JPH0210116B2 - - Google Patents

Info

Publication number
JPH0210116B2
JPH0210116B2 JP60035050A JP3505085A JPH0210116B2 JP H0210116 B2 JPH0210116 B2 JP H0210116B2 JP 60035050 A JP60035050 A JP 60035050A JP 3505085 A JP3505085 A JP 3505085A JP H0210116 B2 JPH0210116 B2 JP H0210116B2
Authority
JP
Japan
Prior art keywords
carbon fiber
base material
firing
reinforced composite
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60035050A
Other languages
Japanese (ja)
Other versions
JPS61197467A (en
Inventor
Koichi Iwata
Seigo Sakagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60035050A priority Critical patent/JPS61197467A/en
Publication of JPS61197467A publication Critical patent/JPS61197467A/en
Publication of JPH0210116B2 publication Critical patent/JPH0210116B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高性能の炭素複合材料の簡便な製造方
法に関する。 従来技術及び発明が解決しようとする問題点高
性能炭素繊維強化複合材料(以下CFRCと略記)
の簡便な製造方法に関し、発明者等は特公昭63−
5349号公報及び、特開昭61−21973号公報にて、
新規な製造方法を開示した。これらの発明は炭素
質粉末を担体樹脂と混合し、これを電気泳動し沈
積(電着)法を用いて炭素繊維基材上に沈積さ
せ、これを成形焼成してCFRCを得る方法に関わ
るものである。 上記の発明においては、電着の際炭素繊維基材
に通電を行う必要から、炭素繊維基材の形態とし
て炭素繊維織布、ペーパー、マツト、不織布のよ
うな二次元的な基材を用いるか、ひも、フイラメ
ント糸、テープ等の一次元的な基材を用い、電着
を積層、巻きつけ等の方法を用い成形し、焼成す
る方法が述べられている。即ちこれらの発明の方
法では、いわゆるチヨツプドフアイバー及び細か
く切断された織布のような短繊維基材は連続的に
通電することが出来ず、炭素質粉末及び担体樹脂
を能率的に電着することが出来ないため使用でき
ない。 このような短繊維基材を被覆するためには通電
を要しない、浸漬被覆等によることになるが、こ
れらの方法では、基材との密着性が不十分なた
め、あとの混合操作等において基材と被覆層との
分離脱落を生じやすいという問題点がある。 しかるに積層法、まきつけ法等の成形法で作つ
たCFRCは、引張強度、曲げ強度、せん断強度及
び物理的機械的性質に異方性を生じやすい、
CFRCの用途は異方性を利用できる分野もある
が、構造材料等では等方向に強化されたCFRCが
必要な分野も多い。 問題点を解決するための手段 電着法は基材に炭素質粉末を所望の割合で、均
一に強固に密着させることが出来る方法であり、
これを短繊維基材に応用できれば電着を行つた短
繊維をランダムにからみ合せ混合し、成形焼成す
ることにより、異方性を改善したCFRCを作るこ
とが出来る。従来の考え方では短繊維基材は通電
できないために電着不可能としていた訳である
が、発明者らは連続的な基材に通電しながら電着
し、炭素質粉末及び担体を付着させたあと、所望
の長さに切断し、炭素質粉末で被覆された短繊維
基材を得ることが出来た。この場合切断操作によ
り、被覆層が基材と分離することが懸念されるが
電着法による被覆層は基材との密着性が良好であ
るため通常の浸漬法による被覆に見られるような
切断時著しい脱落は起こらない。 得られた被覆短繊維基材を混合し、ランダムに
からみ合わせ成形焼成を行うことにより、三次元
的に強化されたCFRCを製造することが可能であ
る。以下に本発明の内容を詳しく述べる。 本発明に用いる原料としての炭素繊維基材は単
繊維を束ねたひも、フイラメント糸、織布、テー
プ、ペーパー、マツト等が使用できる。微細化し
た炭素質粉末に担体樹脂を付着させ液体中に分散
させ分散液を作る。 この場合炭素質粉末には焼結助剤、セラミツク
ス等の無機粉末等の添加剤を加えることが出来
る。担体樹脂としては液体中でイオン化可能な熱
可塑性及び熱硬化性の樹脂が使用可能である。ま
た粉末と樹脂の混合及び分散に際しては、分散
剤、界面活性剤を用いる場合もある。分散媒体は
水を用いるのが取扱いが容易であるが、目的によ
り非水溶媒を用いることもできる。 次に上記分散液に炭素繊維基材を浸漬し、直流
電圧を印加して炭素質粉末と担体とを基材上に沈
積させる。この操作は連続的に基材を供給して行
うか、またはバツチ処理にて行うことが出来る。 続いて基材を液より引上げ、必要により洗浄等
の処理を行い乾燥することにより、被覆された基
材を得る。乾燥は、担体として熱硬化性樹脂を使
用する場合は、硬化反応が進行しすぎない程度の
温度及び時間範囲で行う必要がある。 このあと被覆された基材を適当な長さもしくは
大きさに切断し、所定量を型に入れて成形する。
成形の際の温度、圧力等の条件は樹脂及び粉末、
基材の性質により適切な条件に調節する。この段
階で成形体は細かく切断された炭素繊維基材が複
雑にからみ合つた構造となり、ランダムな方向に
強化された材料となつている。 切断時の長さは1mm以下ではからみ合いの効果
が少なく、100mm以上では作業性が悪くなる。成
形体の形については、任意の形状の型に充填して
成形すればよく、積層法、巻きつけ法等と比較し
て形状的な制限が少ない。また成形はは通常の圧
縮成形及び静水圧成形が可能であるが、特に等方
性の成形体を目的とする場合は等方静水圧成形が
望ましい。成形体は、必要により不融化、硬化、
アニール、脱バインダー等の処理を行つたあと炭
化焼成しCFRCとする。 焼成温度は材料の使用目的に応じて選択する
が、良好な強度を得るためには700〜2000℃が適
当である。黒鉛化を行う場合は更に2000℃〜3000
℃の焼成を行う。焼成時加圧しながら焼成を行う
こにより、高密度な焼成体を得ることが出来る。
加圧方法は圧縮加圧、等方静圧加圧、雰囲気加圧
等の方法を目的により選択する。 実施例 以下実施例につき説明する。 実施例 1 () 自己焼結性のある炭素質粉末と仮焼コーク
スの粉末を1:1の割合で混合し平均粒径5μ
mとした。 () 上記粉末をポリアクリロニトリル―アクリ
ル酸系電着用樹脂及び溶剤とよく混練したの
ち、水に分散させ、いわゆるアニオン系塗料分
散液状態とした。この状態で炭素粉末と樹脂の
比率は重量比で1:1であつた。 () 次にPAN系の炭素繊維フイラメント糸を
用意し、連続的に分散液中に供給浸漬し、同時
に対向電極として使用するステンレス板との間
に炭素繊維を陽極として150Vの電圧を印加し、
よく撹拌しながら通電し電着した。電着後の糸
は乾燥機を通過し、80℃の雰囲気で乾燥され
る。乾燥後基材と電着物の重量比は1:1.5で
あつた。 () 電着された基材糸を3〜10mmの長さに切断
して被覆フアイバーとし、この被覆フアイバー
を金型内に充填し温度200℃、面圧力20Kg/cm2
で10分間加圧し成形した。 () このあと20Kg/cm2の圧力下でクランプしな
がら空気中で250℃、280℃の各温度でそれぞれ
4時間加熱し不融化した。 () この硬化体を不活性雰囲気中で200Kg/cm2
の面圧下で30℃/Hrの昇温速度にて1000℃ま
で昇温し、その後100℃/Hrの昇温速度で2000
℃まで昇温し、2000℃にて1時間保持し、後室
温まで冷却しCFRCを得た。CFRCの最終的形
状は直径50mm、厚さ40mm、円筒状とした。 比較例 1 () 実施例1と同じ粉末組成及び樹脂を用いた
電着用分散液を用い、基材として実施例1のフ
イラメント糸と同質の炭素繊維を用いた織布を
使用し、炭素繊維織布と電着物の乾燥後の重量
比は実施例1と同じ1:1.5になるように電着
条件を調整した。 () 得られた被覆炭素繊維織布を80枚積層し、
圧縮プレスにて温度150℃面圧力150Kg/cm2の条
件で20分間加圧成形し、その後実施例1と同様
に不融化及び加圧焼成を行い、実施例1と同様
の形状のCFRCとした。 実施例 2 実施例1と同様の方法で被覆フアイバを作り、
200℃にて圧力20Kg/cm2にて静圧成形した。その
後空気中で250℃、280℃各4時間加熱し、不融化
した。これを熱間静圧成形にて30℃/Hr昇温速
度で100℃まで焼成し、その後常圧不活性雰囲気
中で100℃/Hrの昇温速度で2000℃まで昇温し、
2000℃にて1時間保持し焼成した。最終形状は実
施例1と同様の形状のCFRCとした。 上記実施例及び比較例について密度及び曲げ強
度を測定した結果を第1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a simple method for manufacturing high-performance carbon composite materials. Prior art and problems to be solved by the invention High performance carbon fiber reinforced composite materials (hereinafter abbreviated as CFRC)
Regarding the simple manufacturing method of
In Publication No. 5349 and Japanese Unexamined Patent Publication No. 61-21973,
A new manufacturing method has been disclosed. These inventions relate to a method of mixing carbonaceous powder with a carrier resin, electrophoresing the mixture, depositing it on a carbon fiber base material using a deposition (electrodeposition) method, and molding and firing the mixture to obtain CFRC. It is. In the above invention, since it is necessary to conduct electricity to the carbon fiber base material during electrodeposition, a two-dimensional base material such as carbon fiber woven fabric, paper, matte, or nonwoven fabric may be used as the form of the carbon fiber base material. , a method is described in which a one-dimensional base material such as a string, filament thread, tape, etc. is used, and the material is formed by electrodeposition, laminated, wrapped, etc., and then fired. That is, in the methods of these inventions, short fiber base materials such as so-called chopped fibers and finely cut woven fabrics cannot be continuously energized, and the carbonaceous powder and carrier resin cannot be efficiently electrified. It cannot be used because it cannot be worn. In order to coat such short fiber base materials, dip coating, etc., which does not require electricity, is used, but these methods do not provide sufficient adhesion to the base material, so it is difficult to coat them during subsequent mixing operations. There is a problem in that the base material and the coating layer are likely to separate and fall off. However, CFRC made using forming methods such as lamination and wrapping methods tend to exhibit anisotropy in tensile strength, bending strength, shear strength, and physical and mechanical properties.
Although there are some applications for CFRC in which anisotropy can be used, there are also many fields in which isotropically reinforced CFRC is required, such as in structural materials. Means for solving the problem Electrodeposition is a method that can uniformly and firmly adhere carbonaceous powder to a base material in a desired ratio.
If this can be applied to short fiber base materials, CFRC with improved anisotropy can be made by randomly intertwining and mixing electrodeposited short fibers, shaping and firing. The conventional thinking was that electrodeposition was impossible because short fiber base materials could not be energized, but the inventors applied electrodeposition to a continuous base material while energizing it to adhere the carbonaceous powder and carrier. Then, it was cut into a desired length to obtain a short fiber base material coated with carbonaceous powder. In this case, there is a concern that the coating layer may separate from the base material due to the cutting operation, but since the coating layer made by electrodeposition has good adhesion to the base material, it is difficult to cut the coating layer as seen in coatings made by the usual dipping method. No significant shedding occurs. By mixing the obtained coated short fiber base materials, randomly entangling them, forming and firing them, it is possible to manufacture three-dimensionally reinforced CFRC. The content of the present invention will be described in detail below. As the carbon fiber base material used as a raw material in the present invention, a string made of bundled single fibers, a filament yarn, a woven fabric, a tape, a paper, a mat, etc. can be used. A carrier resin is attached to the finely divided carbonaceous powder and dispersed in a liquid to create a dispersion liquid. In this case, additives such as sintering aids and inorganic powders such as ceramics can be added to the carbonaceous powder. Thermoplastic and thermosetting resins that can be ionized in liquid can be used as carrier resins. Further, when mixing and dispersing the powder and resin, a dispersant and a surfactant may be used. Although it is easy to use water as the dispersion medium, a non-aqueous solvent can also be used depending on the purpose. Next, a carbon fiber base material is immersed in the above-mentioned dispersion liquid, and a direct current voltage is applied to deposit the carbonaceous powder and carrier on the base material. This operation can be carried out by feeding the substrate continuously or by batch processing. Subsequently, the base material is pulled up from the liquid, and if necessary, subjected to treatments such as washing and dried, thereby obtaining a coated base material. When a thermosetting resin is used as a carrier, drying must be carried out at a temperature and time range that does not allow the curing reaction to proceed too much. Thereafter, the coated base material is cut to an appropriate length or size, and a predetermined amount is placed in a mold and molded.
Conditions such as temperature and pressure during molding are based on resin and powder,
Adjust to appropriate conditions depending on the properties of the base material. At this stage, the molded body has a structure in which finely cut carbon fiber base materials are intricately intertwined, and the material is reinforced in random directions. If the cutting length is 1 mm or less, the entanglement effect will be small, and if it is 100 mm or more, workability will be poor. Regarding the shape of the molded product, it is sufficient to fill it into a mold of any shape and mold it, and there are fewer restrictions on the shape compared to the lamination method, winding method, etc. For molding, ordinary compression molding and isostatic pressing are possible, but isostatic isostatic molding is particularly desirable when an isotropic molded product is intended. The molded body may be made infusible, hardened, or
After performing treatments such as annealing and debinding, it is carbonized and fired to form CFRC. The firing temperature is selected depending on the intended use of the material, but 700 to 2000°C is appropriate in order to obtain good strength. If graphitization is performed, the temperature is further increased to 2000℃~3000℃.
Perform baking at ℃. By performing firing while applying pressure during firing, a high-density fired body can be obtained.
The pressurization method is selected from compression pressurization, isostatic pressure pressurization, atmospheric pressurization, etc. depending on the purpose. Examples Examples will be described below. Example 1 () Carbonaceous powder with self-sintering properties and calcined coke powder were mixed at a ratio of 1:1 and the average particle size was 5μ.
It was set as m. () The above powder was thoroughly kneaded with a polyacrylonitrile-acrylic acid electrodeposition resin and a solvent, and then dispersed in water to form a so-called anionic coating dispersion. In this state, the ratio of carbon powder to resin was 1:1 by weight. () Next, a PAN-based carbon fiber filament thread was prepared, and it was continuously supplied and immersed in the dispersion liquid, and at the same time, a voltage of 150V was applied between it and a stainless steel plate used as a counter electrode, using the carbon fiber as an anode.
Electrodeposition was carried out by applying electricity while stirring well. After electrodeposition, the yarn passes through a dryer and is dried in an atmosphere of 80°C. After drying, the weight ratio of the substrate to the electrodeposited material was 1:1.5. () Cut the electrodeposited base material thread into a length of 3 to 10 mm to make a covered fiber, and fill this covered fiber into a mold at a temperature of 200℃ and a surface pressure of 20Kg/cm 2
It was pressed and molded for 10 minutes. () Thereafter, the mixture was heated in air at 250°C and 280°C for 4 hours each to make it infusible while being clamped under a pressure of 20 kg/cm 2 . () 200Kg/cm 2 of this cured product in an inert atmosphere.
The temperature was raised to 1000°C at a heating rate of 30°C/Hr under a surface pressure of
The temperature was raised to ℃, held at 2000℃ for 1 hour, and then cooled to room temperature to obtain CFRC. The final shape of the CFRC was cylindrical with a diameter of 50 mm and a thickness of 40 mm. Comparative Example 1 () An electrodepositing dispersion using the same powder composition and resin as in Example 1 was used, and a woven fabric made of carbon fiber of the same quality as the filament yarn of Example 1 was used as the base material. The electrodeposition conditions were adjusted so that the weight ratio of the cloth and the electrodeposited material after drying was 1:1.5, the same as in Example 1. () Laminated 80 sheets of the obtained coated carbon fiber woven fabric,
It was pressure-molded in a compression press at a temperature of 150°C and a surface pressure of 150 kg/cm 2 for 20 minutes, and then infusible and pressure-fired in the same manner as in Example 1 to obtain a CFRC having the same shape as in Example 1. . Example 2 A coated fiber was made in the same manner as in Example 1,
Static pressure molding was carried out at 200°C and a pressure of 20 kg/cm 2 . Thereafter, it was heated in air at 250°C and 280°C for 4 hours each to make it infusible. This was baked by hot isostatic pressing at a temperature increase rate of 30℃/Hr to 100℃, and then heated to 2000℃ at a temperature increase rate of 100℃/Hr in an inert atmosphere at normal pressure.
It was held and fired at 2000°C for 1 hour. The final shape was CFRC having the same shape as in Example 1. Table 1 shows the results of measuring the density and bending strength of the above Examples and Comparative Examples.

【表】 上記に示すように実施例1及び実施例2の方法
では比較例1よりも強度の異方性が大巾に減少し
また、製造時の作業性も積層などの繁雑な作業を
要しないため、非常に改善された。 実施例 3 基材として炭素繊維のテープを用い、実施例1
と同様の工程を通してCFRCを製造したところ密
度1.65、曲げ強度A:90MPa、B:70MPaであ
つた。 実施例 4 電着用樹脂としてフエノール系の樹脂を改質し
たものを用い、他は実施例1と同様にしてCFRC
を製造したところ密度1.7、曲げ強度A:90MPa、
B:75MPaであつた。 発明の効果 以上に示した如く、本発明によると各方向とも
強度のバランスがとれた機械的強度の優れた且
つ、各層間の密着の強固な炭素繊維強化複合材料
が容易に、安価に製造出来る。
[Table] As shown above, in the methods of Examples 1 and 2, the strength anisotropy was significantly reduced compared to Comparative Example 1, and the workability during manufacturing required complicated operations such as lamination. It's much improved because it doesn't. Example 3 Using carbon fiber tape as the base material, Example 1
When CFRC was manufactured through the same process as above, the density was 1.65 and the bending strength A: 90 MPa and B: 70 MPa. Example 4 A modified phenolic resin was used as the electrodepositing resin, and the other conditions were the same as in Example 1.
When manufactured, the density was 1.7, bending strength A: 90MPa,
B: It was 75MPa. Effects of the Invention As described above, according to the present invention, a carbon fiber-reinforced composite material with balanced strength in all directions, excellent mechanical strength, and strong adhesion between each layer can be easily and inexpensively produced. .

Claims (1)

【特許請求の範囲】 1 炭素質の微粉末に、液体中でイオン化し得る
担体を付着させたのち、液体中に分散させ分散液
とし、炭素繊維基材を該分散液に浸漬し、基材と
対向電極との間に直流電圧を印加し、炭素質粉末
及び担体を炭素繊維基材上に析出させ、炭素繊維
を炭素質粉末及び担体とで被覆した、被覆物を
得、更に上記被覆物を1〜100mmの長さに切断し、
切断した被覆物を型に充填し、成形及び焼成する
ことを特徴とする炭素繊維強化複合材料の製造方
法。 2 炭素繊維基材が単繊維を束ねたひもまたは糸
状のものあるいは織布、ペーパー、不織布のいず
れかであることを特徴とする特許請求の範囲第1
項記載の炭素繊維強化複合材料の製造方法。 3 成形、焼成工程において加圧成形及び加圧焼
成を行うことを特徴とする特許請求の範囲第1項
又は第2項記載の炭素繊維強化複合材料の製造方
法。 4 成形、焼成工程において等方静圧成形及び等
方静圧焼成を行うことを特徴とする特許請求の範
囲第1項又は第2項記載の炭素繊維強化複合材料
の製造方法。 5 担体がポリアクリロニトリル樹脂誘導体もし
くは、熱硬化性樹脂であることを特徴とする特許
請求の範囲第1項、第2項、第3項又は第4項記
載の炭素繊維強化複合材料の製造方法。
[Claims] 1. A carrier that can be ionized in a liquid is attached to a carbonaceous fine powder, and then dispersed in the liquid to form a dispersion liquid. A carbon fiber base material is immersed in the dispersion liquid, and the base material and a counter electrode to deposit the carbonaceous powder and the carrier on the carbon fiber base material to obtain a coated product in which the carbon fibers are coated with the carbonaceous powder and the carrier, and further the above-mentioned coated product. Cut into lengths of 1 to 100 mm,
1. A method for producing a carbon fiber reinforced composite material, which comprises filling a mold with a cut covering material, shaping and firing the material. 2. Claim 1, characterized in that the carbon fiber base material is a string or thread-like material made of bundled single fibers, or a woven fabric, paper, or non-woven fabric.
A method for producing a carbon fiber reinforced composite material as described in . 3. The method for producing a carbon fiber reinforced composite material according to claim 1 or 2, characterized in that pressure forming and pressure firing are performed in the molding and firing steps. 4. The method for manufacturing a carbon fiber reinforced composite material according to claim 1 or 2, characterized in that isostatic pressure forming and isostatic pressure firing are performed in the molding and firing steps. 5. The method for producing a carbon fiber reinforced composite material according to claim 1, 2, 3 or 4, wherein the carrier is a polyacrylonitrile resin derivative or a thermosetting resin.
JP60035050A 1985-02-22 1985-02-22 Manufacture of carbon fiber reinforced composite material Granted JPS61197467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60035050A JPS61197467A (en) 1985-02-22 1985-02-22 Manufacture of carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60035050A JPS61197467A (en) 1985-02-22 1985-02-22 Manufacture of carbon fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JPS61197467A JPS61197467A (en) 1986-09-01
JPH0210116B2 true JPH0210116B2 (en) 1990-03-06

Family

ID=12431208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60035050A Granted JPS61197467A (en) 1985-02-22 1985-02-22 Manufacture of carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPS61197467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572528U (en) * 1992-03-09 1993-10-05 亨一 村田 Vehicle visor mounting structure
US8868434B2 (en) 2003-09-19 2014-10-21 Carefusion 303, Inc. Waste sorting and disposal method using labels

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517225A (en) * 1990-12-28 1993-01-26 Sumitomo Electric Ind Ltd Production of carbon fiber reinforced carbon composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572528U (en) * 1992-03-09 1993-10-05 亨一 村田 Vehicle visor mounting structure
US8868434B2 (en) 2003-09-19 2014-10-21 Carefusion 303, Inc. Waste sorting and disposal method using labels

Also Published As

Publication number Publication date
JPS61197467A (en) 1986-09-01

Similar Documents

Publication Publication Date Title
US5071700A (en) Carbon fiber-reinforced carbon composite material
US20060177663A1 (en) Carbon-carbon composite article manufactured with needled fibers
JPH0210115B2 (en)
JPH0210116B2 (en)
JPH0578182A (en) Production of porous carbon formed product and electrode material
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
JP2002255664A (en) C/c composite material and production method therefor
JPS6215380A (en) Production of carbon fiber reinforced composite material
JPH0570227A (en) Production of fiber reinforced composite material
JPS61231222A (en) Production of carbon fiber reinforced carbon composite material
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPH05306167A (en) Production of short fiber reinforced c/c composite
JPH04154663A (en) Production of carbon fiber reinforced carbon composite material
JPH02252659A (en) Production of three-dimensional carbon fiber-carbon composite material
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JPH0442857A (en) Preparation of carbon fiber-reinforced composite material
JPH062621B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH01160868A (en) Production of high-density carbon fiber reinforced carbon composite material
JPH02129068A (en) Production of carbon-fiber reinforced carbon material
JPS61261265A (en) Manufacture of carbon fiber-reinforced carbon composite material
JP3220983B2 (en) Method for producing carbon fiber reinforced carbon material
JPH02133373A (en) Carbon fiber/carbon composite material
JP3345437B2 (en) Method for producing carbon fiber reinforced carbon composite
JPS6256365A (en) Manufacture of carbon fiber reinforced composite material