JPS5879866A - Manufacture of fine powder for ceramics - Google Patents

Manufacture of fine powder for ceramics

Info

Publication number
JPS5879866A
JPS5879866A JP56178303A JP17830381A JPS5879866A JP S5879866 A JPS5879866 A JP S5879866A JP 56178303 A JP56178303 A JP 56178303A JP 17830381 A JP17830381 A JP 17830381A JP S5879866 A JPS5879866 A JP S5879866A
Authority
JP
Japan
Prior art keywords
metal oxide
water
fine particles
ceramics
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56178303A
Other languages
Japanese (ja)
Inventor
小沢 宏
和実 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56178303A priority Critical patent/JPS5879866A/en
Publication of JPS5879866A publication Critical patent/JPS5879866A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 粉末の製法に関する。[Detailed description of the invention] Concerning powder manufacturing method.

アルミナ、シリカをはじめとする金属酸化物であるセラ
ミックスはその優れた耐熱性、耐蝕性、絶縁性等から広
く実用され、更に各種金属の複酸化物などに誘電性、半
導電性、圧電性等の多岐に亘る特殊機能が見出され、ま
すます重要な素材となりつつある。
Ceramics, which are metal oxides such as alumina and silica, are widely used due to their excellent heat resistance, corrosion resistance, and insulation properties. A wide variety of special functions have been discovered in aluminum, and it is becoming an increasingly important material.

に適用する場合焼結温度が著しく高い為に低温で焼結可
能なセラミックスの出現が望まれており、この目的を達
成する為に金属アルコラードを水相に加えて加水分解し
、水に安定に分散可いる。しかし、この方法で金属酸化
物微粒子を安定に製造する為には、工程中低濃度の水分
散液を経る為に、濃縮、乾燥する必要がありエネルギー
を多用せざるを得ず、萬効率での濃縮方法の開発が望ま
れている。
Because the sintering temperature is extremely high when applied to It can be distributed. However, in order to stably produce metal oxide fine particles using this method, it is necessary to concentrate and dry the aqueous dispersion at a low concentration during the process, which requires a large amount of energy and is not efficient. The development of a method for concentrating is desired.

本発明は低温焼結可能な上記のセラミックス用微粉末を
少いエネルギーで高効率に濃縮する新規な製法を提供す
るものである。
The present invention provides a novel manufacturing method for concentrating the above-mentioned fine powder for ceramics that can be sintered at low temperatures with low energy and high efficiency.

又、同時に水溶性高分子を介在させることによって、成
型用バインダーをねりこまずにその捷ま成型に供しうる
セラミックス用微粉末を製造する方法を提供するもので
ある。
At the same time, the present invention provides a method for producing a fine powder for ceramics that can be kneaded and molded without kneading a molding binder by interposing a water-soluble polymer.

すなわち本発明は、1種又は2種以上の金属アルコラー
ドを加水分解して得られる粒径05μ以下の金属酸化物
微粒子の水分散液中に導電物微粒子を濃縮した後乾燥す
ることを特徴とす“るセラミックス用微粉末の製法であ
り、父上記の製法において水分散液中に水溶性高分子を
深加し水溶性高分子を金属酸化物微粒子と同時に電極表
面上に析出せしめて濃縮した後乾燥することを特徴とす
るバインダー成分を含有するセラミックス用微粉末の製
法である。
That is, the present invention is characterized in that conductive fine particles are concentrated in an aqueous dispersion of metal oxide fine particles with a particle size of 05μ or less obtained by hydrolyzing one or more metal alcoholades, and then dried. This is a method for producing fine powder for ceramics, which involves adding a water-soluble polymer deeply into an aqueous dispersion, depositing the water-soluble polymer on the electrode surface at the same time as metal oxide fine particles, and then concentrating the water-soluble polymer. This is a method for producing fine powder for ceramics containing a binder component, which is characterized by drying.

本発明の金属酸化物としては、金属アルコラードを形成
しうる金属のアルコラードから上述のように得られた酸
化物であれは、いずれも利用可能であり、特に1価〜4
価の金属の酸化物が一般的で例えばアルミナ、ンリカ、
酸化マグネシウム、酸化バリウム、酸化ストロンチウム
、酸化鉛、酸化ジルコニウム、酸化ノ・ンニウム、酸化
錫、酸化イツトリウム、酸化トリウム等かあシ、上記金
属のアルコラ−トの一種又は二種以上を混合して、水で
加水分解することによって、粒径が05μ以下で水相に
おいて安定な、酸化物又は2種以上の金属酸化物からな
る複酸化物の分散体(いわゆるゾル)を得ることが出来
る。
As the metal oxide of the present invention, any oxide obtained as described above from a metal alcolade that can form a metal alcolade can be used, and in particular, monovalent to tetravalent oxides can be used.
Oxides of valent metals are common, such as alumina, phosphoric acid,
Magnesium oxide, barium oxide, strontium oxide, lead oxide, zirconium oxide, nitrogen oxide, tin oxide, yttrium oxide, thorium oxide, etc., or a mixture of one or more alcoholates of the above metals, By hydrolyzing with water, it is possible to obtain a dispersion (so-called sol) of an oxide or a double oxide consisting of two or more metal oxides, which has a particle size of 0.5 μm or less and is stable in an aqueous phase.

本発明の金属酸化物の粒径は05μを超えると水相にお
けるゾルが不安定であると共に膜形成時の焼結温度が高
くなり不適当であって、粒径は01μ以下が好ましく、
史には0.002〜005μの粒径を有することが特に
好ましい。
If the particle size of the metal oxide of the present invention exceeds 0.5 μm, the sol in the aqueous phase becomes unstable and the sintering temperature during film formation increases, which is inappropriate, and the particle size is preferably 0.1 μm or less.
It is particularly preferred to have a particle size of 0.002 to 0.005 microns.

本発明の金属酸化物の水分散液は、金属アルコラードの
加水分解によって得られるので坤′H水と同時にアルコ
ールを含有するが、アルコールが水に相客しない場合を
除いてはアルコールを分離除去する必要はない。金属ア
ルコラードに用いられるアルコールとしては、メタノー
ル、エタノール、イソプロパツールがかかる観点からも
最も一般的である。
The aqueous dispersion of a metal oxide of the present invention is obtained by hydrolysis of a metal alcoholide, so it contains alcohol as well as water, but the alcohol is separated and removed unless alcohol is compatible with water. There's no need. From this point of view, methanol, ethanol, and isopropanol are the most common alcohols used in metal alcoholades.

金属酸化物微粒子は通常、その種類に応じて水相中でプ
ラス又はマイナスの表面電位を有するので、導電性物質
を電極として通電すれば、プラス電荷を有する金属酸化
物微粒子は陰極に、又マイナス電荷を有する金属酸化物
微粒子は陰極に電気泳動し、導電性物質表面上に析出し
て表面電荷を失い堆積する。
Metal oxide fine particles usually have a positive or negative surface potential in the aqueous phase depending on their type, so if a conductive substance is used as an electrode and electricity is applied, the metal oxide fine particles with a positive charge will become a negative electrode or a negative electrode. The charged metal oxide fine particles are electrophoresed to the cathode, deposited on the surface of the conductive material, lose their surface charge, and are deposited.

本発明の電極として用いられる導電性非電解質材料とし
ては、通電時に、水相中にイオンを溶出して電気泳動浴
を汚染しない材料であって導電性を有するならば何であ
ってもよく、特に腐蝕性の少い、例えば鉛、チタン合金
、金、鯛、白金、カーボン等多くの材料の使用が可能で
ある。
The conductive non-electrolyte material used as the electrode of the present invention may be any material as long as it has conductivity and does not elute ions into the aqueous phase and contaminate the electrophoresis bath when electricity is applied. It is possible to use many materials that are less corrosive, such as lead, titanium alloy, gold, sea bream, platinum, and carbon.

又、上記の金属酸化物微粒子の水分散液である電気泳動
、浴中に水溶性高分子を加え、電気泳動を行うことも可
能であり、水溶性高分子の添加によって雷気泳動速慶を
コントロールすることも可能である。上記の水溶性高分
子は、金属の水溶性高分子としては、例えばポリビニル
アルコール、ポリアクリルアミド、ポリビニルピロリド
ン、ヒドロキンエチルセルロース、#籾、ホリエチレン
クリコール、エチル七ルロース、メトキシセルロース、
アラビアゴム、ファーガム、ローカストピーンガム等の
ノニオン型水溶性高分子、例えばカルボキンメチルセル
ロース、不飽和カルボン酸塩の単独又は共重合体、ザン
サンガム、カラギーナン等のアニオン性水溶性高分子、
例えばポリアミドアミン、不飽和第4級アンモニウム塩
共重合体、ポリエチレンイミン、カチオン化ポリアクリ
ルアミド、カチオン化澱粉等のカチオン系水溶性高分子
等、各種の水溶性高分子を用いることが出来るが、通常
金との同伴性の良好な種類を、金属酸化物微粒子の種類
に応じ適宜選択して使用する。
It is also possible to perform electrophoresis using an aqueous dispersion of the metal oxide fine particles mentioned above, or by adding a water-soluble polymer to the bath. It is also possible to control. The above-mentioned water-soluble polymers include metal water-soluble polymers such as polyvinyl alcohol, polyacrylamide, polyvinylpyrrolidone, hydroquine ethylcellulose, #hull, polyethylene glycol, ethyl heptylulose, methoxycellulose,
Nonionic water-soluble polymers such as gum arabic, fir gum, and locust pea gum; for example, carboxyl methyl cellulose, unsaturated carboxylic acid salts alone or copolymers; anionic water-soluble polymers such as xanthan gum and carrageenan;
For example, various water-soluble polymers can be used, such as cationic water-soluble polymers such as polyamide amine, unsaturated quaternary ammonium salt copolymer, polyethyleneimine, cationized polyacrylamide, and cationized starch. A type having good entrainment with gold is appropriately selected and used depending on the type of metal oxide fine particles.

これ等水溶性高分子は、得られたセラミックス用微粒子
に均一に混合されており、セラミックス用微粒子の加圧
成型等の工程において、粒子同志のバインダーの役割を
して成型物の形状維持に役立ち、焼結時に分解して消失
する。
These water-soluble polymers are uniformly mixed with the obtained ceramic particles, and in processes such as pressure molding of ceramic particles, they act as binders between the particles and help maintain the shape of the molded product. , decomposes and disappears during sintering.

上記の水溶性高分子の配合骨は、金属酸化物に対し通常
20重量%以下好ましくは10重惰チ以下特に好ましく
は2〜8重量%である。
The content of the above-mentioned water-soluble polymer in the bone is usually 20% by weight or less, preferably 10% by weight or less, and particularly preferably 2 to 8% by weight, based on the metal oxide.

水溶性高分子の配合量が多すぎると、焼結後の収縮率が
大きくなったり焼結したセラミックスの密度が低下した
り、多孔となったりして好ましくない場合が多いミ 電気泳動け、通常10〜250ボルトの直流、電源4−
用いて所望の時間、電極を浸漬して行う。
If the amount of water-soluble polymer is too large, the shrinkage rate after sintering will increase, the density of the sintered ceramic will decrease, or it will become porous, which is often undesirable. 10-250 volts DC, power supply 4-
The electrodes are immersed for a desired period of time.

電極上に析出した金属酸化物又は金属酸化物と水溶性高
分子の混合物をかきとり、焼結のおこら々い温度で乾燥
して残留する水分又はアルコール等を除去して本発明の
セラミックス用微粉末をうる。
The metal oxide or the mixture of metal oxide and water-soluble polymer deposited on the electrode is scraped off and dried at a temperature suitable for sintering to remove residual moisture or alcohol, thereby producing the fine powder for ceramics of the present invention. get it.

電極は、例えばロール状又はベルト状等にして、一部が
雷気泳動浴に浸漬し、露出部に析出した金属酸化物のか
きとり装置を接続してロール又はベルトを駆動させ、連
続的に析出した金属酸化物をかきとる方法等、連続的に
析出金属酸化物を電気泳動浴からとりだす方法が通常は
け好ましい。
The electrode is shaped into a roll or a belt, a part of which is immersed in a lightning electrophoresis bath, and a device is connected to scrape off the metal oxide deposited on the exposed part to drive the roll or belt to continuously deposit the metal oxide. A method of continuously removing the precipitated metal oxide from the electrophoresis bath, such as a method of scraping off the deposited metal oxide, is usually preferred.

上記した本発明の方法によって得られたセラミックス用
微粉末は低温で焼結可能で、す゛ぐれたセラミックス製
品を得ることが出来る。
The fine powder for ceramics obtained by the method of the present invention described above can be sintered at low temperatures, and excellent ceramic products can be obtained.

次に実施例を示し本発明を具体的に説明するが本発明は
実施例に限定されるものではない。
Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the Examples.

また以下に於てチは特記なければ重量による。In addition, unless otherwise specified below, parts are based on weight.

実施例1 204yのトリイソプロポキシアルミニウムを2.00
0fの80℃のイオン交換水中に攪拌しながら注ぎこみ
1時間攪拌を続は更に1N−塩酸200fを添加し、9
8℃で48時間攪拌し、加水分解を行い、アルミナの水
分散液を得た。走査型電子顕微鏡により測定したアルミ
ナの平均粒径は002μで水分散液中のアルミナ濃度は
約2チ、父系中に含有するイソプロパツールは約8重量
%であった。
Example 1 2.00% of 204y triisopropoxyaluminum
Pour into 80°C ion-exchange water at 0f with stirring and stir for 1 hour.Add 200f of 1N hydrochloric acid,
The mixture was stirred at 8° C. for 48 hours to perform hydrolysis and obtain an aqueous alumina dispersion. The average particle size of alumina measured by a scanning electron microscope was 0.02 μm, the alumina concentration in the aqueous dispersion was about 2 μm, and the isopropanol contained in the parent system was about 8% by weight.

上記のアルミナ水分散液を、磁製容器に入れ、陰極とし
て円筒ドラム状の鉛製電極を半分液中に浸し陽極として
プレート状の鉛製電極を用い、100ポルトの直流電源
に接続して通電した。円筒ドラムは1分間2回転の速度
で暉転し、液に浸っていない部分にブレード型のカキと
り装置をとシつけ、円筒ドラム上に析出したペースト状
アルミナをかきとった。
The above alumina aqueous dispersion was placed in a porcelain container, a cylindrical drum-shaped lead electrode was half immersed in the liquid as a cathode, a plate-shaped lead electrode was used as an anode, and the electrode was connected to a 100-port DC power source to energize it. did. The cylindrical drum was rotated at a speed of 2 revolutions per minute, and a blade-type oyster remover was applied to the part not immersed in the liquid to scrape off the paste-like alumina deposited on the cylindrical drum.

かきとられたペースト状アルミナの揮発成分(水及びイ
ンプロパツール)は約40重量%であった。このペース
ト状アルミナを110℃の熱風乾燥機で30分間加熱し
たところ、揮発成分は02チのアルミナ微粉末が得られ
、−次粒子の粒径は002μで、水分散液中のアルミナ
の粒体と変化はみられなかった。
The volatile components (water and impropatul) of the scraped alumina paste were approximately 40% by weight. When this paste-like alumina was heated in a hot air dryer at 110°C for 30 minutes, fine alumina powder with a volatile component of 0.02μ was obtained, and the particle size of the -order particles was 0.02μ. No change was observed.

このアルミナ微粉末20?に5チポリビニルアルコール
水溶液209を加えてねりあわせた後110℃で1時間
乾燥してから、100 Kg/c、のプレスで厚さ2朋
のシートに成型し、電、気炉中900℃で1時間焼結を
行ったところ、アルミナ粒子同志は十分焼結し良質のセ
ラミックシートが得られた。
This alumina fine powder 20? After adding 5% polyvinyl alcohol aqueous solution 209 and kneading it, it was dried at 110°C for 1 hour, then molded into a sheet with a thickness of 2 mm using a press at 100 kg/c, and heated at 900°C in an electric and air furnace. When sintering was performed for 1 hour, the alumina particles were sufficiently sintered to obtain a high quality ceramic sheet.

実施例2 実施例1の水分散液1000fに5チポリビニルアルコ
ール水溶液209を加え、実施例1と全く同様にして電
気泳動を行い円筒ドラム状の電極上に析出したペースト
状アルミナを得た。
Example 2 To 1000 f of the aqueous dispersion of Example 1, 209 aqueous polyvinyl alcohol solutions were added, and electrophoresis was carried out in exactly the same manner as in Example 1 to obtain a paste-like alumina deposited on a cylindrical drum-shaped electrode.

ペースト状アルミナは、アルミナ分55チボリビニルア
ルコール6チ水36チ及びイソプロパツール3%であっ
た。次に実施例1と同様にして乾燥を行ったところ、揮
発分は0.3チのアルミナ微粉末をえた。このアルミナ
微粉末を、100V4/cdのプレスで厚さ21itの
シートに成型し、電気炉中900℃で1時間焼結を行っ
たところアルミナ粒子同志は十分焼結し、良質のセラミ
ックシートが得られた。
The paste-like alumina had alumina content of 55 parts, 6 parts of tivolivinyl alcohol, 36 parts of water, and 3% isopropanol. Next, drying was carried out in the same manner as in Example 1, and fine alumina powder with a volatile content of 0.3 was obtained. This fine alumina powder was formed into a 21-it thick sheet using a press at 100 V4/cd, and sintered in an electric furnace at 900°C for 1 hour. The alumina particles were sufficiently sintered together and a high-quality ceramic sheet was obtained. It was done.

実施例6 152fのテトラメトキシシランを1.0001の90
℃の50.2%ポリ(アクリルアミドアクリル酸アンモ
ン“))イオン交換水溶液中に攪拌しながら注ぎこみ、
1時間攪拌を続けつつ更に14チアンモニア水100f
を加え90℃で24時間加水分解を行い、シリカの水分
散液を得た。シリカの平均粒径は004μで水分散液中
のシリカ濃度は約5チであり、父系中に含有するメチル
アルコールは約11チ、であった。〔′刈アクリルアミ
ド単位90%、アクリル酸アンモ/単位10%) 上記のシリカ水分散液を、磁性容器に入れ、陽極として
円筒ドラム状の鉛製電極を半分液中に浸し、陰極として
プレート状の鉛製電極を用い、80ボルトの直流電源に
接続して通電した。
Example 6 152f of tetramethoxysilane was added to 1.0001 of 90
Pour into a 50.2% poly(acrylamide ammonium acrylate) ion exchange aqueous solution at ℃ with stirring,
Continue stirring for 1 hour and add 100f of 14 thiammonia water.
was added to perform hydrolysis at 90°C for 24 hours to obtain an aqueous silica dispersion. The average particle size of silica was 0.04μ, the silica concentration in the aqueous dispersion was about 5T, and the methyl alcohol contained in the parent was about 11T. [90% of the silica acrylamide unit, 10% of the ammonium acrylate unit] The above silica aqueous dispersion was placed in a magnetic container, a cylindrical drum-shaped lead electrode was half immersed in the solution as an anode, and a plate-shaped electrode was half immersed in the solution as a cathode. Electricity was applied by connecting to an 80 volt DC power source using lead electrodes.

実施例1と同様にして陽極である円筒ドラム上に析出し
たペースト状シリカをかきとった。
In the same manner as in Example 1, the paste-like silica deposited on the cylindrical drum serving as the anode was scraped off.

かきとられたペースト状シリカの揮発成分(水及びメチ
ルアルコール)は約40%であった。
The volatile components (water and methyl alcohol) of the scraped silica paste were about 40%.

このペースト状シリカを実施例1と同様にして乾燥し、
揮発分0.2チのシリカ微粉末をえた。
This paste-like silica was dried in the same manner as in Example 1,
A fine silica powder with a volatile content of 0.2% was obtained.

このシリカ微粉末を、実施例2と同様にしてプレスし、
厚さ2朋のシートを成型し、1000℃で1時間電気炉
による焼結を行ったところシリカ粒子同志は十分焼結し
良好なセラミックシートが得られた。
This fine silica powder was pressed in the same manner as in Example 2,
When a sheet with a thickness of 2 mm was molded and sintered in an electric furnace at 1000° C. for 1 hour, the silica particles were sufficiently sintered together and a good ceramic sheet was obtained.

実施例4 2842のテトライソプロポキシチタンと2551のジ
イソプロポキシバリウムを5000fの98℃のイオン
交換水中に攪拌しながら注ぎこみ1時間攪拌を続けつつ
更に1N−HCl 2009を加え、98℃で48時間
加水分解を行い、チタン酸バリウムの水分散液を得た。
Example 4 2842 tetraisopropoxy titanium and 2551 diisopropoxy barium were poured into 98°C 5000f ion-exchanged water with stirring, and while stirring was continued for 1 hour, 1N-HCl 2009 was added, and the mixture was heated at 98°C for 48 hours. Hydrolysis was performed to obtain an aqueous dispersion of barium titanate.

チタン酸バリウムの平均粒径は0.02μで水分散液中
のチタン酸バリウム濃度は約4%であり、父系中に含有
するイソプロパツールは約6チであった。
The average particle size of barium titanate was 0.02 μ, the concentration of barium titanate in the aqueous dispersion was about 4%, and the isopropanol contained in the parent system was about 6 μ.

上記のチタン酸バリウム水分散液を磁製容器に入れ、陰
極として円筒ドラム状の鉛製電極を半分液中に浸し、陽
極としてプレート状の鉛製電極を用い、150ボルトの
直流電源に接続して通電した。実施例1と同様にして電
気泳動を行い、円筒ドラム状の電極上に析出したペース
ト状チタン酸バリウムを得た。実施例1と同様にして乾
燥を行ったところ、揮発分はO,45%のチタン酸バリ
ウム微粉末をえた。このチタン酸ノくリウム微粉末20
fに1チのヒドロキシエチルセルロース水溶液201を
加えてねりあわせた電気炉中で焼結を行ったところチタ
ン酸ノくリウム同志は十分焼結し良質のセラミックシー
トが得られた。
The above barium titanate aqueous dispersion was placed in a porcelain container, a cylindrical drum-shaped lead electrode was half immersed in the liquid as a cathode, and a plate-shaped lead electrode was used as an anode, connected to a 150 volt DC power source. The power was turned on. Electrophoresis was carried out in the same manner as in Example 1 to obtain barium titanate paste deposited on a cylindrical drum-shaped electrode. When drying was carried out in the same manner as in Example 1, fine barium titanate powder containing 45% O and volatile content was obtained. This notrium titanate fine powder 20
When sintering was carried out in an electric furnace prepared by adding 1 liter of hydroxyethyl cellulose aqueous solution 201 to f, the norium titanate was sufficiently sintered and a high quality ceramic sheet was obtained.

特許出願人 三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 11種又は2種以上の金属アルコラードを加水分解して
得られる粒径0.5μ以下の金属酸化物微粒子の水分散
液中に導電性非電解質からなる電極を浸漬通電し、金属
酸化物微粒子を電気泳動析出せしめ電極表面上に金属酸
化物微粒子を濃縮した後、乾燥することを特徴とするセ
ラミックス用微粉末の製法。 2水分散液中に水溶性高分子を添加し、水浴性高分子を
金属酸化物微粒子と同時に′a電極表面上析出せしめて
濃縮した後、乾燥する、バインダー成分を含有すること
を特徴とする特許請求の範囲第1項記載のセラミックス
用微粉末の製法。
[Claims] An electrode made of a conductive non-electrolyte is immersed in an aqueous dispersion of metal oxide fine particles with a particle size of 0.5μ or less obtained by hydrolyzing 11 or more metal alcoholades and energized. A method for producing fine powder for ceramics, which comprises electrophoretically depositing metal oxide fine particles, concentrating the metal oxide fine particles on the surface of an electrode, and then drying. 2. A water-soluble polymer is added to an aqueous dispersion, and the water-bathable polymer is precipitated on the electrode surface at the same time as the metal oxide fine particles, concentrated, and then dried.It is characterized by containing a binder component. A method for producing a fine powder for ceramics according to claim 1.
JP56178303A 1981-11-09 1981-11-09 Manufacture of fine powder for ceramics Pending JPS5879866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56178303A JPS5879866A (en) 1981-11-09 1981-11-09 Manufacture of fine powder for ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56178303A JPS5879866A (en) 1981-11-09 1981-11-09 Manufacture of fine powder for ceramics

Publications (1)

Publication Number Publication Date
JPS5879866A true JPS5879866A (en) 1983-05-13

Family

ID=16046109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56178303A Pending JPS5879866A (en) 1981-11-09 1981-11-09 Manufacture of fine powder for ceramics

Country Status (1)

Country Link
JP (1) JPS5879866A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139403A (en) * 1983-12-28 1985-07-24 新技術事業団 Method and device for manufacturing ceramics green sheet
JPS63242917A (en) * 1987-03-27 1988-10-07 Agency Of Ind Science & Technol Production of heat resistant alumina complex oxide
JP2014144899A (en) * 2013-01-30 2014-08-14 Noritake Co Ltd Nanoparticulate-shaped barium titanate and method for manufacturing the same
JP2014198649A (en) * 2013-03-29 2014-10-23 日産化学工業株式会社 Method for manufacturing silica sol
JP2015067518A (en) * 2013-09-30 2015-04-13 株式会社ノリタケカンパニーリミテド Barium titanate fine particle, dispersoid containing the same, and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833460A (en) * 1971-08-30 1973-05-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833460A (en) * 1971-08-30 1973-05-10

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139403A (en) * 1983-12-28 1985-07-24 新技術事業団 Method and device for manufacturing ceramics green sheet
JPH0140728B2 (en) * 1983-12-28 1989-08-31 Shingijutsu Kaihatsu Jigyodan
JPS63242917A (en) * 1987-03-27 1988-10-07 Agency Of Ind Science & Technol Production of heat resistant alumina complex oxide
JPH0333644B2 (en) * 1987-03-27 1991-05-17 Kogyo Gijutsuin
JP2014144899A (en) * 2013-01-30 2014-08-14 Noritake Co Ltd Nanoparticulate-shaped barium titanate and method for manufacturing the same
JP2014198649A (en) * 2013-03-29 2014-10-23 日産化学工業株式会社 Method for manufacturing silica sol
JP2015067518A (en) * 2013-09-30 2015-04-13 株式会社ノリタケカンパニーリミテド Barium titanate fine particle, dispersoid containing the same, and production method thereof

Similar Documents

Publication Publication Date Title
Zhitomirsky Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects
JP2724248B2 (en) Method for producing fluorine-doped tin oxide powder
US5211822A (en) Process for the production of a semipermeable membrane on a porous conductive support by electrophoresis
JPS60226524A (en) Electroconductive polymer
JPS5879866A (en) Manufacture of fine powder for ceramics
JPH0146599B2 (en)
EP0018069B1 (en) Highly active silver cathode, preparation of same and use to make 2,3,5-trichloropyridine and/or 2,3,5,6-tetrachloropyridine
CN102389715B (en) Method for preparing porous inorganic membrane by particle sintering technology assisted by carbon skeleton
JP2560490B2 (en) Method for producing zirconia sol
JP2900358B2 (en) Zirconia sol
US5340779A (en) Manufacture of conical pore ceramics by electrophoretic deposition
JPS5974299A (en) Production of alumina product
EP0366934B1 (en) Zirconia sol and method for making the same
JP3381429B2 (en) Method for producing substrate with metal oxide film
JP4364999B2 (en) Preparation of electrophoresis bath solution
JPH01132789A (en) Resin molded electrolytic electrode and its production
JPH0280319A (en) Production of lithium aluminate having large specific surface area
JP2547936B2 (en) Sealing method for thermal spray coating and coating composite
JP5009552B2 (en) Manufacturing method of ceramic molded body
JP4068355B2 (en) Layered niobium oxide release layer gel and process for producing the same
RU1791852C (en) Suspension for fabrication of current conducting coating
JPS6336808B2 (en)
JP2006265571A (en) Article having ceramic particles oriented and layered thereon, and production method therefor
JPS63233088A (en) Manufacture of yttria stabilized zirconia thin film tightly adhered to substrate
KR100318564B1 (en) Manufacturing method of ceramic fiber