JP2001143590A - Alloy fuse - Google Patents

Alloy fuse

Info

Publication number
JP2001143590A
JP2001143590A JP32756799A JP32756799A JP2001143590A JP 2001143590 A JP2001143590 A JP 2001143590A JP 32756799 A JP32756799 A JP 32756799A JP 32756799 A JP32756799 A JP 32756799A JP 2001143590 A JP2001143590 A JP 2001143590A
Authority
JP
Japan
Prior art keywords
weight
temperature
alloy
fuse
fuse element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32756799A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tanaka
嘉明 田中
Toshiaki Saruwatari
利章 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP32756799A priority Critical patent/JP2001143590A/en
Publication of JP2001143590A publication Critical patent/JP2001143590A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/768Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit

Abstract

PROBLEM TO BE SOLVED: To provide an alloy temperature fuse that ensures the accurate operation at about 70 deg.C even with a diameter below 500 μm. SOLUTION: A fuse element is made of an alloy composed of 29 to 40 wt.% of Pb, 13 to 18 wt.% of Sn, 7 to 25 wt.% of Cd, and the remaining part of Bi.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は作動温度が70℃前
後の合金型温度ヒュ−ズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy type temperature fuse having an operating temperature of about 70.degree.

【0002】[0002]

【従来の技術】合金型温度ヒュ−ズは、一対のリ−ド線
間に低融点可溶合金片(ヒュ−ズエレメント)を接続
し、低融点可溶合金片上にフラックスを塗布し、このフ
ラックス塗布合金片を絶縁体で包囲した構成であり、保
護すべき電気機器に取り付けて使用され、電気機器が過
電流により発熱すると、その発生熱により低融点可溶合
金片が液相化され、その溶融金属が既に溶融したフラッ
クスとの共存下、表面張力により球状化され、球状化の
進行により分断されて機器への通電が遮断される。
2. Description of the Related Art In an alloy type temperature fuse, a low melting point fusible alloy piece (fusing element) is connected between a pair of lead wires, and a flux is applied on the low melting point fusible alloy piece. The flux coated alloy piece is surrounded by an insulator, and it is used by attaching it to the electrical equipment to be protected.When the electrical equipment generates heat due to overcurrent, the low melting point fusible alloy piece is liquefied by the generated heat, In the coexistence of the molten metal and the flux that has already been melted, the molten metal is spheroidized by surface tension.

【0003】上記低融点可溶合金に要求される基本的な
条件は、保護しようとする機器の許容温度から求められ
る融点を有し、その融点の固相線と液相線との間の固液
共存域巾が狭いことである。すなわち、通常、合金にお
いては、固相線と液相線との間に固液共存域巾が存在
し、この領巾においては、液相中に固相粒体が分散した
状態にあり、液相様の性質も備えているために、上記の
球状化分断が発生する可能性があり、従って、液相線温
度(この温度をTとする)以前に固液共存域巾に属する
温度範囲(ΔTとする)で、低融点可溶合金片が球状化
分断される可能性がある。而して、かかる低融点可溶合
金片を用いた温度ヒュ−ズにおいては、ヒュ−ズエレメ
ント温度が(T−ΔT)〜Tとなる温度範囲で動作する
ものとして取り扱わなければならず、従って、ΔTが小
であるほど、すなわち、固液共存域巾が狭いほど、温度
ヒュ−ズの動作温度範囲のバラツキを小として、温度ヒ
ュ−ズを所定の設定温度で正確に動作させ得るのであ
る。
[0003] The basic condition required for the above low melting point fusible alloy is that it has a melting point determined from the permissible temperature of the equipment to be protected, and has a melting point between the solidus and liquidus at that melting point. The width of the liquid coexistence area is narrow. That is, in an alloy, there is usually a solid-liquid coexistence zone width between the solidus line and the liquidus line. In this area, the solid phase particles are dispersed in the liquid phase, and the liquid phase Because of the above-mentioned properties, the above-mentioned spheroidization may occur. Therefore, the temperature range (ΔT) belonging to the solid-liquid coexistence zone width before the liquidus temperature (T is this temperature) is considered. ), There is a possibility that the low-melting-point fusible alloy piece is spheroidized and divided. Therefore, the temperature fuse using such a low melting point fusible alloy piece must be treated as operating at a temperature range in which the fuse element temperature is (T-ΔT) to T. , .DELTA.T, that is, the narrower the solid-liquid coexistence area width, the smaller the variation in the operating temperature range of the temperature fuse, and the more accurately the temperature fuse can be operated at a predetermined set temperature. .

【0004】従来、動作温度がほぼ70℃の合金型温度
ヒュ−ズとして、溶融温度72℃(固相線温度70℃、
液相線温度72℃)のBi−Pb−Sn−Cd合金(B
i50重量%、Pb25重量%、Sn12.5重量%、
Cd12.5重量%)、いわゆるウッドメタルをヒュ−
ズエレメントとしたものが知られており(例えば、特開
平3−236130号)、固液共存巾が2℃と狭く、高
精度の作動を保証できる。
Conventionally, as an alloy type temperature fuse having an operating temperature of approximately 70 ° C., a melting temperature of 72 ° C. (solidus temperature of 70 ° C.,
Bi-Pb-Sn-Cd alloy (liquidus temperature 72 ° C) (B
i 50% by weight, Pb 25% by weight, Sn 12.5% by weight,
Cd 12.5% by weight).
A known element (for example, Japanese Patent Application Laid-Open No. 3-236130) is known, and its solid-liquid coexistence width is as narrow as 2 ° C., so that high-precision operation can be guaranteed.

【0005】[0005]

【発明が解決しようとする課題】近来、温度ヒュ−ズの
薄型化のために、ヒュ−ズエレメントの細線化が要求さ
れ、例えば300μmφもの細線化が求められている。
しかし、前記のウッドメタルでは、Biの配合量が多い
ために脆性が高く、線引き加工が難しく、ヒュ−ズエレ
メントを300μmφといった細径にすることは至難で
ある。
In recent years, in order to make the temperature fuse thinner, the fuse element has been required to be thinner, for example, as thin as 300 μmφ.
However, the wood metal described above has a high brittleness due to a large amount of Bi and is difficult to draw, and it is extremely difficult to reduce the fuse element diameter to 300 μmφ.

【0006】そこで、Biの配合量を減少することが考
えられるが、当然のことながら、このBi量の減少によ
り他の金属成分の添加量が増大され、固相線温度や液相
線温度及び固液共存巾の変動並びに比抵抗の変動が余儀
なくされ、特に、前記ヒュ−ズエレメントの細線化のも
とでは、この比抵抗の増加により、ヒュ−ズエレメント
の電気抵抗値の飛躍的な増加が避けられず、定格通電時
でも、ヒュ−ズエレメントがジュ−ル発熱により相当高
温になり、誤作動の発生が懸念される。すなわち、ヒュ
−ズエレメントのジュ−ル発熱による温度上昇をΔθ、
ヒュ−ズエレメントの融点をTとすると、温度(T−Δ
θ)で温度ヒュ−ズが動作されることになるから、ヒュ
−ズエレメントの電気抵抗値が高くなってΔθを無視で
きなくなると、機器が所定の許容温度に達するまえに通
電遮断されてしまうことがあり、電気抵抗値を低くして
上記Δθを僅小に抑える必要がある。
Therefore, it is conceivable to reduce the amount of Bi. Naturally, the decrease in the amount of Bi increases the amount of other metal components to be added. Fluctuations in the coexistence width of solid and liquid and fluctuations in the specific resistance are inevitable. Particularly, when the fuse element is thinned, the electric resistance of the fuse element dramatically increases due to the increase in the specific resistance. However, even at the time of rated energization, the fuse element is heated to a considerably high temperature due to Joule heat, which may cause a malfunction. That is, the temperature rise due to the Joule heat of the fuse element is Δθ,
Assuming that the melting point of the fuse element is T, the temperature (T-Δ
Since the temperature fuse is operated at θ), if the electrical resistance of the fuse element becomes too high to ignore Δθ, the power is cut off before the device reaches a predetermined allowable temperature. In some cases, it is necessary to lower the electric resistance value to minimize the above Δθ.

【0007】本発明の目的は、作動温度70℃前後の合
金型温度ヒュ−ズにおいて、500μmφ未満の細径の
ヒュ−ズエレメントのもとでも正確な作動を保証できる
合金型温度ヒュ−ズを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an alloy type temperature fuse capable of guaranteeing accurate operation even under a small diameter fuse element having a diameter of less than 500 μm in an alloy type temperature fuse having an operating temperature of about 70 ° C. To provide.

【0008】[0008]

【課題を解決するための手段】本発明に係る合金型温度
ヒュ−ズは、Pb29〜40重量%、Sn13〜18重
量%、Cd7〜25重量%、残部Biの組成の合金をヒ
ュ−ズエレメントとしたことを特徴とする構成であり、
前記合金組成100重量部に対しInを0.5〜10重
量部添加すること、更にAgを0.5〜5重量部添加す
ることもできる。
The alloy type temperature fuse according to the present invention is composed of a fuse element composed of 29-40% by weight of Pb, 13-18% by weight of Sn, 7-25% by weight of Cd, and the balance of Bi. It is a configuration characterized by that
It is also possible to add 0.5 to 10 parts by weight of In to 100 parts by weight of the alloy composition, and further add 0.5 to 5 parts by weight of Ag.

【0009】[0009]

【発明の実施の形態】本発明に係る温度ヒュ−ズにおい
て、ヒュ−ズエレメントには、外径500μmφ未満で
200μmφ以上の円形線、または当該円形線と同一断
面積の扁平線を使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the temperature fuse according to the present invention, a circular wire having an outer diameter of less than 500 μmφ and a diameter of 200 μmφ or more or a flat wire having the same cross-sectional area as the circular wire can be used as the fuse element.

【0010】このヒュ−ズエレメントの合金組成は、P
b29〜40重量%、Sn13〜18重量%、Cd7〜
25重量%、残部Bi好ましくはPb30〜40重量
%、Sn13〜18重量%、Cd7〜25重量%、残部
Biであり、その基準組成はPb30重量%、Sn14
重量%、Cd710重量%、Bi46重量%であり、そ
の基準組成の液相線温度は74℃,固液共存域巾は4℃
であり、比抵抗は49μΩ・cmである。
[0010] The alloy composition of the fuse element is P
b 29 to 40% by weight, Sn 13 to 18% by weight, Cd 7 to
25% by weight, the balance Bi is preferably 30 to 40% by weight of Pb, 13 to 18% by weight of Sn, 7 to 25% by weight of Cd, and the balance of Bi. The reference compositions are 30% by weight of Pb and Sn14.
% Of Cd, 710% by weight of Cd, and 46% by weight of Bi. The liquidus temperature of the reference composition is 74 ° C., and the solid-liquid coexistence zone width is 4 ° C.
And the specific resistance is 49 μΩ · cm.

【0011】このヒュ−ズエレメントの合金組成におい
ては、前記ウッドメタルのSn量(12.5重量%)及
びPb量(25重量%)に対し、Snを13〜18重量
%と、かつPbをPbを29〜40重量%と多量にする
ことにより、ウッドメタルの固液共存域をよく保持させ
つつ線引き加工性と低い比抵抗(45〜55μΩ・c
m)とを確保しており、Cd7〜25重量%の25重量
%寄りの組成域では、ウッドメタルでのCd配合量(1
2.5重量%)よりもCd量が多く、特に低い比抵抗の
組成域である。このヒュ−ズエレメントの合金組成の最
も高い液相線温度は74℃、最も低い固相線温度は68
℃であり、固液共存域巾は平均で5℃程度である。温度
ヒュ−ズのヒュ−ズエレメントと機器との間には、その
間の熱抵抗のために約2℃の温度差が生じるから、この
基準組成を使用した温度ヒュ−ズの作動温度は76℃〜
70℃である。
In the alloy composition of the fuse element, Sn is contained in an amount of 13 to 18% by weight and Pb is contained with respect to the amount of Sn (12.5% by weight) and the amount of Pb (25% by weight) of the wood metal. By increasing the content of Pb to as large as 29 to 40% by weight, the drawability and low specific resistance (45 to 55 μΩ · c) can be obtained while maintaining the solid-liquid coexistence region of the wood metal.
m), and in the composition range of 25 to 25% by weight of Cd 7 to 25% by weight, the amount of Cd in wood metal (1
(2.5% by weight), and is a composition region having a particularly low specific resistance. The highest liquidus temperature of the alloy composition of this fuse element is 74 ° C, and the lowest solidus temperature is 68 ° C.
° C, and the solid-liquid coexistence region width is about 5 ° C on average. Since a temperature difference of about 2 ° C. occurs between the fuse element of the temperature fuse and the equipment due to thermal resistance therebetween, the operating temperature of the temperature fuse using this reference composition is 76 ° C. ~
70 ° C.

【0012】前記ヒュ−ズエレメントの合金組成100
重量部に0.5〜10重量部のInを添加することによ
り、ヒュ−ズエレメントの比抵抗を前記線引き加工性及
び融点特性を充分に保持させつつ低くすることができ、
例えば前記基準組成100重量部にInを3重量部添加
することにより、比抵抗を基準組成の49μΩ・cmか
ら42μΩ・cmに低減できる。更に、上記合金組成1
00重量部にAgを0.5〜5重量部添加することによ
り、比抵抗を前記45〜55μΩ・cmよりも一段と低
くすることができ、例えば、2重量部添加することによ
り、比抵抗を40μΩ・cm程度と低くできる。
Alloy composition of the fuse element 100
By adding 0.5 to 10 parts by weight of In to the parts by weight, the specific resistance of the fuse element can be lowered while sufficiently maintaining the drawability and the melting point characteristics,
For example, by adding 3 parts by weight of In to 100 parts by weight of the reference composition, the specific resistance can be reduced from 49 μΩ · cm of the reference composition to 42 μΩ · cm. Further, the above alloy composition 1
By adding 0.5 to 5 parts by weight of Ag to 00 parts by weight, the specific resistance can be made much lower than that of 45 to 55 μΩ · cm. For example, by adding 2 parts by weight, the specific resistance becomes 40 μΩ・ It can be as low as about cm.

【0013】本発明に係る温度ヒュ−ズのヒュ−ズエレ
メントは、合金母材の線引きにより製造され、断面丸形
のまま、または、さらに扁平に圧縮加工して使用でき
る。
The fuse element of the temperature fuse according to the present invention is manufactured by drawing an alloy base material, and can be used as it is in a round cross section or in a flattened form.

【0014】図1の(イ)は本発明に係る薄型の合金型
温度ヒュ−ズを示す平面説明図、図1の(ロ)は図1の
(イ)におけるロ−ロ断面図であり、厚み100〜30
0μmのプラスチックベ−スフィルム11に厚み100
〜200μmの帯状リ−ド導体3,3を接着剤または融
着により固着し、帯状リ−ド導体間に線径500μmφ
未満のヒュ−ズエレメント4を接続し、このヒュ−ズエ
レメント4にフラックス5を塗布し、このフラックス塗
布ヒュ−ズエレメントを厚み100〜300μmのプラ
スチックカバ−フィルム12の接着剤または融着による
固着で封止してある。
FIG. 1A is an explanatory plan view showing a thin alloy-type temperature fuse according to the present invention, and FIG. 1B is a cross-sectional view taken along the line in FIG. Thickness 100-30
A 100 μm thick plastic base film 11
The band-shaped lead conductors 3 to 3 having a thickness of about 200 μm are fixed by an adhesive or fusion bonding, and the wire diameter is 500 μmφ between the band-shaped lead conductors.
And a flux 5 is applied to the fuse element 4, and the flux-coated fuse element is fixed to the plastic cover film 12 having a thickness of 100 to 300 μm by an adhesive or fusion. Sealed with.

【0015】本発明の合金型温度ヒュ−ズは、ケ−ス
型、基板型、或いは、樹脂ディッピング型の形態でも実
施できる。ケ−ス型としては、互いに一直線で対向する
リ−ド線間に線状片のヒュ−ズエレメントを溶接し、ヒ
ュ−ズエレメント上にフラックスを塗布し、このフラッ
クス塗布ヒュ−ズエレメント上にセラミックス筒を挿通
し、該筒の各端と各リ−ド線との間を接着剤、例えばエ
ポキシ樹脂で封止したアキシャルタイプ、または、平行
リ−ド線間の先端に線状片のヒュ−ズエレメントを溶接
し、ヒュ−ズエレメント上にフラックスを塗布し、この
フラックス塗布ヒュ−ズエレメント上に扁平をセラミッ
クキャップを被せ、このキャップの開口とリ−ド線との
間をエポキシ樹脂で封止したラジアルタイプを使用でき
る。
The alloy type temperature fuse of the present invention can be implemented in a case type, a substrate type or a resin dipping type. As a case type, a fuse element of a linear piece is welded between lead wires that are opposed to each other in a straight line, a flux is applied on the fuse element, and a flux is applied on the fuse-coated fuse element. An axial type in which a ceramic cylinder is inserted and each end of the cylinder and each lead wire are sealed with an adhesive, for example, an epoxy resin, or a line-shaped piece is attached to the end between parallel lead wires. Welding the fuse element, applying a flux on the fuse element, placing a flat ceramic cap on the flux-coated fuse element, and applying an epoxy resin between the opening of the cap and the lead wire. A sealed radial type can be used.

【0016】上記の樹脂ディッピング型としては、セラ
ミックキャップの包囲に代え、フラックス塗布ヒュ−ズ
エレメント上にエポキシ樹脂液への浸漬によるエポキシ
樹脂被覆層を設けたラジアルタイプを使用できる。
As the resin dipping type, a radial type in which an epoxy resin coating layer is provided on a flux-coated fuse element by immersion in an epoxy resin liquid, instead of surrounding the ceramic cap, can be used.

【0017】上記の基板型としては、片面に一対の層状
電極を設けた絶縁基板のその電極間先端に線状片のヒュ
−ズエレメントを溶接し、ヒュ−ズエレメント上にフラ
ックスを塗布し、各電極の後端にリ−ド線を接続し、絶
縁基板片面上にエポキシ樹脂被覆層を設けたものを使用
でき、アキシャルまたはラジアルの何れの方式にもでき
る。
In the above-mentioned substrate type, a fuse element of a linear piece is welded to an end between the electrodes of an insulating substrate having a pair of layered electrodes provided on one surface, and a flux is applied on the fuse element. A structure in which a lead wire is connected to the rear end of each electrode and an epoxy resin coating layer is provided on one surface of an insulating substrate can be used, and either an axial or radial system can be used.

【0018】上記のフラックスには、通常、融点がヒュ
−ズエレメントの融点よりも低いものが使用され、例え
ば、ロジン90〜60重量部、ステアリン酸10〜40
重量部、活性剤0〜3重量部を使用できる。この場合、
ロジンには、天然ロジン、変性ロジン(例えば、水添ロ
ジン、不均化ロジン、重合ロジン)またはこれらの精製
ロジンを使用でき、活性剤には、ジエチルアミンの塩酸
塩や臭化水素酸塩等を使用できる。
As the above-mentioned flux, a flux whose melting point is lower than that of the fuse element is usually used, for example, 90 to 60 parts by weight of rosin, 10 to 40 parts of stearic acid.
Parts by weight, 0 to 3 parts by weight of activator can be used. in this case,
As the rosin, natural rosin, modified rosin (for example, hydrogenated rosin, disproportionated rosin, polymerized rosin) or these purified rosins can be used. As the activator, diethylamine hydrochloride, hydrobromide, or the like can be used. Can be used.

【0019】[0019]

【実施例】〔実施例1〕Pb:30重量%,Sn:14
重量%,Cd:10.0重量%,Bi:47重量%の合
金組成を使用した。この合金の液相線温度は74℃、固
液共存域巾は4℃である。この合金組成の母材を線引き
して直径300μmφの線に加工した。1ダイスについ
ての減面率を6.5%とし、線引き速度を30m/mi
nとしたが、断線は皆無であった。この線の比抵抗を測
定したところ、49μΩ・cmであった。この線を長さ
4mmに切断してヒュ−ズエレメントとし、基板型温度
ヒュ−ズを作成した。フラックスにはロジン80重量部
とステアリン酸20重量部とジエチルアミン臭化水素酸
塩1重量部の組成を、樹脂材には常温硬化のエポキシ樹
脂を使用した。
[Example 1] Pb: 30% by weight, Sn: 14
The alloy composition used was 1% by weight, 10.0% by weight of Cd, and 47% by weight of Bi. The liquidus temperature of this alloy is 74 ° C., and the solid-liquid coexistence zone width is 4 ° C. The base material having this alloy composition was drawn and processed into a wire having a diameter of 300 μmφ. The area reduction rate per die is 6.5%, and the drawing speed is 30 m / mi.
n, but there was no disconnection. When the specific resistance of this wire was measured, it was 49 μΩ · cm. This wire was cut into a length of 4 mm to form a fuse element, and a substrate-type temperature fuse was prepared. A composition of 80 parts by weight of rosin, 20 parts by weight of stearic acid, and 1 part by weight of diethylamine hydrobromide was used as a flux, and an epoxy resin cured at room temperature was used as a resin material.

【0020】この実施例品50箇について、固相線温度
70℃よりも5℃低い65℃の雰囲気内で1アンペア通
電したところ、1000時間経過後でも、溶断したもの
は皆無であり、自己発熱による誤動作は全く観られなか
った。さらに、これらの50箇につき、0.1アンペア
の電流を通電しつつ、昇温速度1℃/分のオイルバスに
浸漬し、溶断による通電遮断時のオイル温度を測定した
ところ、73±2℃の範囲内であり、作動温度のバラツ
キをよく抑えて正確に作動させ得た。
When 50 amps of this embodiment were energized for 1 amp in an atmosphere of 65 ° C., which is 5 ° C. lower than the solidus temperature of 70 ° C., even after 1000 hours, there was no fusing and there was no self-heating. No malfunction was observed. Further, these 50 samples were immersed in an oil bath at a heating rate of 1 ° C./min while applying a current of 0.1 amperes, and the oil temperature at the time of shutting off the current by fusing was measured to be 73 ± 2 ° C. , And the operation was able to be performed accurately while suppressing variations in the operating temperature.

【0021】〔実施例2〕実施例1の合金組成100重
量部にInを3重量部添加した合金組成を使用した。こ
の合金の液相線温度は69℃、固液共存域巾は4℃であ
る。この合金組成の母材を実施例1と同様にして線引き
して直径300μmφの線に加工したところ、断線は皆
無であった。この線の比抵抗を測定したところ、42μ
Ω・cmであった。この線を長さ4mmに切断してヒュ
−ズエレメントとし、実施例1と同様にして基板型温度
ヒュ−ズを作成した。
Example 2 The alloy composition of Example 1 was used in which 3 parts by weight of In was added to 100 parts by weight of the alloy composition. The liquidus temperature of this alloy is 69 ° C., and the solid-liquid coexistence zone width is 4 ° C. When the base material having this alloy composition was drawn in the same manner as in Example 1 and processed into a wire having a diameter of 300 μmφ, there was no disconnection. When the specific resistance of this line was measured, 42 μm was obtained.
Ω · cm. This wire was cut into a length of 4 mm to form a fuse element, and a substrate-type temperature fuse was prepared in the same manner as in Example 1.

【0022】この実施例品50箇について、固相線温度
65℃よりも5℃低い60℃の雰囲気内で1アンペア通
電したところ、1000時間経過後でも、溶断したもの
は皆無であり、自己発熱による誤動作は認められなかっ
た。さらに、これらの50箇につき、0.1アンペアの
電流を通電しつつ、昇温速度1℃/分のオイルバスに浸
漬し、溶断による通電遮断時のオイル温度を測定したと
ころ、68±3℃の範囲内であり、充分に正確な温度で
作動させ得た。
When 50 amps of this embodiment were energized for 1 amp in an atmosphere of 60 ° C., which is 5 ° C. lower than the solidus temperature of 65 ° C., even after 1000 hours, there was no fusing and there was no self-heating. No malfunction was recognized. Furthermore, while immersing in an oil bath at a heating rate of 1 ° C./min while applying a current of 0.1 amperes to each of the 50 specimens and measuring the oil temperature at the time of energization interruption by fusing, 68 ± 3 ° C. , And could be operated at a sufficiently accurate temperature.

【0023】〔比較例1〕低融点可溶合金に、前記溶融
温度72℃(固相線温度70℃、液相線温度72℃)の
Bi−Pb−Sn−Cd合金(Bi50重量%、Pb2
5重量%、Sn12.5重量%、Cd12.5重量%)
を用い、減面率5.0%、線引き速度を20m/min
で300μmφの細線への線引きを試みたが、断線が多
発し、至難であったので、回転ドラム式紡糸法により直
径300μmφの細線に加工した。この線の比抵抗は、
69μΩ・cmであった。この細線をヒュ−ズエレメン
トとして実施例と同様にして基板型温度ヒュ−ズを作成
し、0.1アンペアの電流を通電しつつ、昇温速度1℃
/分のオイルバスに浸漬し、溶断による通電遮断時のオ
イル温度を測定したところ、液相線温度72℃に達して
も溶断しないものが多数存在した。これは、回転ドラム
式紡糸法のためにヒュ−ズエレメント表面に厚い酸化皮
膜が形成され、この酸化皮膜が鞘となってヒュ−ズエレ
メントが溶断され難くなるためであると推定される。
Comparative Example 1 A Bi-Pb-Sn-Cd alloy (Bi50% by weight, Pb2) having a melting point of 72 ° C. (solidus temperature 70 ° C., liquidus temperature 72 ° C.) was added to a low melting point fusible alloy.
(5% by weight, Sn 12.5% by weight, Cd 12.5% by weight)
, Using a surface reduction rate of 5.0% and a drawing speed of 20 m / min.
Was tried to draw a thin wire having a diameter of 300 μmφ. However, the wire was frequently broken and it was extremely difficult. The specific resistance of this line is
It was 69 μΩ · cm. A substrate-type temperature fuse was prepared using the thin wire as a fuse element in the same manner as in the embodiment.
Immersed in an oil bath per minute and the oil temperature at the time of energization cutoff due to fusing was measured. It is presumed that this is because a thick oxide film is formed on the surface of the fuse element due to the rotary drum spinning method, and the oxide film becomes a sheath, making it difficult for the fuse element to be blown.

【0024】〔比較例2〕Pb:25重量%,Sn:1
2.5重量%,Cd:15.5重量%、Bi:47.0
重量%の合金組成を使用した。この組成は、ウッドメタ
ルに対しBi量を減少した分だけCdを増量したもので
あり、固相線温度が60℃近くに達し、作動温度70℃
クラスの合金型温度ヒュ−ズとしては不適格であった。
実施例と同様にして線引きにより直径300μmφの線
に加工し、基板型温度ヒュ−ズを製作し、この実施例品
50箇について、固相線温度60℃よりも5℃低い55
℃の雰囲気内で1000時間1アンペア通電したとこ
ろ、自己発熱による誤動作が多発した。さらに、これら
の50箇につき、0.1アンペアの電流を通電しつつ、
昇温速度1℃/分のオイルバスに浸漬し、溶断による通
電遮断時のオイル温度を測定したところ、65℃以下で
あり、作動温度70℃クラスの温度ヒュ−ズとしては不
適格であることが判明した。
Comparative Example 2 Pb: 25% by weight, Sn: 1
2.5% by weight, Cd: 15.5% by weight, Bi: 47.0
A weight percent alloy composition was used. In this composition, Cd was increased by an amount corresponding to a decrease in Bi amount with respect to wood metal, and the solidus temperature reached nearly 60 ° C., and the operating temperature was 70 ° C.
It was ineligible as a class alloy type temperature fuse.
In the same manner as in the embodiment, the substrate was processed into a wire having a diameter of 300 μmφ by drawing, and a substrate-type temperature fuse was manufactured.
When 1 ampere of electricity was supplied for 1000 hours in an atmosphere of ° C., malfunctions due to self-heating frequently occurred. In addition, while passing a current of 0.1 amps for each of these 50,
It was immersed in an oil bath at a temperature rise rate of 1 ° C / min, and the oil temperature was measured when the power was cut off by fusing. The oil temperature was 65 ° C or less, and it was not suitable as a temperature fuse in the operating temperature class of 70 ° C. There was found.

【0025】[0025]

【発明の効果】本発明に係る合金型温度ヒュ−ズは、ヒ
ュ−ズエレメント径が300μmφという細径であって
も、自己発熱による誤作動をよく排除して70℃クラス
の所定の温度にて機器の通電を遮断でき、作動温度70
℃クラスの薄型合金型温度ヒュ−ズとして極めて有用で
ある。
The alloy-type temperature fuse according to the present invention can eliminate malfunctions due to self-heating well to a predetermined temperature of 70 ° C. even if the fuse element diameter is as small as 300 μmφ. The power of the equipment can be cut off by
It is extremely useful as a thin alloy type temperature fuse in the class of ° C.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る合金型温度ヒュ−ズの一例を示す
図面である。
FIG. 1 is a drawing showing an example of an alloy type temperature fuse according to the present invention.

【符号の説明】[Explanation of symbols]

4 ヒュ−ズエレメント 4 fuse element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Pb29〜40重量%、Sn13〜18重
量%、Cd7〜25重量%、残部Biの組成の合金をヒ
ュ−ズエレメントとしたことを特徴とする合金型温度ヒ
ュ−ズ。
1. An alloy-type temperature fuse comprising an alloy having a composition of 29 to 40% by weight of Pb, 13 to 18% by weight of Sn, 7 to 25% by weight of Cd, and the balance Bi as a fuse element.
【請求項2】Pb29〜40重量%、Sn13〜18重
量%、Cd7〜25重量%、残部Biの100重量部に
Agを0.5〜5重量部添加した組成の合金をヒュ−ズ
エレメントとしたことを特徴とする合金型温度ヒュ−
ズ。
2. An alloy having a composition in which 29 to 40% by weight of Pb, 13 to 18% by weight of Sn, 7 to 25% by weight of Cd, and 0.5 to 5 parts by weight of Ag are added to 100 parts by weight of the remaining Bi. Alloy type temperature hue characterized by
Z.
【請求項3】Pb29〜40重量%、Sn13〜18重
量%、Cd7〜25重量%、残部Biの100重量部に
Inを0.5〜10重量部添加した組成の合金をヒュ−
ズエレメントとしたことを特徴とする合金型温度ヒュ−
ズ。
3. An alloy having a composition obtained by adding 0.5 to 10 parts by weight of In to 100 parts by weight of Pb, 29 to 40% by weight of Pb, 13 to 18% by weight of Sn, 7 to 25% by weight of Cd, and the remaining Bi.
Alloy type temperature fuse characterized by using
Z.
【請求項4】Pb29〜40重量%、Sn13〜18重
量%、Cd7〜25重量%、残部Biの100重量部に
In0.5〜10重量部及びAg0.5〜5重量部を添
加した組成の合金をヒュ−ズエレメントとしたことを特
徴とする合金型温度ヒュ−ズ。
4. A composition comprising 29 to 40% by weight of Pb, 13 to 18% by weight of Sn, 7 to 25% by weight of Cd, and 0.5 to 10 parts by weight of In and 0.5 to 5 parts by weight of Ag to 100 parts by weight of the remaining Bi. An alloy type temperature fuse characterized by using an alloy as a fuse element.
JP32756799A 1999-11-18 1999-11-18 Alloy fuse Pending JP2001143590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32756799A JP2001143590A (en) 1999-11-18 1999-11-18 Alloy fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32756799A JP2001143590A (en) 1999-11-18 1999-11-18 Alloy fuse

Publications (1)

Publication Number Publication Date
JP2001143590A true JP2001143590A (en) 2001-05-25

Family

ID=18200518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32756799A Pending JP2001143590A (en) 1999-11-18 1999-11-18 Alloy fuse

Country Status (1)

Country Link
JP (1) JP2001143590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422366C (en) * 2005-09-29 2008-10-01 西安航空发动机(集团)有限公司 Low-melting point alloy for machining connecting conduct, its production and use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422366C (en) * 2005-09-29 2008-10-01 西安航空发动机(集团)有限公司 Low-melting point alloy for machining connecting conduct, its production and use

Similar Documents

Publication Publication Date Title
JP4230194B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP4001757B2 (en) Alloy type temperature fuse
EP1424711B1 (en) Alloy type thermal fuse and material for a thermal fuse element
US6774761B2 (en) Alloy type thermal fuse and fuse element thereof
JP3841257B2 (en) Alloy type temperature fuse
JP4162917B2 (en) Alloy type temperature fuse
JP4369008B2 (en) Alloy type temperature fuse
JP2004176105A (en) Alloy type thermal fuse, and material for thermal fuse element
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP3761846B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP4409705B2 (en) Alloy type temperature fuse
JP4409747B2 (en) Alloy type thermal fuse
JP2001143592A (en) Fuse alloy
JP2001143590A (en) Alloy fuse
JP2001195963A (en) Alloy temperature fuse
US7160504B2 (en) Alloy type thermal fuse and fuse element thereof
JP2001243863A (en) Fuse with flux
JP2001143591A (en) Alloy fuse
JP2001143588A (en) Alloy fuse
JP2001143587A (en) Alloy fuse
JPH1140025A (en) Thermal alloy fuse
JP2001135216A (en) Alloy-type thermal fuse
JP2001135215A (en) Alloy-type thermal fuse
JP4162940B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP4162941B2 (en) Alloy type thermal fuse and wire for thermal fuse element