JPH04154668A - Production of silicon nitride sintered compact - Google Patents

Production of silicon nitride sintered compact

Info

Publication number
JPH04154668A
JPH04154668A JP2280052A JP28005290A JPH04154668A JP H04154668 A JPH04154668 A JP H04154668A JP 2280052 A JP2280052 A JP 2280052A JP 28005290 A JP28005290 A JP 28005290A JP H04154668 A JPH04154668 A JP H04154668A
Authority
JP
Japan
Prior art keywords
silicon nitride
oxygen
impurity oxygen
amount
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2280052A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yokoyama
清 横山
Hitoshi Matsunosako
等 松之迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2280052A priority Critical patent/JPH04154668A/en
Publication of JPH04154668A publication Critical patent/JPH04154668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title sintered compact improved in high-temperature strength by calcining a specific form or its calcinated form in a non-oxidative atmosphere. CONSTITUTION:A mixture of (A) Si3N4 powder 0.1-1.0mum in mean particle diameter and >=1wt.% in impurity oxygen content and (B) an oxide (e.g. Y2O3) of group IIIa elements with 0.1-3mum in mean particle diameter is formed and then calcinated at 1200-1600 deg.C in a non-oxidative atmosphere containing, if needed, N2 into a calcinated form having <=1.5wt.% in the level of the impurity oxygen present on the surface of the Si3N4 powder and 0.1-3wt.% in the whole impurity oxygen content. Then, this form or calcinated form is calcined at 1600-2000 deg.C for 0.5-10hr in a non-oxidative atmosphere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、窒化珪素質焼結体の製造方法に関するもので
、詳細には熱機関構造材料として高温特性が改善された
窒化珪素質焼結体の製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing a silicon nitride sintered body, and more specifically to a method for manufacturing a silicon nitride sintered body with improved high-temperature properties as a heat engine structural material. Concerning a method of manufacturing a body.

(従来技術) 窒化珪素質焼結体は、従来から強度、硬度、熱的化学的
安定性に優れた材料としてエンジニアリングセラミック
ス、特にターボロータやガスタービン等の熱機関への応
用が進められている。
(Prior art) Silicon nitride sintered bodies have been used as engineering ceramics as materials with excellent strength, hardness, and thermal and chemical stability, and in particular, are being applied to heat engines such as turbo rotors and gas turbines. .

このような窒化珪素質焼結体を得る方法としては、焼結
助剤としてY2O,および希土類元素酸化物の他にAh
Ox、MgO、SrO等を添加し、これを常圧焼成、ホ
ットプレス焼成、窒素ガス加圧焼成、熱間静水圧焼成等
の手法によって1500〜2000℃の非酸化性雰囲気
中で焼成することにより得られている。
As a method for obtaining such a silicon nitride sintered body, in addition to Y2O and rare earth element oxides as sintering aids, Ah
By adding Ox, MgO, SrO, etc., and firing this in a non-oxidizing atmosphere at 1500 to 2000°C using methods such as normal pressure firing, hot press firing, nitrogen gas pressure firing, and hot isostatic pressure firing. It has been obtained.

一方、窒化珪素質焼結体は優れた特性を有する反面、1
200℃を越える高温でその特性が大きく劣化する傾向
にある。これは前述した方法によって得られる焼結体が
窒化珪素結晶粒子と粒界相とがら構成されており、この
粒界相に焼結助剤や不純物から構成される低融点ガラス
相が生成されるためと考えられている。
On the other hand, although silicon nitride sintered bodies have excellent properties,
Its properties tend to deteriorate significantly at high temperatures exceeding 200°C. This is because the sintered body obtained by the method described above is composed of silicon nitride crystal grains and a grain boundary phase, and a low melting point glass phase consisting of sintering aids and impurities is generated in this grain boundary phase. It is believed that.

そこで、従来から低融点のガラスの生成を促進し焼結体
の高温強度を劣化させる要因の1つに窒化珪素原料粉末
中の不純物酸素の存在が挙げられており、この不純物酸
素を除去しようとする試みがなされている。具体的には
、焼結にあたり成形体を窒化珪素や窒化硼素、窒化アル
ミニウム粉末中に埋めて焼成し、不純物酸素を成形体よ
り抽出し前記埋め粉によって酸素を固定化することなど
が提案されている。また、焼結体中における全酸素量か
ら焼結助剤として混入する酸素を差し引いて求められる
不純物酸素量を特定の範囲に規定することも提案されて
いる。
Therefore, the presence of impurity oxygen in silicon nitride raw material powder has been cited as one of the factors that promotes the formation of low-melting point glass and deteriorates the high-temperature strength of sintered bodies, and attempts have been made to remove this impurity oxygen. Attempts are being made to do so. Specifically, it has been proposed that during sintering, the compact is buried in silicon nitride, boron nitride, or aluminum nitride powder and fired, the impurity oxygen is extracted from the compact, and the oxygen is fixed by the filling powder. There is. It has also been proposed to define the amount of impurity oxygen, which is determined by subtracting the amount of oxygen mixed as a sintering aid, from the total amount of oxygen in the sintered body to a specific range.

(発明が解決しようとする問題点) しかしながら、上記の従来技術において、焼成中に埋め
焼き焼成する方法では現実的に高温強度を向上できるほ
どの不純物酸素除去ができず、逆に焼結体の表面に荒れ
が生じるために焼結体の表面を研磨しなければならない
という問題があり、また、成形体あるいは焼結体の全不
純物酸素量を制御する方法では、焼結体の特性が必ずし
も上記の方法によって算出される不純物酸素量によって
決まらず、特性が不安定であった。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional technology, the method of filling the sintered body during firing cannot remove the impurity oxygen to the extent that the high-temperature strength can actually be improved; There is a problem in that the surface of the sintered body must be polished because the surface becomes rough, and the method of controlling the total amount of impurity oxygen in the compact or sintered body does not necessarily have the characteristics of the sintered body as described above. The characteristics were unstable because they were not determined by the amount of impurity oxygen calculated by the method.

(問題点を解決するための手段) そこで本発明者等は、不純物酸素量と高温特性との因果
関係について詳細に検討を行った。一般に、イミド分解
法、シリカ還元法あるいは気相法等により製造される窒
化珪素原料粉末は、いずれの製法においても不純物酸素
が少なくとも1重量%程度含有されているが、この不純
物酸素は、窒化珪素粒子の内部に存在する内部酸素と、
粒子表面に存在する表面酸素に大別でき、通常粉末内部
には0.1〜3重景%程度の不純物酸素が含まれている
。本発明者等の知見によれば、このような原料粉末にお
いて、焼結体の高温特性に対して大きく寄与するのは表
面部に存在する不純物酸素であると考えられ、この表面
酸素を1.5重量%以下に設定することにより優れた特
性を有する窒化珪素質焼結体を安定して製造できること
を見出し、本発明に至った。
(Means for Solving the Problems) Therefore, the present inventors conducted a detailed study on the causal relationship between the amount of impurity oxygen and high-temperature characteristics. In general, silicon nitride raw material powder produced by imide decomposition method, silica reduction method, gas phase method, etc. contains at least 1% by weight of impurity oxygen regardless of the production method. internal oxygen present inside the particles;
Oxygen can be broadly divided into surface oxygen present on the particle surface, and impurity oxygen usually contains about 0.1 to 3% of impurity inside the powder. According to the knowledge of the present inventors, in such a raw material powder, it is thought that impurity oxygen present in the surface portion greatly contributes to the high temperature characteristics of the sintered body, and this surface oxygen is reduced by 1. It was discovered that by setting the content to 5% by weight or less, a silicon nitride sintered body having excellent properties could be stably produced, and the present invention was achieved.

即ち、本発明は、窒化珪素粉末と、周期律表第IIIa
族元素酸化物粉末を含有する成形体あるいは仮焼体を1
600〜2000℃の非酸化性雰囲気中で焼成するに際
して、前記成形体あるいは仮焼体中の窒化珪素粉末の表
面部に存在する酸素量を1.5重量%以下、全不純物酸
素量を0.1〜3重量%に制御したことを特徴とするも
のであるC以下、本発明を詳述する。
That is, the present invention provides silicon nitride powder and silicon nitride powder
1 molded body or calcined body containing group element oxide powder
When firing in a non-oxidizing atmosphere at 600 to 2000°C, the amount of oxygen present on the surface of the silicon nitride powder in the molded body or calcined body is 1.5% by weight or less, and the total amount of impurity oxygen is 0.5% by weight. Below, the present invention will be described in detail.

本発明の製造方法によれば、まず原料粉末として、窒化
珪素粉末、および焼結助剤として少なくとも周期律表第
IIIa族元素酸化物粉末を用いる。
According to the manufacturing method of the present invention, first, silicon nitride powder is used as a raw material powder, and at least an oxide powder of a group IIIa element of the periodic table is used as a sintering aid.

窒化珪素粉末は平均粒径が0.1〜1.0μmのα型、
β型のいずれでも使用できる。またこの窒化珪素粉末に
は不純物酸素が1重量%以上の割合で不可避的に含有さ
れている。
Silicon nitride powder is α type with an average particle size of 0.1 to 1.0 μm,
Either β type can be used. Further, this silicon nitride powder inevitably contains impurity oxygen in a proportion of 1% by weight or more.

一方、周期律表第IIIa族元素酸化物としては、Y2
O1、ErzOz 、YbzOz 、Dyz03、HO
z03等が挙げられ、平均粒径が0.1〜3μ論のもの
が好適に使用される。
On the other hand, Y2
O1, ErzOz, YbzOz, Dyz03, HO
z03 and the like, and those having an average particle size of 0.1 to 3 μm are preferably used.

次に、上記原料粉末は所定の割合で混合された後に公知
の成形手段、例えばプレス成形、押出し成形、射出成形
、鋳込み成形、冷間静水圧成形等により所望の形状に成
形する。
Next, the raw material powders are mixed in a predetermined ratio and then molded into a desired shape by known molding means such as press molding, extrusion molding, injection molding, cast molding, cold isostatic pressing, etc.

本発明によれば、成形体あるいはその仮焼体を構成する
窒化珪素粉末における表面不純物酸素量を1.5重量%
以下に設定することが重要である。
According to the present invention, the amount of surface impurity oxygen in the silicon nitride powder constituting the molded body or its calcined body is 1.5% by weight.
It is important to set the following.

即ち、表面の酸素量が1.5重量%を越えると最終焼結
体中の粒界においてこの酸素が残存し低融点ガラス相を
形成することに起因して高温強度が低下する。この表面
の酸素量は、後述する各種の方法によって制御すること
ができるが、この表面酸素量が完全になくなると、最終
焼結体中にメリライト等の結晶が析出しやすくなるが、
この結晶は高温強度に優れるものの耐酸化性が劣る。よ
って望ましくは表面酸素量を0.1〜1.2重量%に設
定する。一方、表面酸素量を含む全不純物酸素量の高温
強度に影響を及ぼすもので、その量は0.1〜3重量%
であることが必要で、これは全不純物酸素量が3重量%
を越えると高温強度が低下するためである。なお、この
全不純物酸素量は0.1重量%未満にするのはほとんど
困難である。望ましくは0.1〜2重量%がよい。
That is, when the amount of oxygen on the surface exceeds 1.5% by weight, this oxygen remains at the grain boundaries in the final sintered body and forms a low melting point glass phase, resulting in a decrease in high temperature strength. The amount of oxygen on this surface can be controlled by various methods described below, but if this amount of oxygen on the surface is completely eliminated, crystals such as melilite will easily precipitate in the final sintered body.
Although this crystal has excellent high-temperature strength, it has poor oxidation resistance. Therefore, the amount of surface oxygen is desirably set to 0.1 to 1.2% by weight. On the other hand, the total amount of impurity oxygen including surface oxygen affects the high temperature strength, and the amount is 0.1 to 3% by weight.
It is necessary that the total impurity oxygen content is 3% by weight.
This is because the high-temperature strength decreases when the temperature exceeds . Note that it is almost difficult to reduce the total amount of impurity oxygen to less than 0.1% by weight. It is preferably 0.1 to 2% by weight.

このような成形体を作成する方法としては、出発原料と
して各不純物酸素量が上記の範囲を満足する窒化珪素原
料粉末を用いることがよいが、不純物酸素量を多量に含
む低純度の窒化珪素粉末であっても、例えば原料粉末を
炭素とともに熱処理して粉末表面の不純物酸素量を除去
するか、または原料粉末を1200〜1600℃の窒素
雰囲気中で熱処理し酸素を窒素置換することにより低減
することもできる。
As a method for producing such a molded body, it is preferable to use a silicon nitride raw material powder whose amount of each impurity oxygen satisfies the above range as a starting material, but low-purity silicon nitride powder containing a large amount of impurity oxygen However, it can be reduced by, for example, heat-treating the raw material powder with carbon to remove the impurity oxygen content on the powder surface, or heat-treating the raw material powder in a nitrogen atmosphere at 1200 to 1600°C to replace oxygen with nitrogen. You can also do it.

しかし、原料粉末の段階で不純物酸素量を制御しても、
例えば他の助剤等との混合工程等や空気中の水分により
原料の表面に酸素が吸着されてしまう。よって、望まし
くは成形体を焼成する前の段階で1200〜1600℃
の窒素雰囲気中で熱処理し不純物酸素を窒素置換し、表
面酸素量を前述の範囲に調整するのがよい。
However, even if the amount of impurity oxygen is controlled at the raw material powder stage,
For example, oxygen is adsorbed on the surface of the raw material due to the mixing process with other auxiliary agents or the like or due to moisture in the air. Therefore, it is preferable to heat the molded product at a temperature of 1200 to 1600°C before firing it.
It is preferable to perform a heat treatment in a nitrogen atmosphere to replace impurity oxygen with nitrogen, and adjust the amount of surface oxygen to the above-mentioned range.

このようにして不純物酸素量が制御された成形体あるい
は仮焼体を1700〜2000℃の窒素を含む非酸化性
雰囲気中で0.5〜10時間焼成する。焼成手段として
は常圧焼成、ホットプレス焼成、窒素ガス加圧焼成、熱
間静水圧焼成(HIP法)等が採用される。
The molded body or calcined body in which the amount of impurity oxygen is controlled in this manner is fired for 0.5 to 10 hours in a non-oxidizing atmosphere containing nitrogen at 1700 to 2000°C. As the firing means, normal pressure firing, hot press firing, nitrogen gas pressure firing, hot isostatic pressure firing (HIP method), etc. are employed.

二のようにして得られる焼結体は、窒化珪素結晶粒子と
粒界相から構成されるが、この時、粒界相がガラス質か
らなるか、またはガラス質を含有する場合には、焼結体
を非酸化性雰囲気中で1300〜1900℃の温度で熱
処理することにより粒界の結晶化を図ることができる。
The sintered body obtained in step 2 is composed of silicon nitride crystal grains and a grain boundary phase. At this time, if the grain boundary phase is made of glass or contains glass, Crystallization of grain boundaries can be achieved by heat treating the compact at a temperature of 1300 to 1900° C. in a non-oxidizing atmosphere.

また本発明によれば、焼結助剤として前述した周期律表
第IIIa族元素酸化物の他にAhO+ 、MgO1S
rO、WC,WOz等も用いられるが、焼結体の高温強
度の観点からAh03やMgOは焼結体の粒界に低融点
のガラス相を生成する場合があることからその量は0.
2重量%以下に抑えることが望ましい。
Further, according to the present invention, in addition to the oxide of the Group IIIa element of the periodic table as a sintering aid, AhO+, MgO1S
rO, WC, WOz, etc. can also be used, but from the viewpoint of high temperature strength of the sintered body, the amount of Ah03 and MgO may be 0.00% because they may form a glass phase with a low melting point at the grain boundaries of the sintered body.
It is desirable to suppress it to 2% by weight or less.

なお、その他の一〇やWCh等は2重量%以下の割合で
添加しても特性に大きく影響を及ぼさない。
In addition, even if other elements such as 10 and WCh are added in a proportion of 2% by weight or less, the properties are not significantly affected.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

(実施例) 原料粉末として、平均粒径が0.5μm、不純物酸素量
が異なる数種の窒化珪素原料粉末および平均粒径が1.
0μmの所望の周期律表第IIIa族元素酸化物を用い
てこれらを第1表に示す割合で混合した 次に、この混
合粉末をプレス成形し、成形体を作成した。
(Example) As raw material powder, several types of silicon nitride raw material powders with an average particle size of 0.5 μm and different amounts of impurity oxygen and an average particle size of 1.5 μm were used.
Using desired oxides of Group IIIa elements of the periodic table having a diameter of 0 μm, these were mixed in the proportions shown in Table 1. Next, this mixed powder was press-molded to create a molded body.

この成形体を1600℃の窒素雰囲気中で熱処理し、表
面酸素を窒素置換し、この処理時間を制御することによ
り表面酸素量の異なる数種の成形体を作成した。この時
、各成形体における表面酸素量を形態別酸素分析装置に
て測定した。
This molded body was heat-treated in a nitrogen atmosphere at 1600° C. to replace surface oxygen with nitrogen, and by controlling the treatment time, several types of molded bodies with different amounts of surface oxygen were created. At this time, the amount of surface oxygen in each molded article was measured using a form-based oxygen analyzer.

次に、この成形体を窒素ガス圧9atmの雰囲気中で2
000℃で2時間焼成した。
Next, this molded body was placed in an atmosphere of nitrogen gas pressure of 9 atm for 2 hours.
It was baked at 000°C for 2 hours.

得られた焼結体に対してJISR1601に基づき、室
温および1400℃における抗折強度を測定した。
The bending strength of the obtained sintered body at room temperature and 1400° C. was measured based on JISR1601.

結果を第1表に示した。The results are shown in Table 1.

一以下余白) 第1表 注)*印は本発明の範囲外の試料を示す。(Less than one margin) Table 1 Note: * indicates samples outside the scope of the present invention.

第1表によれば、成形体中の窒化珪素における表面酸素
量が1.5重量%を越える試料Nα1及び10では高温
強度が不十分であり、また全不純物酸素量が3重量%を
越える試料Nα18,19でも同様に強度が大きく劣化
した。
According to Table 1, samples Nα1 and 10 in which the amount of surface oxygen in the silicon nitride in the compact exceeds 1.5% by weight have insufficient high temperature strength, and the samples in which the amount of total impurity oxygen exceeds 3% by weight Similarly, the strength of Nα18 and Nα19 also significantly deteriorated.

これに対して、本発明の試料はいずれも高い強度を示し
、室温強度950MPa以上、1400℃強度600M
Pa以上が達成された。
On the other hand, all the samples of the present invention showed high strength, with a room temperature strength of 950 MPa or more and a 1400°C strength of 600 Mpa.
Pa or higher was achieved.

(発明の効果) 以上詳述した通り、本発明の製造方法によれば、焼成前
の成形体あるいは仮焼体における窒化珪素粉末表面の酸
素量を制御することにより、高温強度に優れた焼結体を
安定して作製することができる。
(Effects of the Invention) As detailed above, according to the manufacturing method of the present invention, by controlling the amount of oxygen on the surface of the silicon nitride powder in the compact or calcined body before firing, the sintered product has excellent high-temperature strength. The body can be stably produced.

よって、ガスタービンやターボロータ等の熱機関用材料
をはじめとする各種の高温構造材料としての用途を拡大
することができる。
Therefore, it is possible to expand its use as various high-temperature structural materials including materials for heat engines such as gas turbines and turbo rotors.

Claims (1)

【特許請求の範囲】[Claims]  窒化珪素粉末と、周期律表第IIIa族元素酸化物粉末
を含有する成形体あるいはその仮焼体を1600〜20
00℃の非酸化性雰囲気中で焼成する窒化珪素質焼結体
の製造方法において、前記成形体あるいは仮焼体中の窒
化珪素粉末の粒子表面部に存在する不純物酸素量が1.
5重量%以下で、且つ全不純物酸素量が0.1〜3重量
%であることを特徴とする窒化珪素質焼結体の製造方法
A molded body or a calcined body containing silicon nitride powder and an oxide powder of a Group IIIa element of the periodic table is heated to 1600 to 20
In the method for manufacturing a silicon nitride sintered body which is fired in a non-oxidizing atmosphere at 00°C, the amount of impurity oxygen present on the particle surface of the silicon nitride powder in the compact or calcined body is 1.
A method for producing a silicon nitride sintered body, characterized in that the amount of impurity oxygen is 5% by weight or less and the total amount of impurity oxygen is 0.1 to 3% by weight.
JP2280052A 1990-10-17 1990-10-17 Production of silicon nitride sintered compact Pending JPH04154668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280052A JPH04154668A (en) 1990-10-17 1990-10-17 Production of silicon nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280052A JPH04154668A (en) 1990-10-17 1990-10-17 Production of silicon nitride sintered compact

Publications (1)

Publication Number Publication Date
JPH04154668A true JPH04154668A (en) 1992-05-27

Family

ID=17619634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280052A Pending JPH04154668A (en) 1990-10-17 1990-10-17 Production of silicon nitride sintered compact

Country Status (1)

Country Link
JP (1) JPH04154668A (en)

Similar Documents

Publication Publication Date Title
JPH04154668A (en) Production of silicon nitride sintered compact
JP2742619B2 (en) Silicon nitride sintered body
JPH07330436A (en) Silicon nitride heat resistant member and its production
JPH0459659A (en) Production of sintered silicon nitride
JP2737323B2 (en) Method for producing silicon nitride based sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH05139840A (en) Siliceous nitride sintered compact and its production
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JPH035371A (en) Production of si3n4 sintered compact
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP2811493B2 (en) Silicon nitride sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP2783702B2 (en) Silicon nitride sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP2746759B2 (en) Silicon nitride sintered body
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JPH04243972A (en) Sintered substance of silicon nitride