JPH02252659A - Production of three-dimensional carbon fiber-carbon composite material - Google Patents

Production of three-dimensional carbon fiber-carbon composite material

Info

Publication number
JPH02252659A
JPH02252659A JP1073496A JP7349689A JPH02252659A JP H02252659 A JPH02252659 A JP H02252659A JP 1073496 A JP1073496 A JP 1073496A JP 7349689 A JP7349689 A JP 7349689A JP H02252659 A JPH02252659 A JP H02252659A
Authority
JP
Japan
Prior art keywords
carbon fiber
woven fabric
carbon
fiber
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1073496A
Other languages
Japanese (ja)
Inventor
Tomoyuki Wakamatsu
智之 若松
Makoto Kawase
誠 川瀬
Masatake Sakagami
正剛 阪上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1073496A priority Critical patent/JPH02252659A/en
Publication of JPH02252659A publication Critical patent/JPH02252659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To coat even central part of woven fabric with a sufficient amount of carbon powder by attaching carbonaceous fine powder adsorbed on an ionized carrier to three-dimensional carbon fiber woven fabric subjected to mixed spinning with electrically conductive fiber having higher electrical conductivity than carbon fiber by electrophoresis method and calcining. CONSTITUTION:Carbon fiber such as PAN-base fiber and electrical conductive fiber having higher electrical conductivity than the carbon fiber, such as tungsten fiber are subjected to mixed spinning to give three-dimensional carbon fiber woven fabric. On the other hand, carbonaceous fine powder is adsorbed on an ionized carrier such as PAN-based resin and dispersed into water. The three- dimensional carbon fiber woven fabric is immersed in the dispersion, the woven fabric is used as an anode, a stainless steel base plate as an opposing cathode and DC voltage is impressed to both the electrodes to carry out electrophoresis. The prepared electrodeposition material is carbonized and calcined to give a three-dimensional carbon fiber-carbon composite material.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、三次元炭素繊維で補強された炭素複合材料
を電気泳動浸漬法によって製造する方法に関するもので
あり、特に、均一な組織を持つ三次元炭素繊維−炭素複
合材料を得る方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a carbon composite material reinforced with three-dimensional carbon fibers by an electrophoretic dipping method. The present invention relates to a method for obtaining a three-dimensional carbon fiber-carbon composite material.

[従来の技術] 炭素繊維強化炭素複合材料(以下、CFRCと記載する
)は、主として気相化学蒸着法(以下、CVD法という
)および液相含浸法により製造されている。CVD法は
高温に熱した炭素繊維端村上に、減圧下で炭化水素ガス
を接触させ、炭素原子を基材上に沈積させる方法である
。液相含浸法では、炭素繊維基材に液状レジンまたは溶
融ピッチ等のマトリクス材料を含浸させ、炭化焼成する
[Prior Art] Carbon fiber-reinforced carbon composite materials (hereinafter referred to as CFRC) are mainly manufactured by a vapor phase chemical vapor deposition method (hereinafter referred to as a CVD method) and a liquid phase impregnation method. The CVD method is a method in which carbon fiber ends heated to a high temperature are brought into contact with hydrocarbon gas under reduced pressure to deposit carbon atoms onto a base material. In the liquid phase impregnation method, a carbon fiber base material is impregnated with a matrix material such as liquid resin or molten pitch, and then carbonized and fired.

このとき、マトリクス材料の揮発成分が抜けることによ
り、微細な空孔を生じるため、材料強度を上げるために
は含浸焼成を繰返す必要がある。
At this time, the volatile components of the matrix material escape, creating fine pores, so it is necessary to repeat the impregnation and firing process in order to increase the material strength.

CVD法、含浸法いずれについても、複雑かつ長期の工
程を有し、このことがCFRCの高価格の原因の1つと
なっている。このため、CFRCは高温強度、化学的安
定性等優れた材料特性があるにもかかわらず、現在実用
化されているのは、経済的制約の少ない宇宙航空産業の
分野に限られている。
Both the CVD method and the impregnation method involve complicated and long-term processes, which is one of the reasons for the high price of CFRC. For this reason, although CFRC has excellent material properties such as high-temperature strength and chemical stability, its current practical use is limited to the field of the aerospace industry, where there are few economic constraints.

一方、最近、繊維強化を行なわない通常の炭素材料にお
いては、液状マトリクス材料を用いずに、炭素微粉末を
直接、炭化焼成することにより、簡便に炭素材料を製造
することが行なわれるようになった。この方法は、既に
熱処理を行なったマトリクス材料を用いるために、マト
リクスの揮発分が少ないため、短時間の焼成にて高密度
な炭素材料を得ることができるという利点がある。
On the other hand, recently, ordinary carbon materials that are not reinforced with fibers have been easily manufactured by directly carbonizing and firing fine carbon powder without using a liquid matrix material. Ta. Since this method uses a matrix material that has already been heat treated, the volatile content of the matrix is small, so there is an advantage that a high-density carbon material can be obtained in a short firing time.

そこで、この炭素微粉末を炭素繊維基材に混入し焼成を
すれば直ちに簡便なるCFRCが製造できることは誰し
も期待するところである。しかしながら、実際には炭素
繊維基材に炭素粉末を均一に混合することが非常に困難
であり、良好なCRFCを作ることができない。
Therefore, everyone expects that by mixing this fine carbon powder into a carbon fiber base material and firing it, a simple CFRC can be produced immediately. However, in reality, it is very difficult to uniformly mix carbon powder into a carbon fiber base material, making it impossible to produce a good CRFC.

たとえば、粉末を直接繊維基社中に入れる代わりに、液
体中に分散させスラリー状となし、炭素繊維基材中に侵
入させ、乾燥させる方法は、混入量が安定せず、乾燥時
に脱落等を起こしやすいという欠点がある。また、上記
スラリー法は、濃度が高いと侵入しにくいという問題点
があり、濃度が低いと侵入I7やすいが十分な侵入量が
得られないという問題点があった。
For example, instead of putting the powder directly into the fiber base material, the method of dispersing it in a liquid to form a slurry, allowing it to penetrate into the carbon fiber base material, and then drying it, does not stabilize the amount of mixed powder and may cause it to fall off during drying. The disadvantage is that it is easy to cause. Furthermore, the slurry method has a problem in that when the concentration is high, it is difficult to penetrate, and when the concentration is low, it is easy to penetrate I7, but a sufficient amount of penetration cannot be obtained.

上述のような問題点を解決するために、本出願人会社は
、基材全体に炭素粉末を均一に付着させることを目的と
して、炭素繊維自体に導電性があることに着目し、電気
的に炭素粉末を基材上に析出させる方法を提案した(特
開昭60−54974号公報)。すなわち、いわゆる電
気泳動沈積法を用いることにより、効果的に炭素微粉末
を基材上に析出させる方法である。この方法の製造工程
を第1図に示す。第1図は、炭素材料学会第13回年会
要旨集p、178〜179 (1986)に記載されて
いる。この方法について詳しく記述すると、炭素粉末を
電気泳動させるためには、液体中で荷電させることが必
要である。炭素粉末粒子はそのままでは荷電しないから
、電荷を運ぶ担体を炭素粒子に付着させ、この担体によ
り電気泳動を起こさせる。このときに使用する担体は、
炭素粒子に付着し、かつ液体中で電離するものならばい
ずれも使用可能である、が、担体自身に炭素焼結体に変
化しうる樹脂を用いることにより、より一層高密度化に
効果的である(特開昭61−21973号公報)。また
、炭素粉末は十分に微細化する必要があり、実用的には
40μm以下の粒径である。
In order to solve the above-mentioned problems, the applicant company focused on the fact that carbon fiber itself is electrically conductive, with the aim of uniformly attaching carbon powder to the entire base material. A method of depositing carbon powder on a substrate was proposed (Japanese Patent Laid-Open No. 60-54974). That is, this is a method of effectively depositing fine carbon powder on a substrate by using a so-called electrophoretic deposition method. The manufacturing steps of this method are shown in FIG. FIG. 1 is described in the Abstracts of the 13th Annual Meeting of the Carbon Materials Society, p. 178-179 (1986). To describe this method in detail, in order to cause carbon powder to undergo electrophoresis, it is necessary to charge it in a liquid. Since carbon powder particles are not electrically charged as they are, a charge-carrying carrier is attached to the carbon particles, and electrophoresis is caused by this carrier. The carrier used at this time is
Any material that adheres to carbon particles and ionizes in the liquid can be used, but using a resin that can transform into a carbon sintered body for the carrier itself is more effective in achieving higher density. There is (Japanese Unexamined Patent Publication No. 61-21973). Further, the carbon powder needs to be sufficiently finely divided, and the practical particle size is 40 μm or less.

このようにして、基材上にマトリクス炭素粉末を沈積さ
せた後、乾燥により水等の液体を除去する。その後、3
00〜500℃に加熱し、担体を分解炭化させる。この
段階において、担体の残差を少量含み、炭素繊維品村上
に所望量の炭素マトリクス粉末が付着した、炭素繊維−
炭素粉末混合体が得られる。このようにして作られた混
合体は使用するマトリクス炭素粉末の性質により、常圧
焼成、加圧焼成あるいは両者の組合わせにより焼成し、
CFRCとする。焼成温度はCFRCの用途により異な
るが、通常は1000〜3000℃の範囲である。
After the matrix carbon powder is deposited on the substrate in this manner, liquid such as water is removed by drying. After that, 3
The carrier is decomposed and carbonized by heating to 00 to 500°C. At this stage, carbon fibers containing a small amount of carrier residue and a desired amount of carbon matrix powder attached to the carbon fiber product Murakami are prepared.
A carbon powder mixture is obtained. The mixture thus produced is fired by normal pressure firing, pressure firing, or a combination of both, depending on the properties of the matrix carbon powder used.
CFRC. The firing temperature varies depending on the use of CFRC, but is usually in the range of 1000 to 3000°C.

[発明が解決しようとする課B] ところで、三次元炭素繊維織布を基材として用いる炭素
繊維強化炭素複合材料は、強度が等方的であり、構造材
として最適である。しかしながら、その製造方法に、上
述の電気泳動沈積法を用いた場合、電流密度の高い表層
部においては、密度を高くすることができるが、中心部
分において、高密度化が難しいという問題点があった。
[Problem B to be Solved by the Invention] By the way, a carbon fiber-reinforced carbon composite material using a three-dimensional carbon fiber woven fabric as a base material has isotropic strength and is optimal as a structural material. However, when the above-mentioned electrophoretic deposition method is used as a manufacturing method, it is possible to increase the density in the surface layer where the current density is high, but there is a problem in that it is difficult to increase the density in the central area. Ta.

それゆえに、この発明の目的は、三次元炭素繊維織布を
基材として用いる炭素繊維強化炭素複合材料の製造方法
において、その中心部分においても高密度化を図ること
のできる方法を提供することにある。
Therefore, an object of the present invention is to provide a method for manufacturing a carbon fiber reinforced carbon composite material using a three-dimensional carbon fiber woven fabric as a base material, which can achieve high density even in the central part. be.

[課題を解決するための手段] この発明は、三次元炭素繊維で補強された炭素複合材料
を電気泳動浸漬法によって製造する方法に係るものであ
る。この方法においては、まず、炭素繊維よりも大きな
導電性を有する導電性繊維を混紡させてなる三次元炭素
繊維の織布が準備される。そして、炭素質の微粉末をイ
オン化した担体に吸着させて、これらを適当な液体中に
分散させる。次に、上記三次元炭素繊維の織布を対向電
極とともに前記分散液に浸漬させる。その後、炭素質微
粉末と担体とを上記三次元炭素繊維の織布に析出させる
ために、三次元炭素繊維の織布と対向電極との間に直流
電圧を印加する。その後、炭素質微粉末および担体で被
覆された上記三次元炭素繊維の織布を炭化焼成させる。
[Means for Solving the Problems] The present invention relates to a method of manufacturing a carbon composite material reinforced with three-dimensional carbon fibers by an electrophoretic dipping method. In this method, first, a three-dimensional carbon fiber woven fabric is prepared by blending conductive fibers with higher conductivity than carbon fibers. Then, the carbonaceous fine powder is adsorbed onto the ionized carrier and dispersed in a suitable liquid. Next, the three-dimensional carbon fiber woven fabric is immersed in the dispersion liquid together with the counter electrode. Thereafter, a DC voltage is applied between the three-dimensional carbon fiber woven fabric and the counter electrode in order to deposit the carbonaceous fine powder and the carrier on the three-dimensional carbon fiber woven fabric. Thereafter, the three-dimensional carbon fiber woven fabric coated with the carbonaceous fine powder and the carrier is carbonized and fired.

[作用コ この発明によれば、三次元炭素繊維織布の内部に、炭素
繊維よりも大きな導電性を有する導電性繊維を混紡させ
ているので、電気泳動時において、織布内部での電流密
度を高めることができる。その結果、織布の中心部分に
も、十分な量の炭素粉末を被覆することができる。
[Function] According to this invention, conductive fibers having higher conductivity than carbon fibers are blended inside the three-dimensional carbon fiber woven fabric, so that the current density inside the woven fabric during electrophoresis decreases. can be increased. As a result, the center portion of the woven fabric can also be coated with a sufficient amount of carbon powder.

[実施例] 以下、この発明の実施例につき説明する。[Example] Examples of the present invention will be described below.

(実施例1) (1) 自己焼結性のある平均粒径10μm炭素粉末を
、PAN系樹脂および溶剤とよく混練した後、水に分散
させ、いわゆるアニオン系塗料の状態とした。この状態
で、炭素粉末と樹脂の比率は、重量で、1:1で市った
(Example 1) (1) A self-sintering carbon powder having an average particle size of 10 μm was thoroughly kneaded with a PAN resin and a solvent, and then dispersed in water to form a so-called anionic paint. In this state, the ratio of carbon powder to resin was 1:1 by weight.

(2) 次に、PAN系炭素炭素繊維ィラメント300
0本を用いて、縦糸10層、横糸11層を積層した直交
タイプの三次元織布を作製した。
(2) Next, PAN-based carbon carbon fiber filament 300
An orthogonal type three-dimensional woven fabric in which 10 layers of warp yarns and 11 layers of weft yarns were laminated was produced using 0 yarns.

この三次元織布の作製のときに、該三次元織布の収束糸
のうち、X軸糸中心部の2層、Y軸糸中心部の1層に、
直径的15μmのタングステン繊維を本数にして1%混
紡したものを用いた。こうして作製された三次元織布を
陽極として、ステンレス基板を対向する陰極として、上
記分散液中に浸漬した。そして、陰極−陽極間に約20
Vの電圧を印加し、攪拌しながら約15分間通電した。
When producing this three-dimensional woven fabric, among the convergent yarns of the three-dimensional woven fabric, two layers in the center of the X axis and one layer in the center of the Y axis,
A 1% blend of tungsten fibers with a diameter of 15 μm was used. The three-dimensional woven fabric thus produced was used as an anode, and the stainless steel substrate was used as an opposing cathode and immersed in the above dispersion. And, about 200 mm between the cathode and anode.
A voltage of V was applied and electricity was passed for about 15 minutes while stirring.

(3) 得られたm着体を乾燥し、乾燥物を5枚積層し
、圧縮プレスにより温度的250”C5面圧40kg/
cm2の条件で、40分間加圧成形した。
(3) Dry the obtained m-bonded body, laminate 5 sheets of dried material, and press it with a compression press at a temperature of 250"C5 surface pressure of 40kg/
Pressure molding was carried out for 40 minutes under the condition of cm2.

(4) この後、20kg/cm2の圧力下で、クラン
プしながら、約280℃の温度で、9時間不融化した。
(4) Thereafter, the mixture was made infusible at a temperature of about 280° C. for 9 hours while being clamped under a pressure of 20 kg/cm 2 .

(5) この不融化体を200kg/cm2の面圧下で
、1000℃まで30℃/HR,その後2000℃まで
100℃/HRの昇温速度にて、加圧焼成し、成形体を
得た。
(5) This infusible body was pressure-sintered under a surface pressure of 200 kg/cm 2 at a heating rate of 30° C./HR up to 1000° C. and then at a temperature increase rate of 100° C./HR up to 2000° C. to obtain a molded body.

(比較例) 実施例と同じ分散液を用い、基材としてタングステン繊
維を混紡していない三次元織布に、同様の操作を行なっ
た。
(Comparative Example) Using the same dispersion as in the example, the same operation was performed on a three-dimensional woven fabric in which tungsten fibers were not blended as a base material.

(結果) (1) 実施例および比較例で得たものを焼成後、顕微
鏡にて断面を観察すると、プレス面に対して垂直な糸の
成分は、上下方向に圧縮を受けたために傾斜しているこ
とが認められた、が、強度的には問題ないものであった
(Results) (1) After firing the materials obtained in Examples and Comparative Examples, observing the cross section with a microscope reveals that the thread components perpendicular to the pressing surface are tilted due to compression in the vertical direction. However, there was no problem in terms of strength.

(2) 実施例では、内部までマトリクスが密に存在し
ており、表面付近と内部での差異は認められなかった。
(2) In the example, the matrix existed densely even inside, and no difference was observed between near the surface and inside.

また、繊維部分には混紡したタングステン繊維と炭素と
の反応により生成した、灰色の炭化タングステンが生成
していた。
In addition, gray tungsten carbide was produced in the fiber portion by the reaction between the blended tungsten fiber and carbon.

(3) 比較例では、外部には密にマトリクスが存在し
ているものの、内部になるに従い、マトリクスの密度が
減少しており、炭素繊維収束糸間に空隙の存在が目立っ
た。
(3) In the comparative example, although there was a dense matrix on the outside, the density of the matrix decreased toward the inside, and the presence of voids between the convergent carbon fiber yarns was noticeable.

(4) 比較例、実施例で得た炭素繊維強化炭素複合材
料の気孔率ならびに曲げ強度を測定した。
(4) The porosity and bending strength of the carbon fiber reinforced carbon composite materials obtained in Comparative Examples and Examples were measured.

結果を表■にまとめる。The results are summarized in Table ■.

表1 なお、上記実施例では、導電性繊維として、焼成するこ
とにより、耐熱、耐酸化性を持つ炭化物になるタングス
テン繊維を例示した。焼成により、耐熱、耐酸化性を持
つ炭化物を生成するものを導電性繊維として選ぶことで
、高性能な炭素繊維強化炭素複合材料を得5ことができ
るという効果を奏する。しかしながら、この発明はこれ
に限られるものでない、Tiなどの金属または導電性高
分子から形成される導電性繊維も好ましく使用すること
ができる。
Table 1 In the above examples, tungsten fibers, which become carbide having heat resistance and oxidation resistance, are exemplified as conductive fibers by firing. By selecting a conductive fiber that produces a heat-resistant and oxidation-resistant carbide upon firing, a high-performance carbon fiber-reinforced carbon composite material can be obtained. However, the present invention is not limited thereto, and conductive fibers formed from metals such as Ti or conductive polymers can also be preferably used.

また上記実施例では、炭素繊維収束系中に導電性繊維を
混合したものを用いて、織布を製造する場合について説
明したが、導電性繊維の収束糸と炭素繊維の収束糸とを
用いて、織布を製造してもよい。
Furthermore, in the above embodiment, a case was explained in which a woven fabric was manufactured using a mixture of conductive fibers in a carbon fiber convergence system, but a convergence yarn of conductive fibers and a convergence yarn of carbon fibers were used to manufacture a woven fabric. , a woven fabric may be produced.

さらに、上記実施例では、導電性繊維と炭素繊維の比率
の変化を、1収束糸中において行なった場合を例示した
が、炭素繊維の縦糸または横糸もしくはその両方におい
て、導電性繊維の収束糸数と炭素繊維の収束糸数との比
率を変化させて行なっ°Cもよい。
Furthermore, in the above example, the case where the ratio of conductive fibers and carbon fibers was changed in one convergent yarn was exemplified, but the number of convergent yarns of conductive fibers and/or in the warp or weft of carbon fibers or both It may also be carried out by changing the ratio of carbon fiber to the number of convergent yarns at °C.

以上、本発明を要約すると次のとおりである。The present invention can be summarized as follows.

(1) 特許請求の範囲第1項に記載のものにおいて、
前記導電性繊維として、焼成することにより、耐熱、耐
酸化性を持つ炭化物になるものを使用することを特徴と
する方法。
(1) In what is stated in claim 1,
A method characterized in that, as the conductive fiber, a material that becomes a heat-resistant and oxidation-resistant carbide by firing is used.

(2、特許請求の範囲第j−項に記載のものにおいて、
前記混紡操作は、炭素繊維収束系中に前記導電性繊維を
混合したものを用いて、織布を製造する工程を含むこと
を特徴とする方法。
(2. In what is stated in claim j-),
A method characterized in that the blending operation includes the step of producing a woven fabric using a mixture of the conductive fibers in a carbon fiber convergence system.

(3) 特許請求の範囲第1項に記載のものにおいて、
前記混紡操作は1、前記導電性繊維の収束糸と前記炭素
繊維の収束糸とを用いて、織布を製造する工程を含むこ
とを特徴とする方法。
(3) In what is stated in claim 1,
A method characterized in that the blending operation includes the steps of 1. manufacturing a woven fabric using the convergent yarns of the conductive fibers and the convergent yarns of the carbon fibers.

(4) 特許請求の範囲第1項に記載のむのにおいて、
前記三次元炭素繊維の織布は、その内部とその表層部に
おいて、前記導電性繊維と前記炭素繊維との比率を変化
させて製造されることを特徴とする方法。
(4) As stated in claim 1,
A method characterized in that the three-dimensional carbon fiber woven fabric is manufactured by changing the ratio of the conductive fibers to the carbon fibers in its interior and its surface layer.

(5) 上記第4項に記載のものにおいて、前記導電性
繊維と前記炭素繊維の比率の変化は1収束糸中において
行なわれることを特徴とする方法。
(5) The method described in item 4 above, characterized in that the ratio of the conductive fibers to the carbon fibers is changed in one convergent yarn.

(6) 上記第4項に記載のものにおいて、前記導電性
繊維と前記炭素繊維の比率の変化は、前記炭素繊維の縦
糸または横糸もしくはその両方において、該導電性繊維
収束糸数と該炭素繊維収束糸数の比率を変化させること
によって、行なわれることを特徴とする方法。
(6) In the item described in item 4 above, the change in the ratio of the conductive fibers to the carbon fibers is determined by the number of conductive fiber convergence and the carbon fiber convergence in the warp or weft or both of the carbon fibers. A method characterized in that it is carried out by changing the ratio of the number of threads.

(7) 特許請求の範囲第1項に記載のものにおいて、
前記導電性繊維は、Tf、Wなどの金属または導電性高
分子を含むことを特徴とする方法。
(7) In what is stated in claim 1,
A method characterized in that the conductive fiber contains a metal such as Tf or W or a conductive polymer.

[発明の効果] 以上説明し、たとおり、この発明によれば、三次元炭素
繊維織布の内部に導電性のある繊維を混紡することによ
り、電気泳動時における織布内部での電流密度を高める
ことができる。その結果、織布の中心部分にも十分な量
の炭素粉末を被覆することができる。その結果、均一な
密度を有する三次元炭素繊維−炭素複合材料を得ること
ができるという効果を奏する。
[Effects of the Invention] As explained above, according to the present invention, by blending conductive fibers inside a three-dimensional carbon fiber woven fabric, the current density inside the woven fabric during electrophoresis can be reduced. can be increased. As a result, the center portion of the woven fabric can also be coated with a sufficient amount of carbon powder. As a result, it is possible to obtain a three-dimensional carbon fiber-carbon composite material having uniform density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の炭素/炭素複合材の製造工程を示した
図である。 用  1旨  /jfr ↓ (シ/シノ
FIG. 1 is a diagram showing the manufacturing process of a conventional carbon/carbon composite material. For 1 effect /jfr ↓ (shi/shino

Claims (1)

【特許請求の範囲】  三次元炭素繊維で補強された炭素複合材料を電気泳動
浸漬法によって製造する方法であって、炭素繊維よりも
大きな導電性を有する導電性繊維を混紡させてなる三次
元炭素繊維の織布を準備する工程と、 炭素質の微粉末をイオン化した担体に吸着させて、これ
らを適当な液体中に分散させる工程と、前記三次元炭素
繊維の織布を対向電極とともに前記分散液に浸漬させる
工程と、 前記炭素質微粉末と前記担体とを前記三次元炭素繊維の
織布に析出させるために、前記三次元炭素繊維の織布と
前記対向電極との間に直流電圧を印加する工程と、 前記炭素質微粉末および前記担体で被覆された前記三次
元炭素繊維の織布を炭化焼成する工程と、を備えた、三
次元炭素繊維−炭素複合材料の製造方法。
[Claims] A method for producing a carbon composite material reinforced with three-dimensional carbon fibers by electrophoretic dipping, the method comprising three-dimensional carbon fibers made by blending conductive fibers with higher conductivity than carbon fibers. a step of preparing a woven fabric of fibers; a step of adsorbing carbonaceous fine powder onto an ionized carrier and dispersing them in a suitable liquid; and a step of preparing a woven fabric of three-dimensional carbon fibers together with a counter electrode. a step of immersing the carbonaceous fine powder and the carrier on the three-dimensional carbon fiber fabric, applying a DC voltage between the three-dimensional carbon fiber fabric and the counter electrode; A method for manufacturing a three-dimensional carbon fiber-carbon composite material, comprising the steps of: applying an electric current; and carbonizing and firing the three-dimensional carbon fiber woven fabric coated with the carbonaceous fine powder and the carrier.
JP1073496A 1989-03-23 1989-03-23 Production of three-dimensional carbon fiber-carbon composite material Pending JPH02252659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073496A JPH02252659A (en) 1989-03-23 1989-03-23 Production of three-dimensional carbon fiber-carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073496A JPH02252659A (en) 1989-03-23 1989-03-23 Production of three-dimensional carbon fiber-carbon composite material

Publications (1)

Publication Number Publication Date
JPH02252659A true JPH02252659A (en) 1990-10-11

Family

ID=13519923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073496A Pending JPH02252659A (en) 1989-03-23 1989-03-23 Production of three-dimensional carbon fiber-carbon composite material

Country Status (1)

Country Link
JP (1) JPH02252659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517250A (en) * 1991-01-18 1993-01-26 Soc Europ Propulsion (Sep) Method for compression of porous substrate by using matrix containing carbon
DE10151134B4 (en) * 2000-10-17 2012-07-05 Toyota Jidosha K.K. Diffusion layer for a fuel cell and a method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517250A (en) * 1991-01-18 1993-01-26 Soc Europ Propulsion (Sep) Method for compression of porous substrate by using matrix containing carbon
DE10151134B4 (en) * 2000-10-17 2012-07-05 Toyota Jidosha K.K. Diffusion layer for a fuel cell and a method for producing the same

Similar Documents

Publication Publication Date Title
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
US4659444A (en) Method for producing carbon fiber reinforced carbon material
JP6914098B2 (en) Method for manufacturing SiC / SiC composite material
JPH02252659A (en) Production of three-dimensional carbon fiber-carbon composite material
US4985316A (en) Corrosion resistant fuel cell substrates
Manocha et al. Silica/silica composites through electrophoretic infiltration-Effect of processing conditions on densification of composites
JPH0848509A (en) Production of carbonaceous porous body
US5026402A (en) Method of making a final cell electrode assembly substrate
JPH04170366A (en) Production of carbon fiber-reinforced carbon composite material
JPH0210116B2 (en)
JPS6215380A (en) Production of carbon fiber reinforced composite material
JPH062621B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPS61231222A (en) Production of carbon fiber reinforced carbon composite material
JPS62270463A (en) Manufacture of carbon fiber reinforced carbon composite material
JPH04154662A (en) Production of carbon fiber reinforced carbon composition material
CN114773647B (en) Carbon fiber prepreg and preparation method and application thereof
JPS6054974A (en) Manufacture of carbon composite material
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
RU2159972C1 (en) Material possessing low field-emission threshold
JPH0445322B2 (en)
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPH01160868A (en) Production of high-density carbon fiber reinforced carbon composite material
JPH0624846A (en) Production of carbon fiber reinforced carbon composite material
EP0392749A2 (en) Heat-resistant, corrosion-resistant inorganic composite bodies and process for preparing the same
JPH0424310B2 (en)