JPS6215380A - Production of carbon fiber reinforced composite material - Google Patents

Production of carbon fiber reinforced composite material

Info

Publication number
JPS6215380A
JPS6215380A JP60151008A JP15100885A JPS6215380A JP S6215380 A JPS6215380 A JP S6215380A JP 60151008 A JP60151008 A JP 60151008A JP 15100885 A JP15100885 A JP 15100885A JP S6215380 A JPS6215380 A JP S6215380A
Authority
JP
Japan
Prior art keywords
carbon fiber
base material
composite material
producing
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60151008A
Other languages
Japanese (ja)
Inventor
正剛 阪上
岩田 幸一
幸典 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60151008A priority Critical patent/JPS6215380A/en
Publication of JPS6215380A publication Critical patent/JPS6215380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭素繊維強化炭素複合材料の製造方法に関す
るもので特に高靭性な炭素繊維強化炭素複合材料の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a carbon fiber-reinforced carbon composite material, and particularly to a method for manufacturing a carbon fiber-reinforced carbon composite material with high toughness.

従来技術及び発明が解決しようとする問題点高性能炭素
繊維強化炭素複合材料(以下CFRCと略記)の簡便な
製造方法に関し、発明者らは特願昭58−162433
等にて、新規な製造方法を開示した。これらの発明は炭
素質粉末を担体樹脂と混合し、これを電着法を用いて炭
素繊維基材上に沈積させ、その後成形・焼成してCFR
Cを得る方法に関するものである。
Prior Art and Problems to be Solved by the Invention Regarding a simple manufacturing method for high-performance carbon fiber reinforced carbon composite materials (hereinafter abbreviated as CFRC), the inventors have filed Japanese Patent Application No. 58-162433.
disclosed a new manufacturing method. These inventions involve mixing carbonaceous powder with a carrier resin, depositing this on a carbon fiber substrate using an electrodeposition method, and then molding and firing to form a CFR.
This relates to a method for obtaining C.

上記の発明においては、電着前の炭素繊維には何も処理
を行っていない。したがって収束剤を塗布し、である炭
素熱!i基材を用いる場合、収束剤があるために、基材
と電着された炭素質粉末および担体樹脂との密着性が悪
くなる。また収束剤によって炭素繊維が束ねであるため
炭素繊維束中に炭素質粉末および担体樹脂が浸入しにく
くなる。
In the above invention, no treatment is applied to the carbon fibers before electrodeposition. Therefore apply a convergence agent and be carbon hot! When an i-base material is used, the presence of a sizing agent deteriorates the adhesion between the base material and the electrodeposited carbonaceous powder and carrier resin. Furthermore, since the carbon fibers are bundled by the binding agent, it becomes difficult for the carbonaceous powder and the carrier resin to penetrate into the carbon fiber bundle.

問題点を解決するための手段 本発明は、CFRCの製造方法に関するもので特に上述
の問題点を解決し、靭性の向上を計ったものである。
Means for Solving the Problems The present invention relates to a method for manufacturing CFRC, and is particularly aimed at solving the above-mentioned problems and improving toughness.

従来手法で得られたCFRCが低靭性である原因は、炭
素繊維とマトリックス材料の密着性が悪いことと、炭素
繊維とマトリックス材料が分離しラミネート構造となっ
ているためである。
The reason why the CFRC obtained by the conventional method has low toughness is that the adhesion between the carbon fibers and the matrix material is poor, and the carbon fibers and the matrix material are separated to form a laminate structure.

本発明では炭素繊維に塗布されている収束剤を取り除く
ことによって炭素繊維とマトリックス材料との密着性を
高め炭素繊維束の中にマトリックス材料を浸入させて靭
性を高めることに成功した。
In the present invention, we succeeded in increasing the adhesion between the carbon fibers and the matrix material by removing the sizing agent applied to the carbon fibers, and infiltrating the matrix material into the carbon fiber bundles to increase the toughness.

以下に本発明について述べる。The present invention will be described below.

微細化した炭素質粉末に電荷のキャリヤーとして担体樹
脂を付着させ液体中に分散させ、分散液をつくる。この
場合炭素質粉末には、焼結助剤、セラミックス等の無機
粉末、等の添加剤を加えると良い、担体樹脂としては、
液体中でイオン化可能な熱可塑性および熱硬化性樹脂が
使用可能である。また粉末と樹脂の混合および分散に際
しては、分散剤、界面活性剤を用いることも出来る。分
散媒として、水を用いるのが取扱いが容易であるが目的
により非水溶媒を用いることもできる。
A carrier resin is attached to the finely divided carbonaceous powder as a charge carrier and dispersed in a liquid to create a dispersion. In this case, additives such as sintering aids, inorganic powders such as ceramics, etc. may be added to the carbonaceous powder.As the carrier resin,
Thermoplastics and thermosets that are ionizable in liquid can be used. Further, when mixing and dispersing the powder and resin, a dispersant and a surfactant can also be used. Although it is easy to use water as a dispersion medium, it is also possible to use a non-aqueous solvent depending on the purpose.

次に炭素繊維に塗布しである収束剤を取り除くために熱
処理を行う、この方法としては、高温炉の中に炭素繊維
を入れ雰囲気加熱によって収束剤を取り除く方法や、ガ
スバーナー等の炎で炭素繊維を直接加熱し収束剤を取り
除く方法等を用いる。
Next, heat treatment is performed to remove the binding agent applied to the carbon fibers.This method includes placing the carbon fibers in a high-temperature furnace and removing the binding agent by heating the atmosphere, or using a flame from a gas burner to remove the binding agent. A method such as directly heating the fibers to remove the binding agent is used.

このようにして収束剤を取り除かれた炭素績Ill基材
を上記分散液に浸漬し、直流電圧を印加して炭素質粉末
と担体とを基材上に沈積させる。
The carbonaceous powder substrate from which the sizing agent has been removed in this manner is immersed in the above-mentioned dispersion liquid, and a direct current voltage is applied to deposit the carbonaceous powder and carrier on the substrate.

これらの操作は、連続的に基材を供給していくか、また
は、バッチ処理にて行うことができる。
These operations can be performed by continuously supplying the base material or by batch processing.

続いて基材を液より引上げ必要によって洗浄等の処理を
行い乾燥することにより被覆された基材を得る。
Subsequently, the substrate is pulled up from the liquid, subjected to treatments such as washing if necessary, and dried to obtain a coated substrate.

乾燥は、担体として熱硬化性樹脂を使用する場合は硬化
反応が進行しすぎない程度および時間範囲で行う必要が
ある。そのあと被覆された基材をそのままあるいは、適
当な大きさに切断し所定量を型に入れ、成形する。成形
の際の温度・圧力等の条件は、樹脂および粉末・基材の
性質によって適切な条件に調節する。成形体は、必要に
より不融化・硬化・アニール・脱バンイダー等の処理を
行ったあと炭化焼成しCFRC:とする、焼成温度は材
料の使用目的に応じて700〜3000℃で行う。
When a thermosetting resin is used as a carrier, drying must be carried out to such an extent and within a time range that the curing reaction does not proceed too much. Thereafter, the coated base material may be used as it is or cut into an appropriate size and a predetermined amount thereof is placed in a mold and molded. Conditions such as temperature and pressure during molding are adjusted to appropriate conditions depending on the properties of the resin, powder, and base material. The molded body is subjected to treatments such as infusibility, hardening, annealing, and debanidering if necessary, and then carbonized and fired to form CFRC: The firing temperature is 700 to 3000°C depending on the purpose of use of the material.

加圧方法は一軸方向圧縮加圧、等方静水圧加圧、雰囲気
加圧等の方法を目的により選択する。
The pressurization method is selected from uniaxial compression pressurization, isostatic hydrostatic pressurization, atmospheric pressurization, etc. depending on the purpose.

以下実施例及び比較例につき説明する。Examples and comparative examples will be explained below.

実施例及び比較例 (比較例1) (1)自己焼結性のある炭素質粉末と仮焼コークスの粉
末を重量比で1:1の割合で混合し、平均粒径5μmと
した。
Examples and Comparative Examples (Comparative Example 1) (1) Carbonaceous powder with self-sintering properties and calcined coke powder were mixed at a weight ratio of 1:1 to give an average particle size of 5 μm.

(n)上記粉末をポリアクリロニトリル−アクリル酸系
電着用樹脂および溶剤とよく混練したのち、水に分散さ
せ、いわゆるアニオン系塗料分散液状態とした。この状
態で炭素粉末と樹脂の比率は重量比で1=1とした。
(n) The above powder was thoroughly kneaded with a polyacrylonitrile-acrylic acid electrodeposition resin and a solvent, and then dispersed in water to form a so-called anionic coating dispersion. In this state, the ratio of carbon powder to resin was 1=1 by weight.

(III)次にPAN系の炭素繊維織布を用意し、これ
を陽極とし、対向する陰極としてステンレス鋼板を用い
、上記分散液中に浸漬し、約50vの電圧を印加しよく
攪拌混合しながら約8分間通電した。
(III) Next, prepare a PAN-based carbon fiber woven fabric, use this as an anode, use a stainless steel plate as an opposing cathode, immerse it in the above dispersion, apply a voltage of about 50 V, and mix well with stirring. Electricity was applied for about 8 minutes.

(IV)電着後、電着体を110℃で20分間乾燥した
(IV) After electrodeposition, the electrodeposited body was dried at 110° C. for 20 minutes.

乾燥後の基材と被覆物の重量比は1:2でありた。The weight ratio of the substrate to the coating after drying was 1:2.

(V)上記の電着体を70枚積層し温度200℃面圧力
20Kg /−で10分間加圧成形した。
(V) Seventy sheets of the above electrodeposited body were laminated and pressure-molded at a temperature of 200°C and a surface pressure of 20 kg/- for 10 minutes.

(Vl)このあと面圧力25Kg/cdの圧力下でクラ
ンプしながら大気中で250℃、280℃の各温度でそ
れぞれ3時間加熱し不融化した。
(Vl) Thereafter, while clamping under a surface pressure of 25 kg/cd, the mixture was heated in the atmosphere at 250° C. and 280° C. for 3 hours each to make it infusible.

(■Σこの不融化体を不活性雰囲気中で500Kg/−
0面圧下で30℃/hrの昇温速度で1000℃まで昇
温し、その後100℃/hrの昇温速度で2000℃ま
で昇温しCFRCを得た。
(■ΣThis infusible material is 500Kg/- in an inert atmosphere.
The temperature was raised to 1000°C at a temperature increase rate of 30°C/hr under zero surface pressure, and then the temperature was raised to 2000°C at a temperature increase rate of 100°C/hr to obtain a CFRC.

(実施例1) 比較例1で用いたものと同様のPAN系炭素炭素繊維織
布意し、300℃に加熱した炉の中に20分間入れ収束
剤を取り除いた。この織布を比較例1で用いた電着用分
散液に浸漬した。
(Example 1) A PAN-based carbon fiber woven fabric similar to that used in Comparative Example 1 was prepared and placed in a furnace heated to 300° C. for 20 minutes to remove the sizing agent. This woven fabric was immersed in the electrodeposition dispersion used in Comparative Example 1.

炭素繊維基材を陽極とし、対向する陰極としてステンレ
ス鋼板を用い、約50vの電圧を印加しよく攪拌混合し
ながら約8分間通電した。その後比較例1と同じ条件で
乾燥・成形・不融化・加圧焼成を行いCFRCを得た。
Using a carbon fiber base material as an anode and a stainless steel plate as an opposing cathode, a voltage of about 50 V was applied and the mixture was energized for about 8 minutes with thorough stirring and mixing. Thereafter, drying, molding, infusibility, and pressure firing were performed under the same conditions as in Comparative Example 1 to obtain a CFRC.

(比較例2) (1)PAN系の炭素繊維フィラメント糸を用意し、比
較例1で用いた電着用分散液中に連続的に供給浸漬しこ
れを陽極、ステンレス板を陰極として150vの電圧を
印加しよく攪拌しながら通電し電着した。電着後の糸は
乾燥機を通過し80℃の雰囲気で乾燥した。乾燥後基材
と被覆物との重量比は1:2であった。
(Comparative Example 2) (1) Prepare a PAN-based carbon fiber filament yarn, continuously supply and immerse it in the electrodeposition dispersion used in Comparative Example 1, and apply a voltage of 150 V using it as an anode and a stainless steel plate as a cathode. Electrodeposition was carried out by applying electricity and stirring well. The yarn after electrodeposition was passed through a dryer and dried in an atmosphere of 80°C. After drying, the weight ratio of substrate to coating was 1:2.

(n)電着された基材糸を10〜50mmに切断し金型
内に充填し、温度200℃面圧力20Kg/cjで10
分間加圧成形した。
(n) Cut the electrodeposited base material yarn into 10 to 50 mm pieces, fill it in a mold, and heat it for 10 minutes at a temperature of 200°C and a surface pressure of 20 kg/cj.
Pressure molded for minutes.

(III>この後の不融化・加圧焼成は、比較例1と同
じ条件で行いCFRCを得た。
(III> The subsequent infusibility and pressure firing were performed under the same conditions as in Comparative Example 1 to obtain CFRC.

(実施例2) 実施例2で用いたPAN系炭素炭素繊維フィラメント糸
意しガスバーナーの炎でフィラメント糸表面の収束剤を
取り除きながら、比較例1で用いた電着用分散液中に連
続的に供給浸漬し比較例2と同じ条件で電着を行った。
(Example 2) The PAN-based carbon fiber filament used in Example 2 was continuously added to the electrodepositing dispersion used in Comparative Example 1 while removing the sizing agent on the filament surface with the flame of a gas burner. Electrodeposition was performed under the same conditions as Comparative Example 2 by supplying and dipping.

その後糸の乾燥・成形・不融化・加圧焼成は、比較例2
と同じ条件で行いCFRCを得た。
After that, drying, shaping, infusibility, and pressure firing of the yarn were performed in Comparative Example 2.
CFRC was obtained under the same conditions as .

上記実施例および比較例についてシャルピー衝撃値を測
定した。結果を第1表に示す。
Charpy impact values were measured for the above Examples and Comparative Examples. The results are shown in Table 1.

(スパン60111I  訪問6X6@−2発明の効果 上記の如く、本発明によると安価かつ容易に高靭性高性
能のCFRCを製造することが出来る。
(Span 60111I Visit 6X6@-2 Effects of the Invention As described above, according to the present invention, high toughness and high performance CFRC can be manufactured easily and inexpensively.

Claims (4)

【特許請求の範囲】[Claims] (1)炭素質の微粉末に液体中でイオン化した担体を吸
着させた後、液体中に分散させ炭素繊維基材をこの分散
液に浸漬し、基材と対向電極との間に直流電圧を印加し
、炭素質微粉末および担体を炭素繊維基材に析出させ被
覆物を得、該被覆物を乾燥・加熱・成形・熱処理および
炭化焼成を行って炭素繊維強化炭素複合材料を得る製造
方法において、直流電圧を印加する以前にあらかじめ炭
素繊維基材に塗布されている収束剤を取り除くことを特
徴とする炭素繊維強化炭素複合材料の製造方法。
(1) After adsorbing the ionized carrier in a liquid to carbonaceous fine powder, it is dispersed in the liquid, a carbon fiber base material is immersed in this dispersion, and a DC voltage is applied between the base material and the counter electrode. In the production method, a carbon fiber-reinforced carbon composite material is obtained by depositing carbonaceous fine powder and a carrier on a carbon fiber base material to obtain a coating, and drying, heating, shaping, heat treating and carbonizing the coating. A method for producing a carbon fiber-reinforced carbon composite material, which comprises removing a sizing agent previously applied to a carbon fiber base material before applying a DC voltage.
(2)炭素繊維基材の収束剤を取り除く手法として、加
熱雰囲気、あるいはガスバーナー等の炎を利用すること
を特徴とする特許請求の範囲第1項記載の炭素繊維強化
炭素複合材料の製造方法。
(2) A method for producing a carbon fiber-reinforced carbon composite material according to claim 1, characterized in that a heating atmosphere or a flame from a gas burner is used as a method for removing the sizing agent from the carbon fiber base material. .
(3)使用する炭素繊維基材が単繊維を束ねた、ひも状
のものあるいは、織布、ペーパー、不織布のいずれかで
あることを特徴とする特許請求の範囲第1項又は第2項
記載の炭素繊維強化炭素複合材料の製造方法。
(3) Claim 1 or 2, characterized in that the carbon fiber base material used is a string-like material made by bundling single fibers, or a woven fabric, paper, or non-woven fabric. A method for producing carbon fiber-reinforced carbon composite materials.
(4)使用する担体がポリアクリロニトリル樹脂誘導体
もしくは熱硬化性樹脂誘導体を改質し、電着可能な樹脂
としたものであることを特徴とする特許請求の範囲第1
項、第2項又は第3項記載の炭素繊維強化炭素複合材料
の製造方法。
(4) Claim 1, characterized in that the carrier used is a resin that can be electrodeposited by modifying a polyacrylonitrile resin derivative or a thermosetting resin derivative.
A method for producing a carbon fiber-reinforced carbon composite material according to item 1, 2 or 3.
JP60151008A 1985-07-08 1985-07-08 Production of carbon fiber reinforced composite material Pending JPS6215380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60151008A JPS6215380A (en) 1985-07-08 1985-07-08 Production of carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60151008A JPS6215380A (en) 1985-07-08 1985-07-08 Production of carbon fiber reinforced composite material

Publications (1)

Publication Number Publication Date
JPS6215380A true JPS6215380A (en) 1987-01-23

Family

ID=15509273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60151008A Pending JPS6215380A (en) 1985-07-08 1985-07-08 Production of carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPS6215380A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264968A (en) * 1987-04-20 1988-11-01 東レ株式会社 Metal plating of carbon fiber bundle
JPH01282385A (en) * 1988-05-06 1989-11-14 Toshiba Ceramics Co Ltd Method for surface-treating carbon fiber
JPH0291267A (en) * 1987-12-11 1990-03-30 Pradom Ltd Coating of fiber and production of synthetic material using coated fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264968A (en) * 1987-04-20 1988-11-01 東レ株式会社 Metal plating of carbon fiber bundle
JPH0291267A (en) * 1987-12-11 1990-03-30 Pradom Ltd Coating of fiber and production of synthetic material using coated fiber
JPH01282385A (en) * 1988-05-06 1989-11-14 Toshiba Ceramics Co Ltd Method for surface-treating carbon fiber

Similar Documents

Publication Publication Date Title
EP2543650B1 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
JPH0210115B2 (en)
US3907950A (en) Carbon articles
JPS6215380A (en) Production of carbon fiber reinforced composite material
JPH0848509A (en) Production of carbonaceous porous body
JPH01160868A (en) Production of high-density carbon fiber reinforced carbon composite material
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JPS61231222A (en) Production of carbon fiber reinforced carbon composite material
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JP3058180B2 (en) Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same
JPS62230670A (en) Manufacture of carbon fiber reinforced carbon composite material
JPH05306167A (en) Production of short fiber reinforced c/c composite
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JPH0210116B2 (en)
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPH03197360A (en) Production of carbon fiber-reinforced carbon material
JPH0424310B2 (en)
JP3345437B2 (en) Method for producing carbon fiber reinforced carbon composite
JPH053428B2 (en)
JPH04170366A (en) Production of carbon fiber-reinforced carbon composite material
JPS62270463A (en) Manufacture of carbon fiber reinforced carbon composite material
JPH02252659A (en) Production of three-dimensional carbon fiber-carbon composite material
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material