JPH04154662A - Production of carbon fiber reinforced carbon composition material - Google Patents

Production of carbon fiber reinforced carbon composition material

Info

Publication number
JPH04154662A
JPH04154662A JP2276689A JP27668990A JPH04154662A JP H04154662 A JPH04154662 A JP H04154662A JP 2276689 A JP2276689 A JP 2276689A JP 27668990 A JP27668990 A JP 27668990A JP H04154662 A JPH04154662 A JP H04154662A
Authority
JP
Japan
Prior art keywords
resin
carbon fiber
carrier
carbon
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2276689A
Other languages
Japanese (ja)
Inventor
Masatake Sakagami
正剛 阪上
Yosuke Takemura
洋輔 竹村
Tomoyuki Wakamatsu
智之 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2276689A priority Critical patent/JPH04154662A/en
Publication of JPH04154662A publication Critical patent/JPH04154662A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve accuracy of outer form during burning by adsorbing a carrier capable of ionizing in a liquid on carbonaceous fine powder to give an adsorbed material and coating a carbon fiber substrate with the adsorbed material in a dispersion of the adsorbed material by electrodeposition. CONSTITUTION:A carrier capable of ionizing in a liquid is adsorbed on carbonaceous fine powder, dispersed into a liquid, and to the liquid, DC voltage is impressed between a carbon fiber substrate and an opposing electrode. The carbonaceous powder and the carrier are precipitated on the carbon fiber substrate to give a coated material, which is impregnated with a resin, heated, molded, heat-treated and carbonized and burnt. A ribbonlike material prepared by bundling short fibers of carbon, woven fabric, paper and nonwoven fabric can be used as the carbon fiber substrate. A carrier which is obtained by modifying a polyacrylonitrile resin-based derivative or a thermosetting resin derivative and making the derivative into a resin to be subjected to electrodeposition is preferable as the carrier. A thermosetting resin is preferable as the resin to be impregnated.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は炭素繊維強化炭素複合材料の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for producing carbon fiber reinforced carbon composite materials.

「従来の技術」 従来から炭素繊維強化炭素複合材料(以下CFRCと記
載する)は高温強度、化学的安定性(酸化性を除く)等
の特徴があることは知られており、その製造は炭素繊維
を材料とした織布、紐、ペーパー、マット、不織布等の
基材の炭素繊維にCVD法或いは液相含浸法で炭素を付
着させたのち、加熱焼成する方法によっている。
``Prior art'' It has been known that carbon fiber reinforced carbon composite materials (hereinafter referred to as CFRC) have characteristics such as high temperature strength and chemical stability (excluding oxidation), and their production is based on carbon fibers. Carbon is attached to carbon fibers of base materials such as woven fabrics, strings, papers, mats, and nonwoven fabrics made of fibers by CVD or liquid phase impregnation, and then heated and fired.

CVD法は高温の炭素繊維基材表面に減圧下で炭化水素
ガスを接触させて分解し、炭素原子を繊維基材上に沈積
させる方法であり、液相含浸法は炭素繊維基材に液状レ
ジン或いは溶融ピッチ等のマトリックス材料を含浸させ
て炭化焼成する方法である。液相含浸法の場合(こは焼
成の際にマトリックス材料の揮発成分が抜けることによ
り微細な空孔を生ずるので、材料強度を上げるためには
含浸焼成を繰り返す必要がある。
The CVD method is a method in which hydrocarbon gas is brought into contact with the surface of a high-temperature carbon fiber base material under reduced pressure to decompose it, and carbon atoms are deposited on the fiber base material.The liquid phase impregnation method is a method in which a liquid resin is applied to the carbon fiber base material. Alternatively, there is a method in which a matrix material such as molten pitch is impregnated and then carbonized and fired. In the case of the liquid phase impregnation method (in this case, the volatile components of the matrix material escape during firing, creating fine pores, so it is necessary to repeat the impregnation firing to increase the material strength).

いずれにしてもCVD法、液相含浸法のどの方法も複雑
、長期の工程を要し、このことがCFRCがその長所に
もかかわらず高価となって実用化の分野が制限されてい
る。
In any case, both the CVD method and the liquid phase impregnation method require complicated and long-term processes, which makes CFRC expensive despite its advantages, and limits the field of practical application.

最近繊維強化を行わない通常の炭素材料においては、液
状マトリックス材料を用いずに炭素質粉末を直接、炭化
焼成することにより簡単に炭素材料を製造することが行
われるようになった。この方法では既(こ熱処理を行っ
たマトリックス材料を用いるので、マトリックスの揮発
分が少なく短時間の焼成で高密度の炭素材料を得ること
ができる。
Recently, in the case of ordinary carbon materials that are not reinforced with fibers, it has become possible to easily manufacture carbon materials by directly carbonizing and firing carbonaceous powder without using a liquid matrix material. Since this method uses a matrix material that has already undergone heat treatment, it is possible to obtain a high-density carbon material with less volatile content in the matrix and in a short firing time.

それ故このような炭素質の微粉末を炭素繊維基材に混入
して焼成することによって、だだち(こ簡便なCFRC
材料を製造できると誰しも期待するところであるが、実
際は炭素繊維基材に炭素質粉末を均一をこ混合すること
は非常に困難であり、結局良好な性質のCFRCを造る
ことはできない。
Therefore, by mixing such carbonaceous fine powder into a carbon fiber base material and firing it, it is possible to create Dadachi (a simple CFRC).
Although everyone hopes that the material can be manufactured, in reality it is extremely difficult to uniformly mix carbonaceous powder into a carbon fiber base material, and in the end it is not possible to manufacture CFRC with good properties.

このような状況に対し本出願人は先に特開昭60−”5
4974号、及び特開昭61−21973号として公開
された方法を発明し出願した。前者は従来のCVD法等
の代わりに炭素質粉末にイオン化可能な有機物の担体を
付着して液体中に分散し、該液体中に浸漬した炭素繊維
基材と対抗電極間に直流電圧を印加して電気泳動沈積(
電着)法により炭素繊維基材上に炭素質微粉末を沈積さ
せ、得た炭素繊維基材−炭素粉末混合体を加熱して担体
を分解もしくは揮発させたのち焼成する方法である。ま
た後者は前記の方法において担体として熱硬化性樹脂を
用いることを特徴とするものである。
In response to this situation, the present applicant has previously applied
No. 4974 and Japanese Patent Application Laid-Open No. 61-21973. In the former method, instead of the conventional CVD method, an ionizable organic carrier is attached to carbonaceous powder and dispersed in a liquid, and a DC voltage is applied between the carbon fiber base material immersed in the liquid and a counter electrode. electrophoretic deposition (
In this method, carbonaceous fine powder is deposited on a carbon fiber base material by an electrodeposition method, the obtained carbon fiber base material-carbon powder mixture is heated to decompose or volatilize the carrier, and then fired. The latter method is characterized in that a thermosetting resin is used as a carrier in the above method.

これらの発明においてCFRCを製造するには電気泳動
沈積法により製造された炭素繊維基材−炭素粉末混合体
を乾燥後に積層、フィラメントワインデインクー等して
成形しつつ低温で加熱(熟成形)したのち、さらに加熱
して担体を硬化、分解、揮発する熱処理を行い、さらに
加圧、高温加熱焼成(加熱焼成)してCFRC成形体と
する。
In order to manufacture CFRC in these inventions, a carbon fiber base material-carbon powder mixture manufactured by an electrophoretic deposition method is dried, laminated, and molded by filament winding, etc., while being heated at a low temperature (ripening form). Thereafter, heat treatment is performed to harden, decompose, and volatilize the carrier by further heating, and further pressurization and high-temperature heating firing (heating firing) are performed to obtain a CFRC molded body.

「発明が解決しようとする課題」 ところが前記の方法により製造された炭素繊維基材−炭
素粉末混合体は炭素繊維基材上lこ炭素粉末と樹脂が均
一に分散しているものであり、当然のこととして炭素繊
維と炭素繊維の層間には炭素粉末と樹脂の混合体が存在
する。熱成形の後に熱処理を行って、樹脂を硬化、ある
いは不融化しているが炭素粉末をあまり不融化しない条
件で熱処理するため(こ、加圧焼成時に炭素繊維層間に
ズレが生ずることがあるという課題がある。
``Problems to be Solved by the Invention'' However, the carbon fiber base material-carbon powder mixture produced by the above method has carbon powder and resin uniformly dispersed on the carbon fiber base material, and naturally As such, a mixture of carbon powder and resin exists between the layers of carbon fibers. Although heat treatment is performed after thermoforming to harden or make the resin infusible, the carbon powder is heat treated under conditions that do not make it very infusible (this may cause misalignment between the carbon fiber layers during pressure firing). There are challenges.

「課題を解決するための手段」 この発明は炭素繊維強化炭素複合材料を製造する方法(
こおいて、炭素質の微粉末に液体中でイオン化し得る担
体を吸着させたのち、液体中に分散させ、その液中で炭
素繊維基材と対向電極の間に直流電圧を印加して炭素質
微粉末および担体を基材上に析出させて被覆物を得、こ
れに樹脂を含浸したのち熱成形、熱処理及び炭化焼成を
行って炭素繊維強化炭素複合材料とする方法である。
"Means for Solving the Problems" This invention provides a method for manufacturing a carbon fiber reinforced carbon composite material (
In this process, a carrier that can be ionized in a liquid is adsorbed onto fine carbonaceous powder, and then dispersed in the liquid. In this method, a coating is obtained by depositing a fine powder and a carrier on a base material, which is impregnated with a resin, and then subjected to thermoforming, heat treatment, and carbonization firing to obtain a carbon fiber-reinforced carbon composite material.

この場合に炭素繊維基材としては、炭素繊維の短繊維を
束ねた紐状のもの、あるいは織布、ペーパー、不織布等
を用いることができる。担体としてはアクリロニトリル
樹脂誘導体、その他の熱硬化性樹脂誘導体を改質して電
着可能な樹脂としたものがよい。
In this case, as the carbon fiber base material, a string-like material made by bundling short carbon fibers, woven fabric, paper, non-woven fabric, etc. can be used. As the carrier, it is preferable to use an acrylonitrile resin derivative or another thermosetting resin derivative modified to form a resin that can be electrodeposited.

含浸する樹脂としては、熱硬化性樹脂が良く、例えばメ
ラミン樹脂、エポキシ樹脂、フラン樹脂、フェノール樹
脂、ポリイミド樹脂、ポリアミドイミド樹脂、ビスマレ
イミド樹脂等が好適であり、これらの樹脂を混合して用
いることもできる。
The resin to be impregnated is preferably a thermosetting resin, such as melamine resin, epoxy resin, furan resin, phenol resin, polyimide resin, polyamideimide resin, bismaleimide resin, etc., and a mixture of these resins is used. You can also do that.

「作用」 本発明によると樹脂リンチな層が炭素繊維同士の層間に
存在することになり、前記の熱処理によって眉間の結合
を強固にすることができ、その後の加圧焼成時の層間の
ズレを防止することができる。
"Function" According to the present invention, a resin-rich layer exists between the layers of carbon fibers, and the above-mentioned heat treatment can strengthen the bond between the eyebrows and prevent misalignment between the layers during subsequent pressure firing. It can be prevented.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

「実施例」 実施例1 (1)自己焼結性炭素粉末をポリアクリロニトリル系電
着用樹脂および溶剤とよく混練りした後、水に分散させ
、いわゆるアニオン系塗料分散状態とした。この状態で
炭素質粉末と樹脂の比率を重量比で3:2とした。
Examples Example 1 (1) Self-sintering carbon powder was thoroughly kneaded with a polyacrylonitrile electrodepositing resin and a solvent, and then dispersed in water to form a so-called anionic paint dispersion state. In this state, the ratio of carbonaceous powder to resin was set to 3:2 by weight.

(2) P A N系炭素繊維織布を用意し、これを陽
極とし対向電極としてステンレス鋼板を用い、溶液をよ
く撹拌しながら約50Vの電圧を印加して炭素繊維基材
と被覆物の重量比が10:12となるように電着を行っ
た。
(2) Prepare a PAN-based carbon fiber woven fabric, use it as an anode, use a stainless steel plate as a counter electrode, and apply a voltage of about 50 V while stirring the solution well to determine the weight of the carbon fiber base material and coating. Electrodeposition was performed at a ratio of 10:12.

(3)得た電着体にフェノール樹脂を含浸した、電着体
と樹脂の重量比が10:2となるようにした。
(3) The obtained electrodeposited body was impregnated with a phenol resin so that the weight ratio of the electrodeposited body and the resin was 10:2.

(4)この電着体を200枚積層して、温度150°C
1面圧カフ5kg/cAで50分間、加熱加圧して熱成
形した。
(4) Laminate 200 sheets of this electrodeposited body at a temperature of 150°C.
Thermoforming was carried out by heating and pressing at a single surface pressure cuff of 5 kg/cA for 50 minutes.

(5)成形体の厚みを保持しなから200°Cで9時間
加熱する熱処理を行った。
(5) Heat treatment was performed at 200°C for 9 hours while maintaining the thickness of the molded body.

(6)この後、不活性雰囲気中で600kq/dの面圧
下で30 ’C/hrの昇温速度で1000°Cまで昇
温し、さらに2000°Cまで100°C/hrで昇温
して炭化焼成して炭素繊維強化炭素複合材料を得た。
(6) After this, the temperature was raised to 1000°C at a heating rate of 30'C/hr under a surface pressure of 600kq/d in an inert atmosphere, and then further raised to 2000°C at a rate of 100°C/hr. A carbon fiber-reinforced carbon composite material was obtained by carbonization and firing.

得られた炭素繊維強化炭素複合材料は良好な性質を示し
、炭素繊維基材層間のズレは生じていなかった。
The obtained carbon fiber-reinforced carbon composite material exhibited good properties, with no misalignment between the carbon fiber base material layers.

実施例2 (1)自己焼結性炭素粉末をポリアクリロニトリル系電
着用樹脂および溶剤とよく混練りした後、水に分散させ
、いわゆるアニオン系塗料分散状態とした。この状態で
炭素質粉末と樹脂の比率を重量比で3=2とした。
Example 2 (1) Self-sintering carbon powder was thoroughly kneaded with a polyacrylonitrile electrodepositing resin and a solvent, and then dispersed in water to form a so-called anionic paint dispersion state. In this state, the weight ratio of carbonaceous powder to resin was set to 3=2.

(2) P A N系炭素繊維織布を用意し、これを陽
極とし対向電極としてステンレス鋼板を用い、溶液をよ
く撹拌しながら約50■の電圧を印加して炭素繊維基材
と被覆物の重量比が10:12となるように電着を行っ
た。
(2) Prepare a PAN-based carbon fiber woven fabric, use it as an anode, use a stainless steel plate as a counter electrode, and apply a voltage of about 50μ while stirring the solution thoroughly to separate the carbon fiber base material and coating. Electrodeposition was performed so that the weight ratio was 10:12.

(3)得た電着体にメラミン樹脂を含浸した、電着体と
樹脂の重量比が10:3となるようにした。
(3) The obtained electrodeposited body was impregnated with melamine resin so that the weight ratio of the electrodeposited body and the resin was 10:3.

(4)この電着体を200枚積層して、温度140°C
1面圧カフ5kq/c!で50分間、加熱加圧して熱成
形した。
(4) Laminate 200 sheets of this electrodeposited body at a temperature of 140°C.
1 surface pressure cuff 5kq/c! Thermoforming was carried out by heating and pressing for 50 minutes.

(5)成形体の厚みを保持しながら180°Cで12時
間加熱する熱処理を行った。
(5) Heat treatment was performed at 180°C for 12 hours while maintaining the thickness of the molded body.

(6)この後、不活性雰囲気中で600kg/cAの面
圧下で30°C/hrの昇温速度で1000°Cまで昇
温し、さらに2000°Cまで100°C/h rで昇
温して炭化焼成して炭素繊維強化炭素複合材料を得tこ
(6) After this, the temperature was raised to 1000°C at a heating rate of 30°C/hr under a surface pressure of 600 kg/cA in an inert atmosphere, and then further raised to 2000°C at a rate of 100°C/hr. Then, carbonization and firing are performed to obtain a carbon fiber reinforced carbon composite material.

得られた炭素繊維強化炭素覆合材料も実施例1と同様(
こ、炭素繊維基材層間のズレは生じていなかった。
The obtained carbon fiber reinforced carbon covering material was also the same as in Example 1 (
There was no misalignment between the carbon fiber base material layers.

実施例3 比較のため次の実験を行った。Example 3 The following experiment was conducted for comparison.

(1)自己焼結性炭素粉末をポリアクリロニトリル系電
着用樹脂および溶剤とよく混練りした後、水に分散させ
、いわゆるアニオン系塗料分散状態とした。この状態で
炭素質粉末と樹脂の比率を重量比で1:1とした。
(1) Self-sintering carbon powder was thoroughly kneaded with a polyacrylonitrile electrodeposition resin and a solvent, and then dispersed in water to form a so-called anionic paint dispersion state. In this state, the ratio of carbonaceous powder to resin was set to 1:1 by weight.

(2) P A N系炭素繊維織布を用意し、これを陽
極とし対向電極としてステンレス鋼板を用い、溶液をよ
く撹拌しながら約50vの電圧を印加して炭素繊維基材
と被覆物の重量比が10:12となるように電着を行っ
た。
(2) Prepare a PAN-based carbon fiber woven fabric, use it as an anode, use a stainless steel plate as a counter electrode, and apply a voltage of about 50 V while stirring the solution well to determine the weight of the carbon fiber base material and coating. Electrodeposition was performed at a ratio of 10:12.

(3)この電着体を200枚積層して、温度250°C
1面圧カフ5に9/Cdで50分間、加熱加圧して熱成
形した。
(3) Laminate 200 sheets of this electrodeposited body at a temperature of 250°C.
The cuff 5 was heated and pressed at 9/Cd for 50 minutes to thermoform.

(4)成形体の厚みを保持しなから350°Cで9時間
加熱する熱処理を行った。
(4) Heat treatment was performed at 350°C for 9 hours while maintaining the thickness of the molded body.

(5)この後、不活性雰囲気中で600 kg/clの
面圧下で30°C/hrの昇温速度で1000°Cまで
昇温し、さらに2000°Cまで100°C/h rで
昇温して炭化焼成して炭素繊維強化炭素複合材料を得た
(5) After this, the temperature was raised to 1000°C at a heating rate of 30°C/hr under a surface pressure of 600 kg/cl in an inert atmosphere, and then further raised to 2000°C at a rate of 100°C/hr. The mixture was heated and carbonized to obtain a carbon fiber-reinforced carbon composite material.

得られた炭素繊維強化炭素複合材料では外形で約5%の
ズレがあった。
The obtained carbon fiber-reinforced carbon composite material had a deviation of about 5% in outer shape.

「発明の効果」 以上に詳しく説明したように本発明の方法(こよれば、
単に電着した基材に樹脂を含浸するだけで、焼成時の外
形精度の高い炭素繊維強化炭素複合材料を得られるもの
であり有効なものである。
"Effects of the Invention" As explained in detail above, the method of the present invention (accordingly,
This method is effective because a carbon fiber-reinforced carbon composite material with high external shape accuracy during firing can be obtained by simply impregnating an electrodeposited base material with a resin.

代理人  弁理士 1)中 理 夫Agent Patent attorney 1) Rio Naka

Claims (5)

【特許請求の範囲】[Claims] 1.炭素質の微粉末に液体中でイオン化し得る担体を吸
着させたのち、液体中に分散させ、該液体中で炭素繊維
基材と対向電極との間に直流電圧を印加して炭素質粉末
および担体を炭素繊維基材上に析出させて被覆物を得、
これに樹脂を含浸した後、加熱成形、熱処理および炭化
焼成することを特徴とする炭素繊維強化炭素複合材料の
製造方法。
1. After a carrier that can be ionized in a liquid is adsorbed onto a fine carbonaceous powder, the carrier is dispersed in a liquid, and a DC voltage is applied between a carbon fiber base material and a counter electrode in the liquid to form a carbonaceous powder and a carrier that can be ionized in a liquid. depositing a carrier on a carbon fiber substrate to obtain a coating;
A method for producing a carbon fiber-reinforced carbon composite material, which comprises impregnating the material with a resin, followed by heat molding, heat treatment, and carbonization firing.
2.炭素繊維基材が炭素の短繊維を束ねた紐状のもの、
あるいは織布、ペーパー、不織布の何れかであることを
特徴とする請求項1記載の炭素繊維強化炭素複合材料の
製造方法。
2. String-like carbon fiber base material bundled with short carbon fibers,
The method for producing a carbon fiber-reinforced carbon composite material according to claim 1, wherein the carbon fiber-reinforced carbon composite material is made of any one of woven fabric, paper, and non-woven fabric.
3.担体がポリアクリロニトリル樹脂系誘導体もしくは
熱硬化性樹脂誘導体を改質し、電着可能な樹脂としたも
のであることを特徴とする請求項1記載の炭素繊維強化
炭素複合材料の製造方法。
3. 2. The method for producing a carbon fiber-reinforced carbon composite material according to claim 1, wherein the carrier is a resin that can be electrodeposited by modifying a polyacrylonitrile resin derivative or a thermosetting resin derivative.
4.含浸する樹脂が熱硬化タイプの樹脂であることを特
徴とする請求項1記載の炭素繊維強化炭素複合材料の製
造方法。
4. 2. The method for producing a carbon fiber reinforced carbon composite material according to claim 1, wherein the resin to be impregnated is a thermosetting resin.
5.含浸する樹脂がメラミン樹脂、エポキシ樹脂、フラ
ン樹脂、フェノール樹脂、ポリイミド樹脂、ポリアミド
イミド樹脂、ビスマレイミド樹脂から少なくとも1種類
以上含まれることを特徴とする請求項1記載の炭素繊維
強化炭素複合材料の製造方法。
5. 2. The carbon fiber reinforced carbon composite material according to claim 1, wherein the resin to be impregnated contains at least one of melamine resin, epoxy resin, furan resin, phenol resin, polyimide resin, polyamideimide resin, and bismaleimide resin. Production method.
JP2276689A 1990-10-15 1990-10-15 Production of carbon fiber reinforced carbon composition material Pending JPH04154662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2276689A JPH04154662A (en) 1990-10-15 1990-10-15 Production of carbon fiber reinforced carbon composition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2276689A JPH04154662A (en) 1990-10-15 1990-10-15 Production of carbon fiber reinforced carbon composition material

Publications (1)

Publication Number Publication Date
JPH04154662A true JPH04154662A (en) 1992-05-27

Family

ID=17572954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2276689A Pending JPH04154662A (en) 1990-10-15 1990-10-15 Production of carbon fiber reinforced carbon composition material

Country Status (1)

Country Link
JP (1) JPH04154662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1359132A1 (en) * 2002-04-30 2003-11-05 European Community Composites, applications, and process for manufacturing said composites
DE10151134B4 (en) * 2000-10-17 2012-07-05 Toyota Jidosha K.K. Diffusion layer for a fuel cell and a method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10151134B4 (en) * 2000-10-17 2012-07-05 Toyota Jidosha K.K. Diffusion layer for a fuel cell and a method for producing the same
EP1359132A1 (en) * 2002-04-30 2003-11-05 European Community Composites, applications, and process for manufacturing said composites

Similar Documents

Publication Publication Date Title
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
JPH0210115B2 (en)
JPH03150266A (en) Production of carbon/carbon composite material
JPH04154662A (en) Production of carbon fiber reinforced carbon composition material
JPH0242790B2 (en)
GB2112827A (en) Carbon fiber materials
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JPS62230670A (en) Manufacture of carbon fiber reinforced carbon composite material
JPS6215380A (en) Production of carbon fiber reinforced composite material
JPH02252659A (en) Production of three-dimensional carbon fiber-carbon composite material
JPH04170366A (en) Production of carbon fiber-reinforced carbon composite material
JP3220983B2 (en) Method for producing carbon fiber reinforced carbon material
JPH01145375A (en) Production of carbon fiber-reinforced carbonaceous composite
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP3345437B2 (en) Method for producing carbon fiber reinforced carbon composite
JPS62270463A (en) Manufacture of carbon fiber reinforced carbon composite material
JPS6126563A (en) Manufacture of oxidation-resistant carbon fiber reinforced carbon material
JPH053428B2 (en)
JPH03197360A (en) Production of carbon fiber-reinforced carbon material
JPH03290363A (en) Structural body of high-strength carbon fiber-reinforced carbon composite material provided with rib and production thereof
JPH03197358A (en) Production of carbon fiber-reinforced carbon composite material
JPH0524921A (en) Production of oxidation resistance c/c composite
JPH03250032A (en) Boron carbide-containing carbon fiber-reinforced carbon composite material, its production and hot-pressing material containing the same
JPH0210116B2 (en)
JPH0442857A (en) Preparation of carbon fiber-reinforced composite material