JPH0445322B2 - - Google Patents

Info

Publication number
JPH0445322B2
JPH0445322B2 JP58235906A JP23590683A JPH0445322B2 JP H0445322 B2 JPH0445322 B2 JP H0445322B2 JP 58235906 A JP58235906 A JP 58235906A JP 23590683 A JP23590683 A JP 23590683A JP H0445322 B2 JPH0445322 B2 JP H0445322B2
Authority
JP
Japan
Prior art keywords
carbon
base material
carrier
manufacturing
deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58235906A
Other languages
Japanese (ja)
Other versions
JPS60127209A (en
Inventor
Koichi Iwata
Yukinori Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58235906A priority Critical patent/JPS60127209A/en
Publication of JPS60127209A publication Critical patent/JPS60127209A/en
Publication of JPH0445322B2 publication Critical patent/JPH0445322B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 技術分野 この発明は複雑な形状、特に薄肉あるいは薄膜
状の炭素部品の効果的な製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to an effective method for manufacturing carbon parts having complex shapes, particularly thin-walled or thin-film carbon parts.

(ロ) 技術背景 炭素材料はすぐれた耐熱性、化学的安定性、高
温強度等を有する導電性材料であるため、電極、
電子部品、耐熱材料、触媒担体等に広く使用され
ている。
(b) Technical background Carbon materials are electrically conductive materials with excellent heat resistance, chemical stability, high-temperature strength, etc.
Widely used in electronic components, heat-resistant materials, catalyst carriers, etc.

そして最近では電子材料、電極材料として複雑
な形状で薄肉の部分の必要性が増大しつつある。
Recently, the need for thin-walled parts with complex shapes has been increasing as electronic materials and electrode materials.

炭素材料は、通常炭素粉末をピツチ、樹脂等で
結合して焼成するか、焼成可能な炭素粉末を圧縮
成型してから焼成するなどの方法で製造されてい
る。
Carbon materials are usually produced by bonding carbon powder with pitch, resin, etc. and then firing it, or by compression molding sinterable carbon powder and then firing it.

また高密度炭素材料を製造するには、焼成時に
生じた微細な空孔をピツチ等の含浸や焼成を繰返
すことが行なわれている。
Furthermore, in order to produce a high-density carbon material, the fine pores generated during firing are impregnated with pitch or the like and firing is repeated.

従つて複雑な形状の、特に薄肉部品を作ること
は難しく、現状は上記の方法から作られた材料素
材を用いて機械加工によつて製造されているが、
材料の歩留りが低く、加工の途中で破損するとい
う欠点も大きい。
Therefore, it is difficult to make parts with complex shapes, especially thin parts, and currently they are manufactured by machining using materials made by the above method.
It also has the disadvantages of low material yield and breakage during processing.

また、他の従来性として、極性溶剤の粘度等を
一定範囲に設定することにより、セラミツク物質
粉末に電荷をもたせ、電気泳動法によつて該セラ
ミツク物質粉末を支持体上にデポジツトさせる方
法が知られている。
Another conventional method is to set the viscosity of a polar solvent within a certain range to impart an electric charge to the ceramic material powder, and then deposit the ceramic material powder onto a support by electrophoresis. It is being

ところがこの従来法では、セラミツク物質粉末
そのものが電荷をもたず、これに電荷をもたせる
手法として、溶剤の粘度、沸点、誘電率、飽和蒸
気圧を特定するものであるから、使用される溶剤
の範囲が狭少となり、原料粉末を溶剤の選択なし
では自由に組合せるこどができないという欠点が
ある。
However, in this conventional method, the ceramic material powder itself does not have an electric charge, and the method of imparting an electric charge to it involves specifying the viscosity, boiling point, dielectric constant, and saturated vapor pressure of the solvent. The disadvantage is that the range is narrow and raw material powders cannot be freely combined without selecting a solvent.

しかも、溶剤の粘度等の数値が変わることによ
つて、セラミツク物質粉末の電気泳動性が大きく
左右されるという欠点をも有している。
Moreover, it also has the disadvantage that the electrophoretic properties of the ceramic material powder are greatly influenced by changes in the viscosity and other values of the solvent.

(ハ) 発明の開示 この発明は、従来技術による炭素部品の製造に
おける上記した種々の問題点を解決するためにな
されたものであり、電荷をもたない炭素粉末粒子
に、イオン化可能な担体という第3物質を混練付
着させることにより、原料粉末の電気泳動性を大
幅に向上させると共に、原料粉末を液体(溶剤)
の選択なしに組合せることができ、複雑な形状、
特に肉薄の炭素部品を効率よく製造することがで
きる製造方法を提供することを目的とする。
(C) Disclosure of the Invention This invention was made to solve the various problems mentioned above in the production of carbon parts using conventional techniques, and it involves adding an ionizable carrier to uncharged carbon powder particles. By kneading and adhering a third substance, the electrophoretic properties of the raw material powder can be greatly improved, and the raw material powder can be turned into a liquid (solvent).
Can be combined without selection, complex shapes,
It is an object of the present invention to provide a manufacturing method that can efficiently manufacture particularly thin carbon parts.

即ち、この発明は所望の形状の均一な厚さの炭
素部品を作るために、まず所望の形状の導電性基
材を準備し、電気泳動の原理を応用することによ
り、基材上に均一な炭素粉体層を形成させること
を骨子とするものである。
That is, in order to make a carbon part of a desired shape and uniform thickness, this invention first prepares a conductive base material of the desired shape, and applies the principle of electrophoresis to create a uniform carbon part on the base material. The main idea is to form a carbon powder layer.

そしてこの電気泳動によるこの発明の方法によ
れば、粉末をスラリー状にして多孔質基材に脱水
析出させる泥〓鋳込成形法におけるような単なる
物理的なスラリーの付着ではなく、不可逆的に炭
素粉体層を基材上に形成させることができるので
ある。
According to the method of the present invention using electrophoresis, powder is made into a slurry and dehydrated and deposited on a porous base material.Instead of simply physical slurry adhesion as in the mud-casting method, carbon is irreversibly deposited. A powder layer can be formed on the substrate.

以下この発明の方法について詳述する。 The method of this invention will be explained in detail below.

まず、この発明の方法は電気泳動にて基材上に
炭素粉末を沈着させるものであるから、基材とし
てはそれ自体導電性を有するか、または表面に導
電性処理を施したものを使用することが必要であ
る。
First, since the method of this invention deposits carbon powder on a base material by electrophoresis, the base material itself is conductive or has its surface treated to be conductive. It is necessary.

そして粉体粒子を液体中で電気泳動させるため
には、それが液体中で荷電しなければならない。
And in order for a powder particle to be electrophoresed in a liquid, it must become electrically charged in the liquid.

炭素粉末粒子自体はイオン化しないので荷電す
る担体を炭素粉末粒子に付着させて、担体の電気
泳動によつて炭素粉末粒子をも同時に泳動させ、
基材上に炭素粉体層を形成させるものである。
Since the carbon powder particles themselves do not ionize, a charged carrier is attached to the carbon powder particles, and the carbon powder particles are simultaneously migrated by electrophoresis of the carrier.
A carbon powder layer is formed on a base material.

このように、液体中でイオン化可能な担体を炭
素粉末粒子に混練付着させる方法によれば、液体
中において炭素−担体の混練物が電荷をもつた状
態となり、電気泳動性が大幅に向上する。従つ
て、基材上に上記混練物をより迅速にかつ緻密に
沈着させることができるという利点がある。
As described above, according to the method of kneading and adhering an ionizable carrier to carbon powder particles in a liquid, the kneaded carbon-carrier becomes electrically charged in the liquid, and electrophoresis is significantly improved. Therefore, there is an advantage that the kneaded material can be more quickly and densely deposited on the substrate.

この時に使用する担体としては、炭素粉末粒子
に付着し、かつ液体中で電離させ得るものであれ
ばよい。しかし、電気泳動によつて基材上に析出
後、炭素粉末材料の焼結を妨げるものは好ましく
ない。
The carrier used at this time may be any carrier as long as it adheres to the carbon powder particles and can be ionized in the liquid. However, it is undesirable to prevent the sintering of the carbon powder material after it has been electrophoretically deposited on the substrate.

そのような担体としては、通常の電着塗装に使
用されているポリカルボン酸系樹脂(アニオン
系)ポリアミン系樹脂(カチオン系)などが使用
できる。
As such a carrier, polycarboxylic acid resins (anionic), polyamine resins (cationic), etc., which are used in ordinary electrodeposition coatings, can be used.

この担体は炭素粉末粒子に対して一次バインダ
ーとしての機能を兼ねさせることができるが、担
体中に別に一次バインダー成分を添加してやつて
もよい。
This carrier can serve as a primary binder for the carbon powder particles, but a primary binder component may also be added to the carrier.

この発明で原料粉末の主体となる炭素粉末は、
十分に微細化する必要があり、実用的には40μm
以下の粒径として用いることが好ましい。そして
炭素粉末は単独であつてもよく、また焼結助剤と
してホウ素化合物、例えば酸化ホウ素、炭化ホウ
素など、あるいは強度や耐酸化性向上のためにセ
ラミツクス例えば炭化けい素や窒化けい素などの
粉末を混合して使用し、同時に沈着させることが
できる。
The carbon powder that is the main raw material powder in this invention is
Needs to be sufficiently miniaturized, practically 40μm
It is preferable to use the following particle sizes. The carbon powder may be used alone, or a boron compound such as boron oxide or boron carbide may be used as a sintering aid, or powder of ceramics such as silicon carbide or silicon nitride may be used to improve strength and oxidation resistance. can be used in combination and deposited simultaneously.

またこの発明の方法によれば、成分の異なる粉
末粒子を分散させた浴液を別個に用意し、これら
の浴液にて段階的に電着させることにより、成分
の異なる層が積層した沈着層を製造することも可
能である。
Further, according to the method of the present invention, bath liquids in which powder particles having different components are dispersed are prepared separately, and electrodeposition is performed in stages using these bath liquids, thereby forming a deposited layer in which layers having different components are laminated. It is also possible to manufacture

また、この溶液(溶剤)は、炭素粉末粒子に電
荷をもたせるものではないので、原料粉末粒子を
溶液の選択なしで自由に組合せることが可能であ
る。
Furthermore, since this solution (solvent) does not impart an electric charge to the carbon powder particles, it is possible to freely combine raw material powder particles without selecting a solution.

また炭素粉末の沈着層は導電性を有するため、
基材から分離した状態で浴液中で通電し、さらに
各種の沈着層を積層せしめることが可能である。
In addition, since the deposited layer of carbon powder has conductivity,
It is possible to apply electricity in a bath liquid in a state separated from the base material, and further to laminate various deposited layers.

このようにして基材上に沈着させた炭素−担体
の沈着層はその後洗浄、乾燥ののち基材から分離
し、炭化焼成を行なうのである。
The deposited layer of carbon-carrier thus deposited on the substrate is then washed, dried, separated from the substrate, and then carbonized and fired.

担体として熱融着性あるいは熱硬化性の樹脂を
用いる場合には、洗浄乾燥後、加熱して樹脂を熱
融着または熱硬化させて、炭素−担体層の機械的
強度を増大させ、基材からの剥離、焼成等におけ
る取扱いを容易にすることができる。
When a heat-fusible or thermosetting resin is used as a carrier, the resin is heated to heat-fuse or heat-cure after washing and drying, thereby increasing the mechanical strength of the carbon-carrier layer and forming a base material. It can be easily handled during peeling, firing, etc.

また電気泳動沈着は、基材上の導電性の部分に
のみ起るから、基材の一部分を意図的に絶縁皮膜
で覆つておけば、その部分には炭素−担体の混練
物は沈着しない。このことを利用して任意のパタ
ーンの絶縁皮膜を基材上に施してパターン化され
た炭素−担体の混練物による沈着層を作ることが
可能である。
Furthermore, since electrophoretic deposition occurs only on electrically conductive parts of the base material, if a part of the base material is intentionally covered with an insulating film, the carbon-carrier mixture will not be deposited on that part. Utilizing this fact, it is possible to apply an insulating film in an arbitrary pattern on a base material to form a deposited layer of a patterned carbon-carrier kneaded material.

このようにして基材上に炭素−担体の混練物を
沈着させたのち、基材を分離して、沈着物は炭
化、焼成を行うことはさきにのべたが、これをさ
らに詳しく説明すると、基材上に炭素−担体の混
練物を沈着させたのち、これを300〜1000℃に加
熱して沈着層中の担体成分を分解もしくは揮散さ
せる。
As mentioned above, after the carbon-carrier kneaded material is deposited on the base material, the base material is separated, and the deposit is carbonized and fired, but this will be explained in more detail. After a carbon-carrier kneaded material is deposited on a substrate, it is heated to 300 to 1000°C to decompose or volatilize the carrier component in the deposited layer.

その後沈着層の焼結前に該沈着層を基材から分
離し、次いで1000〜2000℃の範囲で常圧または加
圧の焼結を行うのである。
Thereafter, before sintering the deposited layer, the deposited layer is separated from the base material and then sintered under normal pressure or pressure in the range of 1000 to 2000°C.

なお基材の沈着層からの分離は上記した沈着層
の焼結前に限定されるものではなく、予め基材上
に電着する沈着層との密着性を妨げる離型剤等を
塗つておき、最終焼結にて焼結体としてから基材
を分離する方法でもよく、それによつて薄肉炭素
部品を得ることができる。
Note that the separation of the base material from the deposited layer is not limited to the above-mentioned process before sintering the deposited layer, but may be performed by applying a mold release agent or the like that prevents adhesion to the deposited layer electrodeposited on the base material in advance. Alternatively, a method may be used in which the base material is separated after final sintering to form a sintered body, whereby a thin-walled carbon part can be obtained.

また沈着物層と基材の分離除去方法としては、
上述のように予め基材に離型処理を行つておいて
機械的に分離する方法が簡単で好ましいが、この
ほか加熱により溶融、分解、揮散させる方法、あ
るいは化学薬品にて溶解するか、電気化学的に分
離するなどの方法が可能であり、これらは目的に
応じて採用すればよい。例えば導電処理を施した
ワツクス、溶融性樹脂、もしくは低融点の金属は
加熱溶融により除去でき、炭素材料、有機化合物
等は加熱酸化によつて、また金属類は一般に酸処
理等にて分離除去することができる。
In addition, as a method for separating and removing the deposit layer and the base material,
As mentioned above, it is easy and preferable to perform a mold release treatment on the base material in advance and then mechanically separate it, but there are also methods of melting, decomposing, and volatilizing it by heating, dissolving it with chemicals, or using electricity. Methods such as chemical separation are possible, and these may be adopted depending on the purpose. For example, conductive treated wax, melting resin, or low melting point metals can be removed by heating and melting, carbon materials, organic compounds, etc. can be separated and removed by heating and oxidizing, and metals are generally separated and removed by acid treatment, etc. be able to.

なお炭素粉末とともに用いる担体成分は、上述
したように沈着層中から分解もしくは揮散させる
のであるから、その分解残査のない物質あるいは
残査が最終焼結体に悪影響を与えない物質を選択
使用することが好ましい。
Note that the carrier component used with the carbon powder is decomposed or volatilized from the deposited layer as described above, so a material that does not leave any decomposition residue or a material that does not have a negative impact on the final sintered body should be selected and used. It is preferable.

また、この担体成分の分解、揮散を行う300〜
1000℃の加熱の際の雰囲気は空気、酸素、不活性
ガス等を任意に選択すればよい。
In addition, 300 ~
The atmosphere during heating to 1000°C may be arbitrarily selected from air, oxygen, inert gas, etc.

なお、基材と炭素−担体の沈着層を分離する
際、製品形状が立体的形状をしており、剥離によ
つて基材から分離することができない場合は、基
材を金属で作り、化学薬品で溶解する、ワツクス
に導電処理を施したものを基材として使用し、熱
により融解、揮散させて取除くなどの方法により
分離することができるのである。
When separating the base material and the deposited carbon-carrier layer, if the product has a three-dimensional shape and cannot be separated from the base material by peeling, the base material may be made of metal and chemically applied. It can be separated using methods such as using wax that is dissolved with chemicals or subjected to conductive treatment as a base material, and removing it by melting and volatilizing it with heat.

以下実施例により詳細に説明する。 This will be explained in detail below using examples.

実施例 自己焼結性を有するコークス粉末に炭化けい素
粉末、炭化ほう素粉末を夫々5重量%配合し、こ
れをさらに微粉砕して平均粒径2μmの炭素材料粉
末を得た。
Example 5% by weight of each of silicon carbide powder and boron carbide powder was blended with coke powder having self-sintering properties, and this was further finely pulverized to obtain carbon material powder with an average particle size of 2 μm.

この粉末を担体としてのアクリルアマイド系樹
脂とよく混練したのち、これを浴液中に分散させ
た。
This powder was thoroughly kneaded with an acrylamide resin as a carrier, and then dispersed in a bath liquid.

次に表面に導電性グリスを極くうすく塗布した
ステンレス板を陰極とし、そのような処理のない
ステンレス板を陽極として、これらを上記炭素材
料粉末とアクリルアマイド系樹脂よりなる混練物
を分散させた浴液中に浸漬し、浴液を十分に攪拌
混合しながら約10分間、約200Vの電圧を印加し
て陰極板上に約300μm厚の混練物層を形成させ
た。
Next, a stainless steel plate with a very thin coat of conductive grease on its surface was used as a cathode, a stainless steel plate without such treatment was used as an anode, and a kneaded material made of the carbon material powder and acrylamide resin was dispersed in these. The cathode plate was immersed in the bath solution, and a voltage of about 200 V was applied for about 10 minutes while thoroughly stirring and mixing the bath solution to form a kneaded material layer with a thickness of about 300 μm on the cathode plate.

その後この混練物層を形成したステンレス板を
よく水洗乾燥し、担体樹脂を170℃で20分間焼付
けて炭素皮膜層としたのち、ステンレス基板を炭
素皮膜層から除去した。
Thereafter, the stainless steel plate on which this kneaded material layer was formed was thoroughly washed with water and dried, and the carrier resin was baked at 170° C. for 20 minutes to form a carbon film layer, and then the stainless steel substrate was removed from the carbon film layer.

かくして得られた炭素皮膜からなる薄板を500
℃で1時間焼成して揮発分を取除いたのち、不活
性ガス雰囲気下徐々に温度を上げ2000℃まで昇温
させて前記薄板を焼結したところ、緻密で均一な
薄板炭素材料が得られた。
The thin plate made of the carbon film thus obtained was
After firing at ℃ for 1 hour to remove volatile matter, the temperature was gradually increased to 2000℃ under an inert gas atmosphere to sinter the thin plate, and a dense and uniform thin carbon material was obtained. Ta.

Claims (1)

【特許請求の範囲】 1 焼結可能な炭素または炭素を主体とした微粉
末あるいはこれに焼結助剤、結合剤等を混合した
原料粉末に液体中にてイオン化し得る担体を混練
して、該原料粉末粒子に担体を付着せしめた後、
これを液体中に分散させ、該液体中に浸漬した導
電性基材と対向電極との間に直流電圧を印加して
該導電性基材上に炭素−担体の混練物を沈着せし
め、得られた炭素−担体の沈着物から基材を除去
したのち、加熱によつて沈着物中の担体を炭化も
しくは分解、揮発させ、その後焼成、焼結を行う
ことを特徴とする炭素部品の製造方法。 2 基材上に電着した沈着物からの離型を容易に
するための離型処理を予め施した導電性基材を用
いることを特徴とする特許請求の範囲第1項記載
の炭素部品の製造方法。 3 基材の除去を加熱による溶融、分解、揮散に
て行なうことを特徴とする特許請求の範囲第1項
記載の炭素部品の製造方法。 4 基材の除去を化学的あるいは電気化学的処理
による溶解、分解にて行うことを特徴とする特許
請求の範囲第1項記載の炭素部品の製造方法。 5 担体が液体中にてイオン化し得る水溶性また
は水分散性合成樹脂であることを特徴とする特許
請求の範囲第1項記載の炭素部品の製造方法。 6 導電性基材としてその1部分を絶縁被覆した
ものを用いて沈着物の形成を部分的に行い、所望
の模様の沈着物層を得ることを特徴とする特許請
求の範囲第1項記載の炭素部品の製造方法。 7 導電性基材上に沈着物層を形成させるに際
し、沈着物層の導電性を維持しつつ、成分を段階
的に変えた溶液を用いて電着を順次行い、層状に
成分の異なる沈着物質を形成させることを特徴と
する特許請求の範囲第1項記載の炭素部品の製造
方法。
[Scope of Claims] 1. A carrier that can be ionized in a liquid is kneaded with sinterable carbon or a fine powder mainly composed of carbon, or a raw material powder prepared by mixing this with a sintering aid, a binder, etc., After attaching the carrier to the raw material powder particles,
This is dispersed in a liquid, and a DC voltage is applied between a conductive base material immersed in the liquid and a counter electrode to deposit a kneaded material of carbon-carrier on the conductive base material. 1. A method for manufacturing carbon parts, which comprises removing a base material from a carbon-carrier deposit, carbonizing, decomposing, and volatilizing the support in the deposit by heating, and then firing and sintering. 2. The carbon component according to claim 1, which uses a conductive base material that has been subjected to a mold release treatment in advance to facilitate release from electrodeposited deposits on the base material. Production method. 3. The method for manufacturing a carbon component according to claim 1, wherein the base material is removed by melting, decomposing, and volatilizing by heating. 4. The method for manufacturing a carbon component according to claim 1, wherein the base material is removed by dissolving or decomposing it by chemical or electrochemical treatment. 5. The method for manufacturing carbon parts according to claim 1, wherein the carrier is a water-soluble or water-dispersible synthetic resin that can be ionized in a liquid. 6. The method according to claim 1, characterized in that a deposit layer is partially formed using a conductive base material partially coated with an insulating material to obtain a deposit layer with a desired pattern. Method of manufacturing carbon parts. 7 When forming a deposit layer on a conductive substrate, electrodeposition is performed sequentially using solutions with stepwise changes of components while maintaining the conductivity of the deposit layer, and deposited substances with different components are formed in layers. 2. A method of manufacturing a carbon component according to claim 1, characterized in that:
JP58235906A 1983-12-13 1983-12-13 Production of carbon parts Granted JPS60127209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58235906A JPS60127209A (en) 1983-12-13 1983-12-13 Production of carbon parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58235906A JPS60127209A (en) 1983-12-13 1983-12-13 Production of carbon parts

Publications (2)

Publication Number Publication Date
JPS60127209A JPS60127209A (en) 1985-07-06
JPH0445322B2 true JPH0445322B2 (en) 1992-07-24

Family

ID=16992983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58235906A Granted JPS60127209A (en) 1983-12-13 1983-12-13 Production of carbon parts

Country Status (1)

Country Link
JP (1) JPS60127209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041419A1 (en) 2008-10-10 2010-04-15 東洋紡績株式会社 Novel protein having fructosyl valyl histidine oxidase activity and modified product thereof, and use of the protein or the modified product

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110102A (en) * 1987-10-23 1989-04-26 Sintokogio Ltd Preparation of ceramic structure
JPH01128804A (en) * 1987-11-13 1989-05-22 Sintokogio Ltd Manufacture of ceramic structure
KR100314094B1 (en) * 1999-08-12 2001-11-15 김순택 Method for fabricating a carbon nanotube field emitter using electrophoresis process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446208A (en) * 1977-08-26 1979-04-12 Comp Generale Electricite Method of making ceramic parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446208A (en) * 1977-08-26 1979-04-12 Comp Generale Electricite Method of making ceramic parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041419A1 (en) 2008-10-10 2010-04-15 東洋紡績株式会社 Novel protein having fructosyl valyl histidine oxidase activity and modified product thereof, and use of the protein or the modified product

Also Published As

Publication number Publication date
JPS60127209A (en) 1985-07-06

Similar Documents

Publication Publication Date Title
JPS6410468B2 (en)
US2530546A (en) Electrophoretic deposition of insulating coating
US4584074A (en) Capacitors
JPH0445322B2 (en)
US5674373A (en) Method for metallizing non-conductive substrates
JPH02254108A (en) Tantalum sintered body and its production
US3356912A (en) Porous electrode
US3681135A (en) Printed circuits and method of making same
US2913385A (en) Method of coating
US5472583A (en) Manufacture of conical pore ceramics by electrophoretic deposition
JPH01156497A (en) Method forming superconductive article by electrodeposition method
JP2686628B2 (en) Porous conductive material
JPS60127105A (en) Manufacture of ceramics part
GB2158463A (en) Forming ceramic films
US5340779A (en) Manufacture of conical pore ceramics by electrophoretic deposition
KR101151614B1 (en) Manufacturing Method film by Concurrent Multi-component Deposition
JP3136300B2 (en) Conductive ceramics, method for producing conductive ceramics film, method for producing conductive ceramics molded product, composition for forming conductive ceramics, and electric heating element
JPH0424310B2 (en)
JPS6054974A (en) Manufacture of carbon composite material
JPH0479990B2 (en)
JPH0718013B2 (en) Method for producing glassy carbon coating
RU2002580C1 (en) Method of producing porous material
JPH0192397A (en) Production of membranous ceramic
JPS63110681A (en) Manufacture of piezoelectric ceramic component
RU2083064C1 (en) Process of manufacturing current conductive silver coats