JPH04162726A - Insulated-gate field-effect semiconductor device - Google Patents

Insulated-gate field-effect semiconductor device

Info

Publication number
JPH04162726A
JPH04162726A JP28991890A JP28991890A JPH04162726A JP H04162726 A JPH04162726 A JP H04162726A JP 28991890 A JP28991890 A JP 28991890A JP 28991890 A JP28991890 A JP 28991890A JP H04162726 A JPH04162726 A JP H04162726A
Authority
JP
Japan
Prior art keywords
region
edge
gate electrode
conductivity type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28991890A
Other languages
Japanese (ja)
Inventor
Koichi Yamada
耕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP28991890A priority Critical patent/JPH04162726A/en
Publication of JPH04162726A publication Critical patent/JPH04162726A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily shorten the length of a channel by assigning the opposite conductivity type to the edge of a gate electrode to that of an impurity diffused region for a drain region. CONSTITUTION:The conductivity type of edge 5'' of a gate electrode 5 is set to be the opposite to that of an impurity diffused region 3 for a drain region. That is, if the conductivity type of a doped polysilicon edge 5'' of the electrode 5 is a p type, the conductivity type of the region 3 is an n type. On the contrary, if the conductivity type of the edge 5'' is an n type, the conductivity type of the region 3 is a p type. The doped polysilicon 5'' except the edge 5'' of the electrode 5 may be the same conductivity type as that of the edge 5'', or opposite to it. Accordingly, an electric field effect due to a drain voltage is alleviated. Thus, the length of a channel can be easily shortened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は絶縁ゲート型電界効果半導体装置、特に、い
わゆるL D D (Lightly Doped D
rain)構造の絶縁ゲート型電界効果半導体装置に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an insulated gate field effect semiconductor device, particularly a so-called LDD (Lightly Doped D
The present invention relates to an insulated gate field effect semiconductor device having a (rain) structure.

〔従来の技術〕[Conventional technology]

第2図は、LDD構造をとる従来の絶縁ゲート型電界効
果トランジスタ(以下、r MOSFET Jと言う)
の要部構成をあられす。
Figure 2 shows a conventional insulated gate field effect transistor (hereinafter referred to as r MOSFET J) with an LDD structure.
Hail the main parts of the structure.

第2図に示す従来のMOSFETは、半導体基板50の
表面部分にソース領域用およびドレイン領域用の不純物
拡散領域51.52がそれぞれ形成され、半導体基板5
0の表面にはソース・ドレイン間のチャネル領域CHを
制御するゲート電極55が絶縁層56を介して設けられ
絶縁ゲート型になっている。このゲート電極55は不純
物がドープされたポリシリコン(多結晶シリコン)から
なり、本体部55′と縁部55#で構成されており、縁
部55#は本体部55′の側面へ形成されたいわゆる号
イドウオールである。不純物拡散領域51.52は、ゲ
ート電極55をマスクに利用し注入した不純物で形成さ
れているが、チャネル側端部は不純物低濃度域51a、
52aである。不純物低濃度域51a、52aは、ゲー
ト電極55の本体部55′のみがある状態で不純物をイ
オン注入・拡散することで形成されており、この後、縁
部55″を本体部55′に加えた状態で不純物をイオン
注入・拡散することで形成された部分が先に形成したと
部分と合わさって不純物拡散領域51.52が構成され
ている。後の工程では、縁部55″がマスクになるため
、不純物低濃度域51a、52aの上方に縁部55“が
かかることになるこのMOSFETは、このように、ド
レイン領域の端に不純物低濃度域52aを備えるためL
DD構造と称され、この不純物低濃度域52aが、ホッ
トエレクトロン劣化を抑え信頼性を高める働きをする。
In the conventional MOSFET shown in FIG.
A gate electrode 55 for controlling a channel region CH between the source and drain is provided on the surface of the 0 with an insulating layer 56 interposed therebetween, making it an insulated gate type. This gate electrode 55 is made of polysilicon (polycrystalline silicon) doped with impurities, and is composed of a main body part 55' and an edge part 55#, and the edge part 55# is formed on the side surface of the main body part 55'. This is the so-called Idowall. The impurity diffusion regions 51 and 52 are formed of impurities implanted using the gate electrode 55 as a mask, and the channel side end portions are formed by the low impurity concentration region 51a,
It is 52a. The low impurity concentration regions 51a and 52a are formed by ion implantation and diffusion of impurities in a state where only the main body 55' of the gate electrode 55 is present, and after this, an edge 55'' is added to the main body 55'. The portion formed by ion implantation and diffusion of impurities in this state is combined with the previously formed portion to form impurity diffusion regions 51 and 52. In the subsequent process, the edge 55'' is used as a mask. Therefore, this MOSFET has an edge 55'' above the low impurity concentration regions 51a and 52a.
This low impurity concentration region 52a, called a DD structure, functions to suppress hot electron deterioration and improve reliability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記MO3FETでは、チャネル長さを
短くすることが難しいという問題がある。小型化、高集
積化が困難なのである。
However, the MO3FET has a problem in that it is difficult to shorten the channel length. It is difficult to miniaturize and increase integration.

これは、縁部55“−絶縁層56−不純物低濃度域52
aで構成されるMO3構造が出来ているが、ここで、ゲ
ート電極55の縁部55″の導電型がn゛型と不純物低
濃度域52aの導電型と同じなために、ドレイン電圧に
よる電界効果が効きやすくて、チャネル長さを短くする
ことが難しいのである。
This is the edge 55'' - the insulating layer 56 - the low impurity concentration region 52
A MO3 structure is formed, but here, since the conductivity type of the edge 55'' of the gate electrode 55 is the n-type and the conductivity type of the low impurity concentration region 52a, the electric field due to the drain voltage is The effect is easy to achieve, and it is difficult to shorten the channel length.

この発明は、上記事情に鑑み、チャネル長さの短いLD
D構造の絶縁ゲート型電界効果半導体装置を提供するこ
とを課題とする。
In view of the above circumstances, the present invention provides an LD with a short channel length.
An object of the present invention is to provide an insulated gate field effect semiconductor device having a D structure.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、この発明の絶縁ゲート型電界
効果半導体装置は、半導体基板の表面部分にソース領域
用およびドレイン領域用の不純物拡散領域がそれぞれ形
成され、半導体基板の表面にはソース・ドレイン間のチ
ャネル領域を制御するゲート電極が絶縁層を介して設け
られ、同ゲート電極は不純物がドープされたポリシリコ
ンからなり、前記ドレイン領域用不純物拡散領域のチャ
ネル側端部は不純物低濃度域となっていて、この不純物
低濃度域の上方に前記ゲート電極の縁部がかかっている
構成において、前記ゲート電極の縁部の導電型を前記ド
レイン領域用不純物拡散領域の導電型の逆にするように
している。
In order to solve the above problems, an insulated gate field effect semiconductor device of the present invention has impurity diffusion regions for a source region and a drain region formed on the surface of a semiconductor substrate. A gate electrode is provided via an insulating layer to control a channel region between the regions, and the gate electrode is made of polysilicon doped with impurities, and the channel side end of the impurity diffusion region for the drain region is a low impurity concentration region. In a configuration in which the edge of the gate electrode extends above this low impurity concentration region, the conductivity type of the edge of the gate electrode is set to be opposite to the conductivity type of the impurity diffusion region for the drain region. I have to.

以下、この発明をより具体的に説明する。This invention will be explained in more detail below.

ゲート電極におけるドープドポリシリコン縁部の導電型
がp型の場合は、ドレイン領域用不純物拡散領域の導電
型はn型である。逆に縁部の導電型がn型の場合は、ド
レイン領域用不純物拡散領域の導電型はp型である。ゲ
ート電極における縁部以外のドープドポリシリコン部分
は、縁部と同じ導電型であってもよいし、逆の導電型で
あってもよい。
When the conductivity type of the doped polysilicon edge of the gate electrode is p type, the conductivity type of the impurity diffusion region for the drain region is n type. Conversely, when the conductivity type of the edge is n type, the conductivity type of the impurity diffusion region for the drain region is p type. The doped polysilicon portion other than the edge of the gate electrode may be of the same conductivity type as the edge, or may be of the opposite conductivity type.

通常、ソース領域用不純物拡散領域のチャネル側端部も
、ドレイン領域と同様に不純物低濃度域であるが、ソー
ス領域の方には不純物低濃度域がなくてもよい。
Usually, the channel-side end of the impurity diffusion region for the source region is also a low impurity concentration region like the drain region, but the source region does not need to have a low impurity concentration region.

〔作   用〕[For production]

この発明の絶縁ゲート型電界効果半導体装置は、ゲート
電極の縁部の導電型がドレイン領域用不純物拡散領域の
導電型と逆であるため、導電型が同じ従来の場合に比べ
、しきい値電圧が約1.1V程度上昇する。ゲート電極
の縁部−絶縁層−不純物低濃度域のMO3構造において
は、この発明の場合、第3図にみるように、仕事関数φ
MS#0.85eVであり、従来は、第4図にみるよう
に、仕事関数φMS’ζ−0,25e Vであり、両者
の差は約1.leVあるのである。そして、しきい値電
圧が高くなった分だけドレイン電圧による電界効果が従
来に比べ効き難くなるため、チャネル長さを短くできる
のである。チャネル長さ21以下で適切に動作させられ
る半導体装置が実現できる。
In the insulated gate field effect semiconductor device of the present invention, since the conductivity type of the edge of the gate electrode is opposite to the conductivity type of the impurity diffusion region for the drain region, the threshold voltage increases by about 1.1V. In the case of the present invention, in the MO3 structure of the edge of the gate electrode, the insulating layer, and the low impurity concentration region, the work function φ is as shown in FIG.
MS# is 0.85eV, and conventionally, as shown in FIG. 4, the work function is φMS'ζ-0.25eV, and the difference between the two is about 1. There is leV. As the threshold voltage becomes higher, the electric field effect caused by the drain voltage becomes less effective than in the past, so the channel length can be shortened. A semiconductor device that can be operated appropriately with a channel length of 21 or less can be realized.

〔実 施 例〕〔Example〕

続いて、この発明にかかる半導体装置の一例を図面を参
照しながら詳しく説明する。
Next, an example of a semiconductor device according to the present invention will be described in detail with reference to the drawings.

第1図は、この発明の実施例にかかるMOSFETの構
成をあられす。
FIG. 1 shows the configuration of a MOSFET according to an embodiment of the invention.

第1図に示すMOSFETは、半導体基板1の表面部分
にソース領域およびドレイン領域用のn型不純物拡散領
域2.3がそれぞれ形成され、半導体基板1の表面には
ソース・ドレイン間のチャネル領域CHを制御するゲー
ト電極5が絶縁層6を介して設けられnチャンネルタイ
プの絶縁ゲート型になっている。このゲート電極5は不
純物がドープされたポリシリコン(ドープドポリシリコ
ン)がらなり、本体部5′と縁部5″で構成されており
、この縁部5″は本体部5′の側面へ形成されたいわゆ
る号イドウオールである。不純物拡散領域2.3は、ゲ
ート電極5をマスクに利用して注入した不純物で形成さ
れているが、チャネル側端部は不純物低濃度域2a、3
aである。不純物低濃度域2a、3aは、ゲート電極5
50本体部55′のみがある状態で不純物をイオン注入
・拡散することで形成されており、不純物高濃度域2b
、3bは、その後、縁部5″を本体部5′に加えた状態
で不純物をイオン注入・拡散することで形成されている
。後の不純物高濃度域2b、3bの形成工程では縁部5
#はマスクとなるため、不純物低濃度域2a、3aの上
方に縁部5“ががかることになる。
In the MOSFET shown in FIG. 1, n-type impurity diffusion regions 2.3 for source and drain regions are formed on the surface of a semiconductor substrate 1, and a channel region CH between the source and drain is formed on the surface of the semiconductor substrate 1. A gate electrode 5 for controlling is provided via an insulating layer 6 to form an n-channel insulated gate type. This gate electrode 5 is made of polysilicon doped with impurities (doped polysilicon) and is composed of a main body 5' and an edge 5'', and this edge 5'' is formed on the side surface of the main body 5'. This is the so-called Idowall. The impurity diffusion region 2.3 is formed of impurities implanted using the gate electrode 5 as a mask, and the end portion on the channel side is formed in the low impurity concentration regions 2a, 3.
It is a. The low impurity concentration regions 2a and 3a are connected to the gate electrode 5.
It is formed by ion-implanting and diffusing impurities in a state where only the main body portion 55' is present, and the high impurity concentration region 2b is formed.
, 3b are then formed by ion-implanting and diffusing impurities with the edge 5'' added to the main body 5'. In the subsequent process of forming high impurity concentration regions 2b and 3b,
Since # serves as a mask, an edge 5'' extends above the low impurity concentration regions 2a and 3a.

ソース領域の不純物高濃度域2bにはソース電極11が
、ドレイン領域の不純物高濃度域3bにはドレイン電極
12がコンタクトしている。なお、13は保護膜である
A source electrode 11 is in contact with the high impurity concentration region 2b of the source region, and a drain electrode 12 is in contact with the high impurity concentration region 3b of the drain region. Note that 13 is a protective film.

このMOSFETは、このように、ドレイン領域の端に
不純物低濃度(低ドープ)域3aを備えLDD構造とな
っており、この不純物低濃度域3aは、ホットエレクト
ロン劣化を抑え信頼性を高める働きを果たす。
This MOSFET thus has an LDD structure with a low impurity concentration (low doping) region 3a at the end of the drain region, and this low impurity concentration region 3a has the function of suppressing hot electron deterioration and increasing reliability. Fulfill.

MOSFETでは、ゲート電極5の縁部5#はp゛型と
ドレイン領域の不純物低濃度域3aと逆の導電型となっ
ており、チャンネル領域CHの長さを短くすることがで
きることは前述の通りである。
In the MOSFET, the edge 5# of the gate electrode 5 is of the p' type, which is the opposite conductivity type to the low impurity concentration region 3a of the drain region, and as mentioned above, the length of the channel region CH can be shortened. It is.

なお、縁部5#は、先に形成された本体部5′の側面に
サイドウオールとして作られるのであるが、この場合、
例えば、サイドウオール形成用に堆積させるポリシリコ
ン層を十分にn型不純物がドープされたp“ポリシリコ
ン層にして、エツチングを施し、サイドウオールを形成
するようにする。従来は、不純物をドープしないポリシ
リコン層を用いてサイドウオールを作っていたので、そ
の後のn型不純物の注入工程で縁部のポリシリコン部分
はn型不純物が導入されn゛型となっていたのである。
Note that the edge portion 5# is formed as a side wall on the side surface of the main body portion 5' that was previously formed, but in this case,
For example, the polysilicon layer deposited for sidewall formation is made into a p"polysilicon layer sufficiently doped with n-type impurities, and then etched to form the sidewalls. Conventionally, impurities are not doped. Since the sidewall was made using a polysilicon layer, the n-type impurity was introduced into the edge polysilicon portion in the subsequent n-type impurity implantation process, making it n-type.

もちろん、この発明の場合にも、縁部5“にはn型不純
物の注入工程でn型不純物の導入が起こるが、n型不純
物が予め十分な量でドープされており、導電型が反転し
てしまうことはない。
Of course, in the case of the present invention, n-type impurities are introduced into the edge 5'' in the n-type impurity implantation step, but the n-type impurities are doped in advance in a sufficient amount and the conductivity type is reversed. It won't happen.

この発明は、上記実施例に限らない。例えば、第1図に
おいてnとpが逆転したpチャンネルタイプのMOSF
ET、あるいは、第1図においてゲート電極5の本体部
5′のn゛がp+であってゲート電極5全体がp゛とな
ったMOSFETが、他の実施例として挙げられる。
This invention is not limited to the above embodiments. For example, in Figure 1, a p-channel type MOSF in which n and p are reversed.
Other embodiments include an ET or a MOSFET in which n'' of the main body portion 5' of the gate electrode 5 in FIG. 1 is p+ and the entire gate electrode 5 is p''.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、この発明にががるLDD構造の絶
縁ゲート型電界効果半導体装置は、ゲート電極の縁部と
ドレイン領域用不純物拡散領域の導電型が異なっており
、ドレイン電圧による電界効果が緩和されるため、チャ
ネル長さの短い適切に動作する装置にすることができる
As described above, in the LDD structure insulated gate field effect semiconductor device according to the present invention, the conductivity types of the edge of the gate electrode and the impurity diffusion region for the drain region are different, and the field effect due to the drain voltage is is relaxed, allowing for well-behaved devices with short channel lengths.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例にかかるMOSFETの構
成をあられす断面図、第2図は、従来のMOSFETの
要部構成をあられす断面図、第3図は、この発明にかか
る半導体装置におけるMO3構造でのエネルギー状態を
あられす説明図、第4図は、従来のLDD構造の絶縁ゲ
ート型半導体装置におけるMO3構造でのエネルギー状
態をあられす説明図である。 1・・・半導体基板  2・・・ソース領域用不純物拡
散領域  3・・・ドレイン領域用不純物拡散領域3a
・・・不純物低濃度域 5・・・ゲート電極 5“・・
・(ゲート電極の)縁部  6・・・絶縁層  CH・
・・チャネル領域 代理人 弁理士  松 本 武 彦 第1[!1 第2図 第3図 第4 図
FIG. 1 is a cross-sectional view showing the structure of a MOSFET according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the main structure of a conventional MOSFET, and FIG. 3 is a semiconductor device according to the present invention. FIG. 4 is an explanatory diagram showing the energy state in the MO3 structure in a conventional insulated gate semiconductor device having an LDD structure. 1... Semiconductor substrate 2... Impurity diffusion region for source region 3... Impurity diffusion region 3a for drain region
...Low impurity concentration region 5...Gate electrode 5"...
・Edge (of gate electrode) 6...Insulating layer CH・
...Channel area agent Patent attorney Takehiko Matsumoto 1st [! 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板の表面部分にソース領域用およびドレイ
ン領域用の不純物拡散領域がそれぞれ形成され、半導体
基板の表面にはソース・ドレイン間のチャネル領域を制
御するゲート電極が絶縁層を介して設けられ、同ゲート
電極は不純物がドープされたポリシリコンからなり、前
記ドレイン領域用不純物拡散領域のチャネル側端部は不
純物低濃度域となっていて、この不純物低濃度域の上方
に前記ゲート電極の縁部がかかっている絶縁ゲート型電
界効果半導体装置において、前記ゲート電極の縁部の導
電型が前記ドレイン領域用不純物拡散領域の導電型の逆
であることを特徴とする絶縁ゲート型電界効果半導体装
置。
1 Impurity diffusion regions for a source region and a drain region are respectively formed on the surface of a semiconductor substrate, and a gate electrode for controlling a channel region between the source and drain is provided on the surface of the semiconductor substrate via an insulating layer, The gate electrode is made of polysilicon doped with impurities, and the channel side end of the impurity diffusion region for the drain region is a low impurity concentration region, and the edge of the gate electrode is above this low impurity concentration region. An insulated gate field effect semiconductor device according to the present invention, wherein the conductivity type of the edge of the gate electrode is opposite to the conductivity type of the impurity diffusion region for the drain region.
JP28991890A 1990-10-26 1990-10-26 Insulated-gate field-effect semiconductor device Pending JPH04162726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28991890A JPH04162726A (en) 1990-10-26 1990-10-26 Insulated-gate field-effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28991890A JPH04162726A (en) 1990-10-26 1990-10-26 Insulated-gate field-effect semiconductor device

Publications (1)

Publication Number Publication Date
JPH04162726A true JPH04162726A (en) 1992-06-08

Family

ID=17749450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28991890A Pending JPH04162726A (en) 1990-10-26 1990-10-26 Insulated-gate field-effect semiconductor device

Country Status (1)

Country Link
JP (1) JPH04162726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391084B2 (en) 2003-07-18 2008-06-24 Infineon Technologies Ag LDMOS transistor device, integrated circuit, and fabrication method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391084B2 (en) 2003-07-18 2008-06-24 Infineon Technologies Ag LDMOS transistor device, integrated circuit, and fabrication method thereof
DE102004030848B4 (en) * 2003-07-18 2009-06-04 Infineon Technologies Ag LDMOS transistor device in an integrated circuit and method for manufacturing an integrated circuit with an LDMOS transistor
US7563682B2 (en) 2003-07-18 2009-07-21 Infineon Technologies Ag LDMOS transistor device, integrated circuit, and fabrication method thereof

Similar Documents

Publication Publication Date Title
US5166087A (en) Method of fabricating semiconductor element having lightly doped drain (ldd) without using sidewalls
KR0140719B1 (en) Favrication method of mosfet
US6906345B2 (en) Semiconductor device and method of manufacturing the same
KR950013790B1 (en) Mosfet with not uniformed dopping channel using trench structure
JPH04254335A (en) Semiconductor device and its manufacture
JPH04162726A (en) Insulated-gate field-effect semiconductor device
JPH0350771A (en) Semiconductor device
KR960000229B1 (en) Making method of vertical channel mosfet using trench structure
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
KR940004415B1 (en) Making method and structure of mosfet
KR100304974B1 (en) Method for manufacturing mos transistor
KR940002781B1 (en) Manufacturing method for semiconductor device with curved double gate
KR950013792B1 (en) Making method of mosfet
KR100537272B1 (en) Method for fabricating of semiconductor device
JPH0244734A (en) Manufacture of mis transistor
KR910009742B1 (en) High voltage semiconductor device and its manufacturing method
JPH01292861A (en) Semiconductor device and manufacture thereof
KR100327419B1 (en) Method for fabricating semiconductor device
JPH1126766A (en) Mos field effect transistor and manufacture thereof
KR100845105B1 (en) MOS transistor and fabrication method thereof
KR0152936B1 (en) Method of fabricating semiconductor device
KR100214077B1 (en) Mosfet and method for fabricating the same
KR19980030510A (en) Structure and manufacturing method of MOS FET
JPH04274329A (en) Field effect semiconductor device and its manufacture
KR19990004589A (en) Manufacturing method of semiconductor device