JPS60127105A - Manufacture of ceramics part - Google Patents

Manufacture of ceramics part

Info

Publication number
JPS60127105A
JPS60127105A JP23590583A JP23590583A JPS60127105A JP S60127105 A JPS60127105 A JP S60127105A JP 23590583 A JP23590583 A JP 23590583A JP 23590583 A JP23590583 A JP 23590583A JP S60127105 A JPS60127105 A JP S60127105A
Authority
JP
Japan
Prior art keywords
base material
ceramic
carrier
powder
deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23590583A
Other languages
Japanese (ja)
Inventor
岩田 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23590583A priority Critical patent/JPS60127105A/en
Publication of JPS60127105A publication Critical patent/JPS60127105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)技術分野 この発明は複雑な形状、特に薄肉あるいは薄膜状のレラ
ミックス部品の効果的な製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to an effective method for manufacturing Reramix parts of complex shapes, particularly thin walls or thin films.

(ロ)技術背景 レラミックスは金属やプラスチック等と比較して硬質で
あって、づぐれた耐熱性、耐摩耗性、化学的安定性、高
温強度などを有するため、エンジン部品等の耐熱構造材
料、電子部品、触媒担体、耐摩耗性材料への応用が注目
されている。
(b) Technical background Reramix is harder than metals, plastics, etc., and has superior heat resistance, wear resistance, chemical stability, and high-temperature strength, so it is used as a heat-resistant structural material for engine parts, etc. , applications in electronic components, catalyst carriers, and wear-resistant materials are attracting attention.

しかしながら、セラミックスは通常1000〜2200
℃という高温で製造され、かつ非常に硬質材料であるた
めに、機械加工しにくいこともあって上記した各種の使
用目的に応じた複雑な形状や薄肉あるいは薄膜の部品を
製造することは困難とされている。
However, ceramics are usually 1000 to 2200
Because it is manufactured at a high temperature of °C and is an extremely hard material, it is difficult to machine, making it difficult to manufacture parts with complex shapes, thin walls, or thin films for the various purposes mentioned above. has been done.

例えばセラミックス粉末を通常の圧縮成形あるいは静圧
成形等で成形し、常圧もしくは加圧焼結する方法は、大
形の部品を製造づるには適しているが、形状が複雑なも
のを製造しようとすると密度差が生じやすく、特に薄板
の成形は困難である。
For example, the method of molding ceramic powder by ordinary compression molding or static pressure molding, and sintering it under normal pressure or pressure is suitable for manufacturing large parts, but it is also suitable for manufacturing parts with complex shapes. This tends to cause density differences, making it particularly difficult to form thin plates.

泥漿鋳込成形においては、セラミックス粉末を濃厚なス
ラリー状と、し、多孔質の型表面に脱水凝固させるもの
であるが、型材料の選定、凝固したセラミックス粉末の
強度が弱いなどの欠点がある。
In slurry casting, ceramic powder is made into a thick slurry and then dehydrated and solidified on the surface of a porous mold, but it has drawbacks such as poor selection of mold material and weak strength of solidified ceramic powder. .

また通常ドクターブレードとよばれる方法は、基板上に
スラリーを流出させ、基板との間に所定の隙間を設【プ
たすき板(ドクターブレード)でスラリーをすくい取り
、基板上に薄板を形成させる方法であるが、この方法で
は単純な形状の板状部品しか製造できない。
In addition, the method usually called a doctor blade is a method in which slurry is poured onto a substrate, a predetermined gap is created between the substrate and the slurry is scooped out with a doctor blade, and a thin plate is formed on the substrate. However, this method can only produce plate-shaped parts with simple shapes.

さらに、気相蒸着により基板上にセラミックス薄膜を沈
積させる方法は、セラミックス層の成形速度がおそく、
極く薄い膜の製造にしか適していない。
Furthermore, the method of depositing a ceramic thin film on a substrate by vapor phase deposition has a slow forming speed for the ceramic layer;
It is only suitable for producing extremely thin films.

(ハ)発明の開示 この発明は、従来技術によるセラミックス部品の製造に
おける上記した種々の問題点を解消して複雑な形状、特
に薄膜セラミックス部品を製造するべく検討の結果、見
出されたものである。
(C) Disclosure of the Invention The present invention was discovered as a result of studies aimed at solving the various problems mentioned above in manufacturing ceramic parts using conventional techniques, and manufacturing ceramic parts with complex shapes, particularly thin-film ceramic parts. be.

即ち、この発明は、基板上に均一で安定な所望の厚さく
できるだけ薄い)のセラミックス粉体層を形成させるの
に電気泳動の原理を応用し、単なる物理的なスラリーの
付着ではなく、不可逆的にセラミックス粉体層を基材上
に形成させる方法を見出したものである。
That is, this invention applies the principle of electrophoresis to form a uniform and stable ceramic powder layer of a desired thickness (as thin as possible) on a substrate, and uses the principle of electrophoresis to form an irreversible layer of ceramic powder on a substrate, rather than simply depositing a slurry physically. They discovered a method for forming a ceramic powder layer on a base material.

以下この発明の方法を詳細に説明する。The method of this invention will be explained in detail below.

まず、この発明の方法は電気泳動にて基材上にセラミッ
クス粉末を沈着させるものであるから、基材としてはそ
れ自体導電性を有づ”るか、または表面に導電性処理を
施したものが必要である。
First, since the method of this invention deposits ceramic powder on a base material by electrophoresis, the base material itself is conductive or has its surface treated to be conductive. is necessary.

粒子を液体中で電気泳動させるためには、それが液体中
で荷電しな()ればならない。
In order for a particle to be electrophoresed in a liquid, it must become electrically charged in the liquid.

セラミックス粉末はそれ自体イオン化しないので荷電す
る担体をセラミックス粉末に付着させて、その担体の電
気泳動によってセラミックス粉末をも同時に泳動させ基
材上に沈着させるものである。
Since ceramic powder itself does not ionize, a charged carrier is attached to the ceramic powder, and by electrophoresis of the carrier, the ceramic powder is simultaneously migrated and deposited on the base material.

この時に使用りる担体としては、セラミックス粉末に付
着し、かつ液体中でイオン化させ得るものCあればJ:
い。しかし、電気泳動によって基材上に沈着後、セラミ
ックスの焼結を妨げるものは好ましくない。
The carrier used at this time is one that can adhere to the ceramic powder and be ionized in the liquid.
stomach. However, it is undesirable to prevent sintering of the ceramic after electrophoretic deposition on the substrate.

そのような担体としては通常の電着塗装に使用されてい
るポリカルボン酸系樹脂(アニオン系)、ポリアミン系
樹脂(カチオン系)などが使用できる。
As such carriers, polycarboxylic acid resins (anionic), polyamine resins (cationic), etc., which are used in ordinary electrodeposition coatings, can be used.

この担体はセラミックス粉末に対して一次バインダーと
しての機能を兼ねさせることができるが、担体中に別に
一次バインダー成分を添加してやってもよい。
This carrier can serve as a primary binder for the ceramic powder, but a primary binder component may also be added to the carrier.

この発明で原料粉末の主体となるセラミックス粉末は液
体中に安定に分散させ、電気泳動を容易にするために十
分に微粉砕化づる必要があり、実用的には40μm以下
の粒径としたものが好ましい。
In this invention, the ceramic powder, which is the main raw material powder, needs to be sufficiently finely pulverized in order to be stably dispersed in a liquid and to facilitate electrophoresis, and for practical purposes, the particle size should be 40 μm or less. is preferred.

そしてセラミックス粉末は1種類でも、また2種以上の
混合粉末として用いてもよく、さらに必要に応じて焼結
助剤、潤滑剤等の添加物を用いればよい。
One type of ceramic powder may be used, or a mixed powder of two or more types may be used, and additives such as a sintering aid and a lubricant may be used as necessary.

基材上に薄くて均一なレラミックスー担体よりなる沈着
層を得るには通常の電着@利のように沈着層の導電性は
低いことが望ましいが、100μm以」−のややJgい
沈着層を得たい場合には、電気泳動にて得た基材上の沈
着層に、導電性の物質を添加づるなどのlj法で沈着層
を導電性としたのち、さらに電気泳動によりその上にセ
ラミックス−担体の沈着層を析出さければよい。
In order to obtain a thin and uniform deposited layer of Reramix-carrier on a substrate, it is desirable that the conductivity of the deposited layer is low, as in the case of ordinary electrodeposition, but it is preferable that the conductivity of the deposited layer be low, as in the case of ordinary electrodeposition. If desired, make the deposited layer conductive by adding a conductive substance to the deposited layer on the base material obtained by electrophoresis, and then apply ceramics on top of it by electrophoresis. It is only necessary to deposit a deposited layer of the carrier.

このようにして基材上にセラミックス−担体よりなる沈
着層を析出させたのち、乾燥により液体成分を除去する
ことによって、セラミックス−担体まりなる中間製品と
しての沈着層が得られる。
After a deposited layer of ceramic carrier is deposited on the substrate in this manner, the liquid component is removed by drying, thereby obtaining the deposited layer as an intermediate product of ceramic carrier.

次いてこの中間製品(沈着層)を300〜1000℃に
加熱し、沈着層中の担体成分を分解もしくは揮散させる
Next, this intermediate product (deposited layer) is heated to 300 to 1000°C to decompose or volatilize the carrier component in the deposited layer.

その後沈着層の焼結前に該沈着層を導電性基lから分離
してから、原料粉末として用いたセラミックス粉末の種
類および性質に応じた焼結条イ′1を設定し、常圧また
は加圧焼結を行なう。
After that, before sintering the deposited layer, the deposited layer is separated from the conductive group 1, and a sintering strip A'1 is set according to the type and properties of the ceramic powder used as the raw material powder, and Perform pressure sintering.

焼結温度はセラミックスの種類により異なるが通常10
00〜2000℃の範囲が適当である。
The sintering temperature varies depending on the type of ceramic, but is usually 10
A range of 00 to 2000°C is suitable.

なお導電性基Hの沈着層からの分離は上記した沈着層の
焼結前に限定されるものではなく、予め基材上に該基材
上に電着する沈着層との密着性を妨げる離型剤等を塗っ
ておき、最終焼結にて焼結体としてから基材を分離する
方法でもよく、それによっても薄肉セラミックス焼結部
品を得ることができる。
Note that the separation of the conductive group H from the deposited layer is not limited to the above-mentioned process before sintering the deposited layer, but may be performed in advance by separating the conductive groups H from the deposited layer, which prevents adhesion to the deposited layer electrodeposited on the base material. A method may also be used in which a molding agent or the like is applied and the base material is separated after final sintering to form a sintered body, and a thin ceramic sintered part can also be obtained by this method.

しかして基材上に電着した沈着層をその焼結前に基材か
ら分離する上述の方法においでは、基材物質としてはセ
ラミックスと同等の耐熱性を必要としないので広範囲の
材料から選択することができる。
However, in the above-described method in which the deposited layer electrodeposited on the substrate is separated from the substrate before sintering, the substrate material does not need to have the same heat resistance as ceramics, so it is necessary to select from a wide range of materials. be able to.

また基材の分離除去方法としでは、」二連したように予
め基材に離型処理を行っておいて機械的に分1111す
る方法が簡単C好ましいが、このほか加熱により溶融、
分解、揮散させる方法、あるいは化学薬品にて溶解覆る
か、電気化学的に分離するなどの方法が可能であり、こ
れらは目的に応じて採用覆ればよい。
In addition, as a method for separating and removing the base material, it is simple and preferable to perform a mold release treatment on the base material in advance and then mechanically separate the base material in a double manner.
Methods such as decomposition, volatilization, dissolution with chemicals, and electrochemical separation are possible, and these methods may be employed depending on the purpose.

例えば、導電処理を施したワックス、溶融性樹脂、もし
くは低融点の金属は加熱溶融により除去でき、炭素材料
、有機化合物等は加熱酸化によって、また金属類は一般
に酸処理等にて分離除去することができる。
For example, conductive treated wax, melting resin, or low melting point metals can be removed by heating and melting, carbon materials, organic compounds, etc. can be removed by heating and oxidation, and metals can generally be separated and removed by acid treatment, etc. I can do it.

なJ3、レラミックス粉末とともに用いる担体成分は、
上述したように沈着層中から分解もしくは揮散さぜるの
であるから、その分解残有のない物質あるいは残有が最
終焼結体に悪影響を与えない物質を選択使用することが
好ましい。
The carrier components used with J3 and Relamix powder are:
As described above, since it is decomposed or volatilized from the deposited layer, it is preferable to select and use a substance that does not have any decomposition residue or whose residue does not adversely affect the final sintered body.

また、この担体成分の分解、揮散を行う300〜100
0℃の加熱の際の雰囲気はセラミックスおよび担体の種
類に応じて空気、酸素、不活性ガス等を任意に選択ずれ
はよい。
In addition, 300 to 100
The atmosphere during heating at 0° C. may be selected from air, oxygen, inert gas, etc. depending on the type of ceramics and carrier.

要するにこの発明は、導電性基材上に電気泳動によりセ
ラミックス−担体よりなる原料粉末を電着さけて沈着層
を形成し、乾燥させたあとづぐに基材がら沈着層を分離
し、この沈着層を加熱、さらに焼結してセラミックス部
品を1qるものであるが、このほかM IJ上に沈着層
を形成させたあと、そのまま加熱し、担体としての樹脂
を硬化さゼてセラミックス粉末と担体よりなる沈着層の
機械的強度を増大せしめ、その後基材を分離するならば
強固な沈着層とすることができるのである。
In short, this invention involves forming a deposited layer by electrodepositing a raw material powder made of a ceramic carrier on a conductive base material by electrophoresis, and then separating the deposited layer from the base material after drying. After heating and further sintering, 1q of ceramic parts are produced.In addition, after forming a deposited layer on MIJ, the resin is heated as it is, and the resin used as a carrier is hardened, and the ceramic powder and carrier are heated. If the mechanical strength of the deposited layer is increased and the base material is then separated, a strong deposited layer can be obtained.

そしてその1iooo〜2000℃にて焼結し、セラミ
ックス部品を得るのである。
Then, it is sintered at 1000 to 2000°C to obtain ceramic parts.

なおこの発明の方法によれば、さらに下記の利点をも付
加することができるのである。
Furthermore, according to the method of the present invention, the following advantages can also be added.

即ち、電気泳動沈着は基材上の導電性の部分にのみ起る
ものであるから、基材の一部分を意図的に絶縁皮膜で覆
っておけば、その部分には沈着物が得られないのである
In other words, electrophoretic deposition occurs only on conductive parts of the base material, so if a part of the base material is intentionally covered with an insulating film, no deposits will be formed on that part. be.

このことを利用して基材に任意のパターンの絶縁皮膜を
施してパターン化されたセラミックス被覆あるいは薄肉
部品を製造することも可能である。
Utilizing this fact, it is also possible to produce patterned ceramic coatings or thin-walled parts by applying an insulating film in an arbitrary pattern to a base material.

この発明においてセラミックス粉末としては、アルミナ
、ジルコニア、窒化珪素、炭化珪素、サイアロンマグネ
シアなど各種のものを使用することができる。
In this invention, various ceramic powders such as alumina, zirconia, silicon nitride, silicon carbide, and sialon magnesia can be used.

次にこの発明を実施例により詳細に説明する。Next, the present invention will be explained in detail with reference to examples.

実施例1 99重量%のアルミナ粉末を平均粒径2μmに微粉砕し
、これに同様に微粉砕したマグネシア粉末1重量%を加
え均一に混合した。
Example 1 99% by weight of alumina powder was pulverized to an average particle size of 2 μm, and 1% by weight of magnesia powder, which had been similarly pulverized, was added and mixed uniformly.

この混合粉末を担体としてのアクリルアマイド系樹脂と
よく北練りしたのち、これを浴液中に分散させた。
This mixed powder was thoroughly kneaded with an acrylamide resin as a carrier, and then dispersed in a bath liquid.

次に表面に導電性グリスをうずく塗布したステンレス板
を陰極として、そしてカテンレス板を陽極としくこれら
をアクリルアマイド系樹脂と混合粉末の混練物を分散さ
ぜた上記浴液中に浸漬し、浴液を十分に撹拌混合しつつ
約10分間、約200■の電圧を通電して上記陰糧板上
に約50μm厚の混練物層を形成させた。
Next, a stainless steel plate whose surface was coated with conductive grease was used as a cathode, and a curtainless plate was used as an anode, and these were immersed in the above bath solution in which a kneaded product of acrylamide resin and mixed powder was dispersed. While thoroughly stirring and mixing the liquid, a voltage of about 200 μm was applied for about 10 minutes to form a kneaded material layer with a thickness of about 50 μm on the shade plate.

その復この混練物層を形成したステンレス板をよく水洗
、乾燥し、担体樹脂を170℃で20分間焼付けて無機
物皮膜層としたのち、該皮膜層hlらステンレス基板を
取除いた。− かくして得られた無機物皮膜層を600°Cで約1時間
焼成したのら、1500℃で焼結し緻密で均一なアルミ
ナ焼結体を得た。
After that, the stainless steel plate on which the kneaded material layer was formed was thoroughly washed with water and dried, and the carrier resin was baked at 170° C. for 20 minutes to form an inorganic film layer, and the stainless steel substrate was removed from the film layer hl. - The thus obtained inorganic film layer was fired at 600°C for about 1 hour, and then sintered at 1500°C to obtain a dense and uniform alumina sintered body.

実施例2 微粉砕した炭化りい素粉床95重量%とアルミナ微粉末
5重量%混合粉末をエポキシ−アマイド系樹脂とよく混
練したのち、これを浴液中に分散させた。
Example 2 A mixed powder of 95% by weight of finely pulverized silicon carbide powder and 5% by weight of fine alumina powder was thoroughly kneaded with an epoxy-amide resin, and then dispersed in a bath liquid.

次いでこの浴液中に陰極としての銅基板と陽極としての
ステンレス板を浸漬し、浴液をよく攪拌しながら約10
分間、200vの電圧を印加した。
Next, a copper substrate as a cathode and a stainless steel plate as an anode were immersed in this bath solution, and the bath solution was stirred well for about 10 minutes.
A voltage of 200 V was applied for 1 minute.

そして陰極の銅基板上に約40μm厚さの混練物層を形
成させた。
Then, a kneaded material layer with a thickness of about 40 μm was formed on the copper substrate of the cathode.

次いでこの混練物層を形成した銅基板を水洗、乾燥した
のち、180°Cにて60分間担体樹脂層を焼付け50
0μm厚の皮膜層とした。
Next, the copper substrate on which this kneaded material layer was formed was washed with water and dried, and then the carrier resin layer was baked at 180°C for 60 minutes.
The film layer had a thickness of 0 μm.

次に5%濃度のH(Jにて基板の銅板を溶解して皮膜層
のみとしたのち600℃で約1時間焼成し、さらに20
00℃で焼結した緻密で均一な炭化(プい素焼粘体を得
た。
Next, the copper plate of the substrate was melted using H (J) at a concentration of 5%, leaving only the film layer, and then baked at 600°C for about 1 hour, and then
A dense and uniform carbonized (unglazed) viscous body was obtained by sintering at 00°C.

特許出願人 住友電気工業株式会社 代 理 人 弁理士 和 1) 昭Patent applicant: Sumitomo Electric Industries, Ltd. Representative Patent Attorney Kazu 1) Akira

Claims (6)

【特許請求の範囲】[Claims] (1)1種もしくは2種以上のセラミックス粉末を主成
分とし、これに焼結助剤、結合剤等を混合した原F3+
粉末を焼結してセラミックス部品を得るに際し、前記原
料粉末に液体中にてイオン化し嵜る担体を混線付着せし
めたのち、これを液体中に分散させ、該液体中に浸漬し
た導電性基材と対向電極との間に直流電圧を印加して該
導電性基材上に担体付着した原料粉末を沈着せしめ、次
いで沈着物から基材を除去したのち、加熱によって沈着
物中の担体を分解もしくは揮発させ、その後焼成、焼結
を行なうことを特徴とするセラミックス部品の製造方法
(1) Original F3+ whose main component is one or more types of ceramic powder, mixed with sintering aid, binder, etc.
When obtaining ceramic parts by sintering powder, a carrier that is ionized in a liquid is cross-attached to the raw material powder, and then this is dispersed in the liquid, and a conductive base material is immersed in the liquid. A direct current voltage is applied between the electrode and the counter electrode to deposit the raw material powder with the carrier attached onto the conductive base material, and then the base material is removed from the deposit, and the carrier in the deposit is decomposed or heated. A method for manufacturing ceramic parts, characterized by volatilization, followed by firing and sintering.
(2) 基材上に電着した沈着物からの離型を容易にす
るための離型処理を予め施した導電性基材を用いること
を特徴とする特許請求の範囲第1項記載のセラミックス
部品の製造方法。
(2) The ceramic according to claim 1, which uses a conductive base material that has been previously subjected to a mold release treatment to facilitate release from electrodeposited deposits on the base material. How the parts are manufactured.
(3) 基材の除去を加熱による溶融、分解、揮散にて
行なうことを特徴とする特許請求の範囲第1項記載のセ
ラミックス部品の製造方法。
(3) The method for manufacturing a ceramic component according to claim 1, wherein the base material is removed by melting, decomposing, and volatilizing by heating.
(4) 基材の除去を化学的処理による溶解、分解にて
行うことを特徴とする特許請求の範囲第1項記載のセラ
ミックス部品の製造方法。
(4) The method for manufacturing a ceramic component according to claim 1, wherein the removal of the base material is performed by dissolving or decomposing the base material by chemical treatment.
(5) 担体が液体中にてイオン化しうる水溶性または
水分散性合成樹脂であることを特徴とする特許請求の範
囲第1項記載のセラミックス部品の製造方法。
(5) The method for producing a ceramic component according to claim 1, wherein the carrier is a water-soluble or water-dispersible synthetic resin that can be ionized in a liquid.
(6)沈着物層が比抵抗10”Oc+n以下の導電性を
有することを特徴とする特許請求の範囲第1項記載のセ
ラミックス部品の製造方法。 (力 導電性基材としてその一部分を絶縁被覆したもの
を用いて沈着物の形成を部分的に行い、所望の模様の沈
着物層とすることを特徴とする特許請求の範囲第1項記
載のセラミックス部品の製造方法。
(6) A method for manufacturing a ceramic component according to claim 1, characterized in that the deposit layer has a conductivity of 10"Oc+n or less in specific resistance. 2. The method of manufacturing a ceramic component according to claim 1, wherein the deposit is partially formed using the same material to form a deposit layer with a desired pattern.
JP23590583A 1983-12-13 1983-12-13 Manufacture of ceramics part Pending JPS60127105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23590583A JPS60127105A (en) 1983-12-13 1983-12-13 Manufacture of ceramics part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23590583A JPS60127105A (en) 1983-12-13 1983-12-13 Manufacture of ceramics part

Publications (1)

Publication Number Publication Date
JPS60127105A true JPS60127105A (en) 1985-07-06

Family

ID=16992968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23590583A Pending JPS60127105A (en) 1983-12-13 1983-12-13 Manufacture of ceramics part

Country Status (1)

Country Link
JP (1) JPS60127105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055042A (en) * 2001-08-07 2003-02-26 Murata Mfg Co Ltd Method for manufacturing barium titanate film and barium titanate film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446208A (en) * 1977-08-26 1979-04-12 Comp Generale Electricite Method of making ceramic parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446208A (en) * 1977-08-26 1979-04-12 Comp Generale Electricite Method of making ceramic parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055042A (en) * 2001-08-07 2003-02-26 Murata Mfg Co Ltd Method for manufacturing barium titanate film and barium titanate film

Similar Documents

Publication Publication Date Title
US4988648A (en) Homogeneous solid solution material and method of manufacturing the same
US4584074A (en) Capacitors
JPH01133904A (en) Production of superconductors of various shapes
JPS60127105A (en) Manufacture of ceramics part
JPH0345014B2 (en)
JPH0146599B2 (en)
JPS60127209A (en) Production of carbon parts
US3736167A (en) Electroless nickel plating process
US5472583A (en) Manufacture of conical pore ceramics by electrophoretic deposition
US3850733A (en) Method of forming foundry moulds
JPH01156497A (en) Method forming superconductive article by electrodeposition method
JP2000344585A (en) Production of ceramic porous body
JP2686628B2 (en) Porous conductive material
GB2158463A (en) Forming ceramic films
JPH0424310B2 (en)
JPS62136501A (en) Metallized powder for ceramics and metallized paste for ceramics using said powder
US5340779A (en) Manufacture of conical pore ceramics by electrophoretic deposition
JPS60127283A (en) Manufacture of heat resistant part
JPS6054974A (en) Manufacture of carbon composite material
JPS63110681A (en) Manufacture of piezoelectric ceramic component
JPS5879866A (en) Manufacture of fine powder for ceramics
GB2117796A (en) Forming ceramic layers; dielectric structures
JPH11116352A (en) Production of porous ceramic
JPH0192397A (en) Production of membranous ceramic
JPH11171663A (en) Production of ceramic porous body