組成の範囲内であれば、動作温度を87.5℃を中心として±3℃の範囲内に納めることができた。
【0026】
なお、共晶点温度82℃、共晶組成Sn46重量%,In50重量%,Bi4重量%の合金を用いて温度ヒュ−ズを製作することを試みたが、ヒュ−ズエレメントを製造することができず、実現できなかった。
【0027】
【発明の効果】
本発明によれば、低融点可溶合金母材の能率のよい線引きでヒュ−ズエレメントを製造し、このヒュ−ズエレメントを用いて動作温度が86℃〜89℃で、かつ自己発熱を充分に防止できる合金型温度ヒュ−ズを得ることができ、保護温度が80〜90℃程度の機器の保護に有用な合金型温度ヒュ−ズを良好な生産性で得ることができる。[Industrial application fields]
[0001]
The present invention relates to an alloy type temperature fuse.
[Prior art]
[0002]
In the alloy type temperature fuse, a low melting point soluble alloy piece (fuse element) is bridged between a pair of lead wires, and a flux is applied onto the low melting point soluble alloy piece. The piece is surrounded by an insulator and used by being attached to an electrical device to be protected.
[0003]
In this case, when the electric device generates heat due to overcurrent, the low melting point soluble alloy piece is made into a liquid phase by the generated heat, and the molten metal is spheroidized by the surface tension in the presence of the flux. It is divided and the power supply to the equipment is cut off.
[0004]
One of the requirements for the low melting point soluble alloy is that the solid-liquid coexistence area between the solid phase line and the liquid phase line is narrow.
That is, in an alloy, there is usually a solid-liquid coexistence zone between the solid phase line and the liquid phase line. In this region, the solid phase particles are dispersed in the liquid phase. Therefore, the above spheroidization may occur. Therefore, the temperature range (ΔT) belonging to the solid-liquid coexistence region before the liquidus temperature (this temperature is T). ), The low melting point soluble alloy piece may be spheroidized. Thus, in the temperature fuse using such a low melting point soluble alloy piece, the fuse element temperature must be handled as operating in a temperature range of (T−ΔT) to T. The smaller the ΔT is, that is, the narrower the solid-liquid coexistence region, the smaller the variation in the operating temperature range of the temperature fuse, and the temperature fuse can be operated at a predetermined set temperature.
[0005]
Therefore, an alloy used as a fuse element for a temperature fuse is required to have a narrow solid-liquid coexistence region.
Also, if the electrical resistance of the fuse element is high, the temperature rise due to the self-heating of the fuse element becomes large, and even if the temperature rise of the equipment is within the range where it does not become an obstacle to the operation of the equipment, the fuse The temperature of the element may reach the melting point and the temperature fuse may be activated, and it is required that the resistance is sufficiently low to eliminate such malfunction.
Further, since the fuse element of the temperature fuse is used in the form of a linear piece, it is required to be capable of drawing.
[0006]
[Problems to be solved by the invention]
Conventionally, alloy type temperature fuses that have been put into practical use include operating temperatures of 73.5 ± 2.5 ° C., 98 ± 2 ° C., 112 ± 3 ° C., 126 ± 3 ° C., 130 ± 2 ° C., 145 ± 2 As well as those at 164.5 ± 2.5 ° C.
[0007]
Thus, the difference between the operating temperature of 73.5 ± 2.5 ° C. and 98 ± 2 ° C. is too wide compared to other operating temperature differences (approximately 15 ° C.), and the electrical equipment having the temperature in between as the protection temperature Therefore, it has been desired to develop an alloy-type temperature fuse having an operating temperature of 80 ° C. to 90 ° C.
[0008]
In the liquid phase diagram of the In—Sn—Bi ternary alloy, there is a liquid phase line from the In—Sn binary eutectic point E 0 118 ° C. to the In—Sn—Bi ternary eutectic point E 1 59 ° C. From point E 0 to point E 1, the liquidus temperature can be lowered from 118 ° C. to 59 ° C. by decreasing the Sn amount and increasing the Bi amount. Although it is possible to specify the original composition, the solid-liquid coexistence width is too wide, it is difficult to process fine wires, and it is difficult to obtain a satisfactory one.
[0009]
Under such circumstances, the present inventor has intensively studied to obtain an alloy-type temperature fuse whose operating temperature is in the range of 80 ° C to 90 ° C. As a result, In and Bi are the main components, and Sn is added thereto. By using an alloy composition added in a small amount as an agent for the fuse element, an alloy type temperature fuse with an operating temperature of 86 ° C. to 89 ° C. can be obtained satisfying the manufacturing requirements in terms of the performance described above. did it.
[0010]
An object of the present invention is to provide an alloy type temperature fuse that can easily manufacture an alloy type temperature fuse having an operating temperature of 86 ° C. to 89 ° C. based on such a result.
[0011]
[Means for Solving the Problems]
The alloy type temperature fuse of the present invention is a temperature fuse in which a linear piece of a low melting point soluble alloy is used as a fuse element, and the alloy composition of the low melting point soluble alloy is Sn: 0.3-1 5 wt%, In: 51 to 54 wt%, and the balance Bi.
[0012]
[Action]
Standard composition Sn: 1.0 wt%, In: 52.5 wt%, Bi: 46.5 wt%, liquidus temperature is 87 ° C, solid-liquid coexistence zone width is 3 ° C, usually fuse element The temperature about 2 ° C. higher than the fusing temperature is the operating temperature of the temperature fuse, and an alloy type temperature fuse with an operating temperature of 86 to 89 ° C. is obtained.
[0013]
【Example】
As the type of the alloy type temperature fuse of the present invention, any of a case type, a substrate type, and a resin dipping type can be used.
In the case type, a fuse element of a linear piece is bridged by welding between lead wires that are opposed to each other in a straight line, and a flux is applied on the fuse element. A ceramic cylinder is inserted over the element, and the gap between each end of the cylinder and each lead wire is sealed with an epoxy resin. Alternatively, a linear piece of fuse element is bridged by welding between the ends of the parallel lead wires, and a flux is applied on the fuse element, and a flat ceramic cap is formed on the flux application fuse element. And the gap between the cap opening and the lead wire is sealed with epoxy resin.
[0014]
In the resin dipping type, instead of surrounding the ceramic cap, an epoxy resin coating layer is provided on the flux application fuse element by immersion in an epoxy resin solution.
[0015]
In the above substrate mold, a fuse element of a linear piece is bridged by welding between the electrodes of an insulating substrate provided with a pair of layered electrodes on one side, and flux is applied on the fuse element. A lead wire is connected to the rear end of the electrode, and an epoxy resin coating layer is provided on one side of the insulating substrate.
[0016]
The fuse element is obtained by drawing an alloy base material of Sn: 0.3 to 1.5% by weight, In: 51 to 54% by weight, and the remaining Bi, and has a round cross section, or It is used after being compressed into a flat shape.
[0017]
The reference composition for the above alloy composition, Sn: 1.0% by weight, In: 52.5% by weight, the liquidus temperature of the balance Bi is 87 ° C., and the solid-liquid coexistence zone width is 3 ° C.
[0018]
In the alloy type temperature fuse, due to the thermal resistance between the temperature fuse surface and the fuse element, the temperature fuse surface temperature is approximately 2 ° C. higher than the fuse element temperature. The operating temperature of a temperature fuse having a standard composition as a fuse element is 89 ° C. to 86 ° C.
[0019]
In the alloy having the above composition, ductility necessary for drawing is given by In, a low fusion metal having a melting point close to 90 ° C. by Bi, and a melting point (solidity of 84 ° C. to 87 ° C. while maintaining the above ductility by Sn. Temperature between the phase line and the liquidus line).
[0020]
The upper and lower limits of Sn, In, Bi, etc. in the above alloy composition are the limitations necessary to keep the operating temperature range of the temperature fuse within ± 3 ° C. (mainly 87.5 ° C.).
[0021]
According to the present invention, an alloy type temperature fuse having an operating temperature of 86 ° C. to 89 ° C. can be manufactured with a good yield. This is clear from the following examples.
[0022]
Example
A base material having an alloy composition of Sn: 1.0% by weight, In: 52.5% by weight and the balance Bi was drawn and processed into a wire having a diameter of 0.6 mm. The pulling rate for one die was 6.5%, and the drawing speed was 45 m / min, but there was no disconnection.
When the resistance value of this wire was measured, it was 1.9 Ω / m, which was the same order as the resistance value of the fuse element of the existing alloy type temperature fuse, and there was no problem in terms of resistance. .
[0023]
This line was cut to a length of 6 mm to form a fuse element, and a cylindrical temperature fuse was prepared. A tin-plated copper wire having an outer diameter of 0.6 mm was used as the lead wire, and a ceramic cylinder having an inner diameter of 1.5 mm was used as the cylinder.
[0024]
50 pieces of this example product were immersed in an oil bath with a heating rate of 1 ° C./1 min while energizing a current of 0.1 ampere, and the oil temperature when the energization was cut off due to fusing was measured to be 87 ± 1. It was within the range of ° C.
[0025]
Further, within the range of the alloy composition described above, the operating temperature could be kept within a range of ± 3 ° C. centering on 87.5 ° C.
[0026]
Although an attempt was made to produce a temperature fuse using an alloy having an eutectic point temperature of 82 ° C., an eutectic composition of 46% by weight of Sn, 50% by weight of In, and 4% by weight of Bi, it is possible to produce a fuse element. I couldn't do it.
[0027]
【The invention's effect】
According to the present invention, a fuse element is manufactured by efficient drawing of a low-melting-point soluble alloy base material. Using this fuse element, the operating temperature is 86 ° C. to 89 ° C. and sufficient self-heating is achieved. Therefore, it is possible to obtain an alloy type temperature fuse useful for protecting equipment having a protection temperature of about 80 to 90 ° C. with good productivity.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13939893A JP3995058B2 (en) | 1993-05-17 | 1993-05-17 | Alloy type temperature fuse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13939893A JP3995058B2 (en) | 1993-05-17 | 1993-05-17 | Alloy type temperature fuse |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06325670A JPH06325670A (en) | 1994-11-25 |
JP3995058B2 true JP3995058B2 (en) | 2007-10-24 |
Family
ID=15244355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13939893A Expired - Lifetime JP3995058B2 (en) | 1993-05-17 | 1993-05-17 | Alloy type temperature fuse |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3995058B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5229235A (en) * | 1988-06-27 | 1993-07-20 | Sony Corporation | Electrophotographic process using melted developer |
JP4911836B2 (en) * | 2001-06-28 | 2012-04-04 | ソルダーコート株式会社 | Soluble alloy for thermal fuse and wire for thermal fuse and thermal fuse |
JP3990169B2 (en) | 2002-03-06 | 2007-10-10 | 内橋エステック株式会社 | Alloy type temperature fuse |
JP4001757B2 (en) | 2002-03-06 | 2007-10-31 | 内橋エステック株式会社 | Alloy type temperature fuse |
JP4101536B2 (en) | 2002-03-06 | 2008-06-18 | 内橋エステック株式会社 | Alloy type thermal fuse |
JP4162917B2 (en) | 2002-05-02 | 2008-10-08 | 内橋エステック株式会社 | Alloy type temperature fuse |
JP4230194B2 (en) | 2002-10-30 | 2009-02-25 | 内橋エステック株式会社 | Alloy type thermal fuse and wire for thermal fuse element |
JP4204852B2 (en) | 2002-11-26 | 2009-01-07 | 内橋エステック株式会社 | Alloy type thermal fuse and material for thermal fuse element |
JP4064217B2 (en) | 2002-11-26 | 2008-03-19 | 内橋エステック株式会社 | Alloy type thermal fuse and material for thermal fuse element |
JP4230251B2 (en) | 2003-03-04 | 2009-02-25 | 内橋エステック株式会社 | Alloy type thermal fuse and material for thermal fuse element |
JP7080939B2 (en) * | 2020-09-04 | 2022-06-06 | 株式会社新菱 | Low melting point bonding member and its manufacturing method, semiconductor electronic circuit and its mounting method |
-
1993
- 1993-05-17 JP JP13939893A patent/JP3995058B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06325670A (en) | 1994-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK0628376T3 (en) | Electric semiconductor heater and method of its manufacture | |
JP3995058B2 (en) | Alloy type temperature fuse | |
JP4001757B2 (en) | Alloy type temperature fuse | |
JP3841257B2 (en) | Alloy type temperature fuse | |
JP3990169B2 (en) | Alloy type temperature fuse | |
JP4369008B2 (en) | Alloy type temperature fuse | |
JP4162917B2 (en) | Alloy type temperature fuse | |
JP2819408B2 (en) | Alloy type temperature fuse | |
JP4360666B2 (en) | Alloy type thermal fuse and wire for thermal fuse element | |
JP4409705B2 (en) | Alloy type temperature fuse | |
JP2004043894A (en) | Alloy type thermal fuse and wire member for thermal fuse element | |
JPH0719075Y2 (en) | Substrate type thermal fuse | |
JP4409747B2 (en) | Alloy type thermal fuse | |
JPH0412428A (en) | Fuse element | |
JP2001143592A (en) | Fuse alloy | |
JP4101536B2 (en) | Alloy type thermal fuse | |
JP2516469B2 (en) | Alloy type temperature fuse | |
JPH1140025A (en) | Thermal alloy fuse | |
JP3213051B2 (en) | Manufacturing method of alloy type temperature fuse | |
JP2001135216A (en) | Alloy-type thermal fuse | |
JP2000182492A (en) | Alloy-type temperature fuse | |
JPH04259720A (en) | Alloy-type temperature fuse | |
JPH086354Y2 (en) | Alloy type thermal fuse | |
JP4162941B2 (en) | Alloy type thermal fuse and wire for thermal fuse element | |
JP2001143588A (en) | Alloy fuse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070725 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |