JPS62270463A - Manufacture of carbon fiber reinforced carbon composite material - Google Patents

Manufacture of carbon fiber reinforced carbon composite material

Info

Publication number
JPS62270463A
JPS62270463A JP61111295A JP11129586A JPS62270463A JP S62270463 A JPS62270463 A JP S62270463A JP 61111295 A JP61111295 A JP 61111295A JP 11129586 A JP11129586 A JP 11129586A JP S62270463 A JPS62270463 A JP S62270463A
Authority
JP
Japan
Prior art keywords
carbon fiber
carrier
carbon
powder
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61111295A
Other languages
Japanese (ja)
Inventor
正剛 阪上
岩田 幸一
幸典 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61111295A priority Critical patent/JPS62270463A/en
Publication of JPS62270463A publication Critical patent/JPS62270463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Paints Or Removers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業」二の利用分野〉 この発明は高性能を有する炭素繊維強化炭素複合材料の
製造方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention <Industry> 2. Field of Application This invention relates to a method for manufacturing a carbon fiber reinforced carbon composite material having high performance.

〈従来の技術とその問題点〉 炭素IIi維強化炭素複合材料(以下CFRCという)
は主として気相化学蒸着法、液相含浸法によりfil造
されている。
<Conventional technology and its problems> Carbon IIi fiber-reinforced carbon composite material (hereinafter referred to as CFRC)
Films are mainly manufactured by vapor phase chemical vapor deposition method and liquid phase impregnation method.

CVD法は高温に熱した炭素繊維基材上に減圧下で炭化
水素ガスを接触させ、炭素原子を基材上に沈積させる方
法であり、液相含浸法は炭素繊維基材に液状レジンまた
は溶融ピッチ等の71−リックス材料を含浸させ炭化焼
成する。この時マトリックス材料の揮発成分が抜けるこ
とにより、微細な空孔を生じるため、材料強度を上げる
ためには含浸焼成をくり返す必要がある。
The CVD method is a method in which hydrocarbon gas is brought into contact with a carbon fiber base material heated to a high temperature under reduced pressure to deposit carbon atoms on the base material, and the liquid phase impregnation method is a method in which a carbon fiber base material is heated to a high temperature and is brought into contact with hydrocarbon gas to deposit carbon atoms on the base material. It is impregnated with a 71-lix material such as pitch and then carbonized and fired. At this time, the volatile components of the matrix material escape, creating fine pores, so it is necessary to repeat the impregnation and firing process in order to increase the strength of the material.

CVD法、含浸法いずれにおいても複雑かつ長期の工程
を要し、このことがCFRCの高価格の原因の一つとな
っている。このためCFRCは高温強度、化学的安定性
など、すぐれた材質特性があるにも拘らず、現在実用化
されているのは経済的制約の少ない宇宙航空産業の分野
等に限られている。
Both the CVD method and the impregnation method require complicated and long-term processes, which is one of the reasons for the high price of CFRC. For this reason, although CFRC has excellent material properties such as high-temperature strength and chemical stability, its current practical use is limited to fields such as the aerospace industry, where there are few economic constraints.

一方、最近繊維強化を行なわない通常の炭素材料におい
ては、液状マトリックス材料を用いずに炭素微粉末を直
接、炭化焼成することにより簡単に炭素材料を製造する
ことが行なわれるようになった。
On the other hand, recently, in the case of ordinary carbon materials that are not reinforced with fibers, it has become possible to easily manufacture carbon materials by directly carbonizing and firing fine carbon powder without using a liquid matrix material.

この方法は既に熱処理を行なったマトリックス材料を用
いるために、マトリックスの揮発分が少ないため短時間
の焼成にて高密度の炭素材料を得ることができるという
利点がある。この炭素微粉末を炭素4I維基材に混入し
焼成をすれば、直ちに簡便なるCFRCが製造できるこ
とは誰しも期待するところであるが、実際には炭素1i
1i1Mt基材に炭素粉末を均一に混合することが非常
に困難であり、良好なCFRCを作ることができない。
Since this method uses a matrix material that has already been heat-treated, it has the advantage that a high-density carbon material can be obtained in a short firing time because the volatile content of the matrix is small. Everyone expects that by mixing this fine carbon powder into a carbon 4I fiber base material and firing it, a simple CFRC can be produced immediately, but in reality, carbon 1i
It is very difficult to uniformly mix carbon powder into the 1i1Mt base material, making it impossible to make good CFRC.

このにうな観点から本発明者らは、さきに電気泳動沈積
(電着)を利用して炭素複合材料を製造する方法(特開
昭60−54974号)や、該方法において担体として
熱硬化性樹脂を用いること(特開昭61−21973号
)を提案した。しかしながらこれら上記の方法は炭素1
mN基材に炭素質粉末および担体を析出させる操作を1
回しか行なっていなかった。
From this point of view, the present inventors have previously developed a method for producing carbon composite materials using electrophoretic deposition (electrodeposition) (Japanese Patent Laid-Open No. 60-54974), and a thermosetting material as a carrier in this method. He proposed the use of resin (Japanese Patent Application Laid-Open No. 61-21973). However, these above methods
Step 1: Precipitate carbonaceous powder and carrier on mN base material.
I only did it once.

このような従来の方法では炭素41!li維基月に炭素
質粉末および担体を多量かつ均一に析出させるには時間
がかかり、また析出量および均一性には限界があり、両
立させることは不可能である。
In this conventional method, carbon 41! It takes time to uniformly precipitate a large amount of carbonaceous powder and carrier on LiF, and there is a limit to the amount and uniformity of precipitation, so it is impossible to achieve both.

なぜならば、多量に炭素質粉末および担体を析出さぜる
ためには炭素質粉末に対する担体の量を少なくする必要
があり、均一に析出させるためには炭素質粉末に対する
担体の吊を多くする必要があるため、1回の電着て吊お
よび均一性を両立させるような配合系を見出すことは困
難なためである。
This is because in order to precipitate a large amount of carbonaceous powder and carrier, it is necessary to reduce the amount of carrier relative to carbonaceous powder, and in order to deposit uniformly, it is necessary to increase the amount of carrier relative to carbonaceous powder. This is because it is difficult to find a compounding system that achieves both durability and uniformity in one electrodeposition.

〈問題点を解決するための手段〉 本発明者らは上記した従来の炭素111i維強化炭素複
合材料の製造法におCプる欠点を解消すべく、炭素質粉
末および担体を炭素繊維基材上に多量にかつ均一に析出
させることを検討の結果、この発明に至ったものである
<Means for Solving the Problems> In order to overcome the drawbacks of the above-mentioned conventional method for producing carbon 111i fiber-reinforced carbon composite materials, the present inventors have incorporated carbonaceous powder and a carrier into a carbon fiber base material. This invention was developed as a result of studies on how to deposit a large amount and uniformly on the surface.

即ち、この発明は炭素質の微粉末に液体中でイオン化し
うる担体を吸着させたのち、液体中に分散さ氾、その後
炭素繊維基材と対向電極とを該分散液に浸漬し、炭素繊
維基材と対向電極との間に直流電圧を印加して炭素質粉
末および担体を炭素41i維基材上に析出させて被覆物
を得、この被覆物を乾燥、加熱成形、熱処理および炭化
焼成する炭素繊維強化炭素複合材料の製造法において、
被覆物を臀る際にまず炭素質粉末に対する担体の重量比
が比較的大きなものを析出させ、2回目以降には前回析
出させたものの重量比よりも担体の占める割合が少なく
なっているものを析出させることを特徴とする炭素繊維
強化炭素複合材料の製造方法を提供するものである。
That is, in this invention, a carrier that can be ionized in a liquid is adsorbed onto a carbonaceous fine powder, and then dispersed in the liquid, and then a carbon fiber base material and a counter electrode are immersed in the dispersion liquid. Carbonaceous powder and carrier are deposited on the carbon 41i fiber base material by applying a direct current voltage between the base material and the counter electrode to obtain a coating, and this coating is dried, thermoformed, heat treated, and carbonized. In the manufacturing method of fiber reinforced carbon composite material,
When depositing the coating, first deposit a carbonaceous powder with a comparatively large weight ratio of carrier to carbonaceous powder, and from the second time onwards deposit a powder in which the weight ratio of carrier to carbonaceous powder is smaller than that of the previous deposit. The present invention provides a method for producing a carbon fiber-reinforced carbon composite material characterized by precipitation.

〈作用〉 要するに、この発明は最初に炭素質粉末に対する担体の
重量比が比較的大きなものを析出させ、2回目以降から
は最初に析出させたものの重量比よりも担体の占める割
合が少なくなっているものを析出させるのである。
<Function> In short, this invention first precipitates a carbonaceous powder with a relatively large weight ratio of carrier to carbonaceous powder, and from the second time onward, the proportion of the carrier becomes smaller than the weight ratio of the initially precipitated powder. It precipitates out what is present.

即ち、最初に炭素質粉末に対する担体の重量比が比較的
大きな配合系の電着用分散液を用いることによって基材
に炭素質粉末および担体を均一に析出させる。そして2
回目以降で前回の配合系に含まれる炭素質粉末と担体と
の重量比よりも担体の占める割合の小ざな配合系のもの
を析出させることによって多量なものに仕上げることが
できる。
That is, first, the carbonaceous powder and the carrier are uniformly deposited on the substrate by using an electrodeposition dispersion having a relatively large weight ratio of the carrier to the carbonaceous powder. And 2
From the second time onward, a large amount can be obtained by precipitating a blending system in which the weight ratio of the carbonaceous powder to the carrier is smaller than that contained in the previous blending system.

また、この発明の方法は、炭素質粉末および担体を基材
に均一に析出させることと、多量に析出させることの役
割を夫々の配合系のものに分担させているため、均一か
つ多量に析出させるのに従来の方法より短時間でかつ正
確に行なうことができるのである。
In addition, the method of this invention assigns the roles of uniformly depositing the carbonaceous powder and carrier onto the base material and depositing them in large amounts to the respective compounding systems, so that the carbonaceous powder and carrier are precipitated uniformly and in large amounts. It can be done more accurately and in a shorter time than conventional methods.

〈実施例〉 以下、この発明を実施例により詳細に説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

実施例1 (1)  自己焼結性炭素質粉末とテ乏焼コークス粉末
を重量比で2=1の割合で混合し、平均粒径5 μ η
t と し ノこ 。
Example 1 (1) Self-sintering carbonaceous powder and poorly sintered coke powder were mixed at a weight ratio of 2=1, and the average particle size was 5 μ η
T and Shinoko.

(2)上記粉末をポリアクリロニトリル−アクリル酸系
電着用樹脂および溶剤とよく混練りしたのち水に分散さ
せ、いわゆるアニオン系塗料分散液状態とした。この状
態で炭素粉末と樹脂の比率を重量比で1:5.1:1 5:1の3種類とした。
(2) The above powder was thoroughly kneaded with a polyacrylonitrile-acrylic acid electrodeposition resin and a solvent, and then dispersed in water to form a so-called anionic coating dispersion. In this state, the ratio of carbon powder to resin was set to three types: 1:5.1:1 and 5:1 in terms of weight ratio.

(3)次にポリアクリロニトリル系炭素繊維布を用意し
、これを陽極とし、対向する陰極どしてステンレス鋼板
を用い、まず炭素粉末:樹脂−1:5の分散液に浸漬し
、単材と被覆物の重量比が1:1となるように約50V
の電圧をよく撹拌混合しながら印加した。その後、炭素
粉末:樹脂−1:1.5:1の分散液で夫々基材:被覆
物−1:2.1:3となるように電着を行なった。電着
時間は金側で10分間であった。
(3) Next, prepare a polyacrylonitrile carbon fiber cloth, use it as an anode, and use a stainless steel plate as the opposing cathode. Approximately 50V so that the weight ratio of the coating is 1:1
voltage was applied while stirring and mixing thoroughly. Thereafter, electrodeposition was performed using a dispersion liquid of carbon powder:resin-1:1.5:1 such that the ratio of base material:coating was 1:2.1:3. Electrodeposition time was 10 minutes on the gold side.

(4)  上記電着体を100枚積層し、温度200℃
、血圧力20Kg4で10分間加圧成形した。
(4) Laminate 100 sheets of the above electrodeposited body at a temperature of 200°C.
, pressure molding was carried out for 10 minutes at a blood pressure of 20 kg4.

(5)  このあと、成形体の厚みを保持しながら大気
中で250°C1280℃の各温度で夫々3時間加熱し
、不融化した。
(5) Thereafter, while maintaining the thickness of the molded product, it was heated in the air at 250° C. and 1280° C. for 3 hours to make it infusible.

(6)  この不融化体を不活性雰囲気中で500Kf
iJの血圧下で30℃/hrの昇温速度で1000℃ま
で昇温し、その後100℃/hrの昇温速度で2000
℃まで背温して炭素繊維強化炭素複合材料を得 lこ 
(6) This infusible material was heated to 500 Kf in an inert atmosphere.
The temperature was raised to 1000°C at a heating rate of 30°C/hr under a blood pressure of iJ, and then to 2000°C at a heating rate of 100°C/hr.
A carbon fiber-reinforced carbon composite material is obtained by backwarming to ℃.
.

実施例2 (1)  ポリアクリロニ1−リル系炭素l1ilfフ
ィラメント糸を用意し、実施例1で用いた炭素粉末:樹
脂−1:5.5:1の電着用分散液中に連続的に供給浸
漬し、これを陽極どし、ステンレス板を陰極として15
0■の電圧を印加し、よく撹拌しながら電着した。電着
後の糸は乾燥機を通過し、80℃の雰囲気で乾燥した。
Example 2 (1) A polyacrylonyl 1-lyl carbon 11ilf filament yarn was prepared and continuously supplied and immersed in the electrodeposition dispersion of carbon powder:resin-1:5.5:1 used in Example 1. , this is used as an anode, and the stainless steel plate is used as a cathode.
Electrodeposition was carried out by applying a voltage of 0 μ and stirring well. The yarn after electrodeposition was passed through a dryer and dried in an atmosphere of 80°C.

基材と被覆物との重量比は1:4であった。The weight ratio of substrate to coating was 1:4.

(2)電着された基材糸を10〜50市に切断し、金型
内に充填して温度200°C1面圧力200結べて10
分間加圧成形した。
(2) Cut the electrodeposited base material yarn into 10 to 50 pieces, fill it in a mold, and tie it at a temperature of 200°C and a surface pressure of 200cm.
Pressure molded for minutes.

(3)その後の不融化、加圧焼成は実施例1と同条件で
行ない、炭素繊維強化炭素複合材料をヤ11こ 。
(3) The subsequent infusibility and pressure firing were performed under the same conditions as in Example 1, and the carbon fiber-reinforced carbon composite material was dried.

比較例1 (1)実施例1で用いた炭素粉末:樹脂−1:1の電着
用分散液に実施例1で用いたポリアクリロニトリル系炭
素繊維布を浸漬し、実施例1と同条件で電着を行なった
。しかしながら、基I:被覆材−1:  2.sの被覆
物が限界で、時間も30分以上かかった。
Comparative Example 1 (1) The polyacrylonitrile carbon fiber cloth used in Example 1 was immersed in the 1:1 electrodeposition dispersion of carbon powder:resin used in Example 1, and electrolyzed under the same conditions as Example 1. I got dressed. However, Group I: Coating-1: 2. There was a limit to the amount of coverage of s, and it took more than 30 minutes.

(2)上記電着体を115枚積層し、実施例1と同条件
で加圧成形した。
(2) 115 sheets of the above electrodeposited bodies were laminated and pressure molded under the same conditions as in Example 1.

(3)その後の不融化、加圧焼成は実施例1と同条件で
行ない、実施例1と同寸法、同性能の炭素繊維強化炭素
複合材料を得た。
(3) The subsequent infusibility and pressure firing were performed under the same conditions as in Example 1 to obtain a carbon fiber-reinforced carbon composite material having the same dimensions and performance as in Example 1.

比較例2 (1)比較例1で用いた電着用分散液に、実施例2で用
いたポリアクリロニトリル系炭素vanフィラメント糸
を浸漬し、実施例2と同条件で電着を行なった。
Comparative Example 2 (1) The polyacrylonitrile carbon van filament yarn used in Example 2 was immersed in the electrodeposition dispersion used in Comparative Example 1, and electrodeposition was performed under the same conditions as in Example 2.

しかしながら、実施例2と同じ通電時間では基材と被覆
物との重量比が1:2.6のものしか冑られなかった。
However, when the current was applied for the same time as in Example 2, the weight ratio of the base material to the coating was only 1:2.6.

そのため実施例2と同小吊の電着された基材糸を得るの
に実施例2の144倍の時間を費した。
Therefore, it took 144 times as much time as in Example 2 to obtain the electrodeposited base yarn with the same small hanging as in Example 2.

(2)得られた基材糸を10〜50mmに切断し、金型
内に充填して実施例2と同条件で加圧成形した。
(2) The obtained base yarn was cut into pieces of 10 to 50 mm, filled into a mold, and pressure-molded under the same conditions as in Example 2.

(3)  その後の不融化、加圧焼成は実施例2と同条
件で行ない、実施例2と同寸法、同性能の炭素繊維強化
炭素複合材料を育だ。
(3) The subsequent infusibility and pressure firing were performed under the same conditions as in Example 2, and a carbon fiber-reinforced carbon composite material having the same dimensions and performance as in Example 2 was grown.

〈発明の効果〉 以上の通り、この弁明は基材に対する電着を多段で行な
うことによって、炭素繊維基材に炭素質粉末、および担
体を短時間に多量かつ均一に析出させることが出来た。
<Effects of the Invention> As described above, the present invention was able to uniformly deposit a large amount of carbonaceous powder and carrier on a carbon fiber substrate in a short time by performing electrodeposition on the substrate in multiple stages.

Claims (3)

【特許請求の範囲】[Claims] (1)炭素質の微粉末に液体中でイオン化しうる担体を
吸着させたのち、液体中に分散させ、その後炭素繊維基
材と対向電極とを該分散液に浸漬し、炭素繊維基材と対
向電極との間に直流電圧を印加して炭素質粉末および担
体を炭素繊維基材上に析出させて被覆物を得、この被覆
物を乾燥、加熱成形、熱処理および炭化焼成する炭素繊
維強化炭素複合材料の製造方法において、被覆物を得る
際にまず炭素質粉末に対する担体の重量比が比較的大き
なものを析出させ、2回目以降には前回析出させたもの
の重量比よりも担体の占める割合が少なくなつているも
のを析出させることを特徴とする炭素繊維強化炭素複合
材料の製造方法。
(1) After adsorbing a carrier that can be ionized in a liquid to carbonaceous fine powder, it is dispersed in the liquid, and then a carbon fiber base material and a counter electrode are immersed in the dispersion liquid. A carbon fiber-reinforced carbon is applied between a counter electrode and deposits carbonaceous powder and carrier on a carbon fiber base material to obtain a coating, and this coating is dried, heat-formed, heat-treated, and carbonized. In the method for producing composite materials, when obtaining a coating, firstly a material having a relatively large weight ratio of carrier to carbonaceous powder is precipitated, and from the second time onward, the ratio of the carrier to the carbonaceous powder is higher than the weight ratio of the previously precipitated powder. A method for producing a carbon fiber-reinforced carbon composite material, characterized by precipitating a material that is decreasing.
(2)炭素繊維基材が単繊維を束ねたひも状のもの、あ
るいは織布、ペーパー不織布の何れかであることを特徴
とする特許請求の範囲第1項記載の炭素繊維強化炭素複
合材料の製造方法。
(2) The carbon fiber-reinforced carbon composite material according to claim 1, wherein the carbon fiber base material is a string-like material made of bundled single fibers, a woven fabric, or a paper non-woven fabric. Production method.
(3)担体がポリアクリロニトリル樹脂誘導体もしくは
熱硬化性樹脂誘導体を改質し、電着可能な樹脂としたも
のであることを特徴とする特許請求の範囲第1項記載の
炭素繊維強化炭素複合材料の製造方法。
(3) The carbon fiber-reinforced carbon composite material according to claim 1, wherein the carrier is a resin that can be electrodeposited by modifying a polyacrylonitrile resin derivative or a thermosetting resin derivative. manufacturing method.
JP61111295A 1986-05-14 1986-05-14 Manufacture of carbon fiber reinforced carbon composite material Pending JPS62270463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111295A JPS62270463A (en) 1986-05-14 1986-05-14 Manufacture of carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111295A JPS62270463A (en) 1986-05-14 1986-05-14 Manufacture of carbon fiber reinforced carbon composite material

Publications (1)

Publication Number Publication Date
JPS62270463A true JPS62270463A (en) 1987-11-24

Family

ID=14557595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111295A Pending JPS62270463A (en) 1986-05-14 1986-05-14 Manufacture of carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPS62270463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076502A (en) * 2016-11-02 2018-05-17 地方独立行政法人大阪産業技術研究所 Method for producing carbon fiber-reinforced plastic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076502A (en) * 2016-11-02 2018-05-17 地方独立行政法人大阪産業技術研究所 Method for producing carbon fiber-reinforced plastic

Similar Documents

Publication Publication Date Title
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
JPH0136670B2 (en)
JPH0210115B2 (en)
JPS62270463A (en) Manufacture of carbon fiber reinforced carbon composite material
JP2018199587A (en) METHOD FOR PRODUCING SiC/SiC COMPOSITE MATERIAL
EP0575748B1 (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
JPS6215380A (en) Production of carbon fiber reinforced composite material
JPH02252659A (en) Production of three-dimensional carbon fiber-carbon composite material
JPS62230670A (en) Manufacture of carbon fiber reinforced carbon composite material
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JPS635349B2 (en)
JPH04170366A (en) Production of carbon fiber-reinforced carbon composite material
JPH04154662A (en) Production of carbon fiber reinforced carbon composition material
JPS6283369A (en) Manufacture of carbon fiber-reinforced carbon composite material
JPH01160868A (en) Production of high-density carbon fiber reinforced carbon composite material
EP0203759B1 (en) Process for producing carbon fiber-reinforced carbon composite
JPH0624846A (en) Production of carbon fiber reinforced carbon composite material
JPS60209017A (en) Ceramic coated graphite fiber and its production
JPS61231222A (en) Production of carbon fiber reinforced carbon composite material
JP2001048664A (en) Production of carbon fiber-reinforced carbon material
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPH05208868A (en) Production of carbon fiber-reinforced carbon composite material
JPH0210116B2 (en)
JP2667525B2 (en) Modification method of vapor grown carbon fiber
JPS62223063A (en) Manufacture of graphitic crucible