JP2006265571A - Article having ceramic particles oriented and layered thereon, and production method therefor - Google Patents

Article having ceramic particles oriented and layered thereon, and production method therefor Download PDF

Info

Publication number
JP2006265571A
JP2006265571A JP2005080893A JP2005080893A JP2006265571A JP 2006265571 A JP2006265571 A JP 2006265571A JP 2005080893 A JP2005080893 A JP 2005080893A JP 2005080893 A JP2005080893 A JP 2005080893A JP 2006265571 A JP2006265571 A JP 2006265571A
Authority
JP
Japan
Prior art keywords
ceramic
ceramics
suspension
flat particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005080893A
Other languages
Japanese (ja)
Inventor
Nobuyuki Iimura
修志 飯村
Masaru Sato
賢 佐藤
Yoshio Hasegawa
良雄 長谷川
Masashi Awazu
賢史 粟津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ART KAGAKU KK
Ibaraki Prefecture
Hitachi Regional Technical Support Center
Original Assignee
ART KAGAKU KK
Ibaraki Prefecture
Hitachi Regional Technical Support Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ART KAGAKU KK, Ibaraki Prefecture, Hitachi Regional Technical Support Center filed Critical ART KAGAKU KK
Priority to JP2005080893A priority Critical patent/JP2006265571A/en
Publication of JP2006265571A publication Critical patent/JP2006265571A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an article having flat particles oriented in a fixed direction and deposited thereon. <P>SOLUTION: The article having ceramic particles oriented and layered thereon is produced by the steps of: suspending flat particles of a ceramic, a composite ceramic, a ceramic having a structure containing one or both of an organic matter and a metal in its one part, or a ceramic having its surface modified with one or both of an organic matter and a metal, in a solvent; inserting an electroconductive material in the suspension as a substrate; and applying an electric field onto the suspension to deposit the flat particles in the suspension on the substrate while orienting them. It is possible to deposit the flat particles with higher efficacy by adding a solution of a solated ceramic to the suspension. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、縦横の幅と厚み方向の差が大きなセラミックス系の偏平状粒子を、水やアルコール等の溶媒に懸濁させ、この懸濁液に導電性基板を挿入し電場を印加する電気泳動電着法により、各粒子を一定の方向に配向させて堆積させたセラミック系粒子配向積層体とそれを製造する方法に関する。   In the present invention, electrophoresis is performed by suspending ceramic-based flat particles having a large vertical and horizontal width and thickness direction difference in a solvent such as water or alcohol, inserting a conductive substrate into the suspension, and applying an electric field. The present invention relates to a ceramic particle oriented laminated body in which particles are oriented and deposited in a certain direction by an electrodeposition method and a method for producing the same.

粉末原料を用いたセラミックスの成形は、乾式のプレス成形や湿式の鋳込み成形が一般的であり、ほとんどの工業製品はこれらの手法により作製されている。
また、セラミックスの電気泳動電着法は、緻密な薄膜からバルクまで厚さの制御された堆積層の作製が容易であること、異なる数種の懸濁液を用い交互に堆積させることで積層セラミックスを合成できること、懸濁液の組成を変化させることにより傾斜組成材料の作製が可能であることなどの特徴を持ち、様々な機能または構造セラミックスのプロセッシングに応用できる手法として研究されている。
As for the molding of ceramics using powder raw materials, dry press molding and wet casting are generally used, and most industrial products are produced by these methods.
In addition, the electrophoretic electrodeposition method for ceramics makes it easy to produce a deposition layer with a controlled thickness from a dense thin film to a bulk, and by alternately depositing several different types of suspension, Has been studied as a technique that can be applied to various functions or processing of structural ceramics, and the like.

例えばこの種の電気泳動電着法を用いたセラミック層の製造方法としては、例えば特開2002−88500号公報に記載されたように、結晶配向性のある層状化合物を有機溶媒中で直流電圧又は交流電圧を印加して電気泳動させて基板上に電析させ、電析した層状化合物を薄膜とする結晶配向層状化合物膜の作製方法や、特開平6−63916号公報に記載されたように、ポリアミド系界面活性剤を含有する有機溶媒にセラミック原料粒子を分散させてなるスラリーに、所定の形状を有する着電極及び対極電極を浸漬し、低電圧を印加して帯電するセラミック原料粒子を前記着電極上に電着させるセラミック成形体の製造方法等が既に公開されている。   For example, as a method for producing a ceramic layer using this type of electrophoretic electrodeposition method, as described in, for example, JP-A-2002-88500, a layered compound having crystal orientation is subjected to a direct current voltage or an organic solvent. As described in JP-A-6-63916, a method for producing a crystallographic layered compound film in which an alternating voltage is applied and electrophoresed to deposit on a substrate, and the deposited layered compound is a thin film, The ceramic raw material particles that are charged by applying a low voltage are immersed in a slurry obtained by dispersing ceramic raw material particles in an organic solvent containing a polyamide-based surfactant, and the electrode and the counter electrode having a predetermined shape are immersed therein. A method for producing a ceramic molded body to be electrodeposited on an electrode has already been disclosed.

これらのセラミックシートの製造方法では、セラミック粒子として球状粒子或いは方形状粒子を使用している。これに対し、一方向の寸法に対して2方向の寸法が大きな偏平状の粒子は配向させることが難しく、そのまま使用すると製品材質が不均一になるため、工業製品の製造技術としては確立されていない。   In these ceramic sheet manufacturing methods, spherical particles or rectangular particles are used as ceramic particles. On the other hand, flat particles having a large size in two directions with respect to a size in one direction are difficult to orient, and if used as they are, the material of the product becomes non-uniform. Absent.

偏平粒子を用いたセラミックシートを工業製品用の材料として活用するための製造技術として確立するためには、粒子の向きをそろえて製品材質の均一性を高める必要がある。また、球状粒子を原料として作製した成形体は、粒径が小さくなると成形が難しくなり、湿式成形の場合は表面に付着した溶媒の影響で成形後の体積収縮に伴い乾燥割れを生じるなどの問題があった。このため、機能性材料の開発に着目されているナノサイズ微粒子の成形は非常に困難な状況にある。   In order to establish a manufacturing technique for utilizing a ceramic sheet using flat particles as a material for an industrial product, it is necessary to align the direction of the particles and improve the uniformity of the product material. In addition, moldings made from spherical particles as raw materials become difficult to mold when the particle size is small. In the case of wet molding, problems such as dry cracking occur due to volume shrinkage after molding due to the influence of the solvent attached to the surface. was there. For this reason, it is very difficult to form nano-sized fine particles that are attracting attention for the development of functional materials.

特開2002−88500号公報JP 2002-88500 A 特開平6−63916号公報JP-A-6-63916 特開2004−209780号公報JP 2004-209780 A 特開2003−183891号公報JP 2003-183891 A 特開2001−316874号公報JP 2001-316874 A 特開2004−66469号公報JP 2004-66469 A 特表2003−532609号公報Special table 2003-532609 gazette 特開平6−219863号公報Japanese Patent Laid-Open No. 6-219863 特開2004−131363号公報JP 2004-131363 A 特開平8−306985号公報JP-A-8-306985 特表2002−511903公報Special Table 2002-511903 特開平6−63915号公報JP-A-6-63915 特開平8−78275号公報JP-A-8-78275 特開2003−13287号公報JP 2003-13287 A

本発明は、前記従来の電気泳動電着法を用いたセラミック層の製造方法の課題に鑑み、偏平状の粒子を用いて、これらの粒子を一定の方向に配向させながら堆積させてセラミック系粒子配向積層体を得る製造方法とこれにより製造されたセラミック系粒子配向積層体を提供することを目的とする。   In view of the problem of the method for producing a ceramic layer using the conventional electrophoretic electrodeposition method, the present invention uses ceramic particles, and deposits these particles while orienting them in a certain direction. An object of the present invention is to provide a production method for obtaining an oriented laminated body and a ceramic particle oriented laminated body produced thereby.

偏平粒子の堆積に、電気泳動電着法を活用すると、電場の影響を受けて粒子の向きが揃った積層堆積物を作製することができる。また、その際にセラミックスのゾル溶液を添加することで、堆積効率が上がるとともに堆積物の密度が向上し、材質の均一な配向析出物を作製することができる。   When the electrophoretic electrodeposition method is used for the deposition of flat particles, it is possible to produce a stacked deposit in which the directions of particles are aligned under the influence of an electric field. Further, by adding a sol solution of ceramics at that time, the deposition efficiency is increased, the density of the deposit is improved, and an oriented precipitate having a uniform material can be produced.

さらに、偏平粒子の配向積層物は、堆積後の乾燥収縮が配向方向の影響を受け一方向への収縮が大きくなるため、乾燥によるひび割れを生じることなく成形することが可能になる。これにより、偏平粒子の厚さをナノサイズとした機能性材料を用いた成形体の製造が可能となる。   Further, the oriented laminate of flat particles can be molded without causing cracks due to drying, since drying shrinkage after deposition is affected by the orientation direction and shrinkage in one direction is increased. Thereby, it becomes possible to manufacture a molded body using a functional material in which the thickness of the flat particles is nano-sized.

本発明は、このような観点からなされたものであり、セラミックス、複合セラミックス、構造の一部に有機物や金属またその両方を含むセラミックス、表面に有機物や金属またはその両方で修飾されたセラミックスからなる偏平状粒子を溶媒に懸濁させて、導電性材料を基板として挿入し、懸濁液に電場を印加することにより、同懸濁液の偏平状粒子を配向させながら基板上に堆積させてセラミック系粒子配向積層体を製造するものである。
この場合に、扁平状粒子の懸濁液に、セラミックスのゾル溶液を添加することにより、堆積効率を高めて堆積させることが可能となる。
The present invention has been made from such a viewpoint, and is composed of ceramics, composite ceramics, ceramics including a part of the structure with organic matter and / or metal, and ceramics modified with organic matter and / or metal on the surface. By suspending the flat particles in a solvent, inserting a conductive material as a substrate, and applying an electric field to the suspension, the flat particles of the suspension are oriented and deposited on the substrate to be ceramic. A particle oriented laminated body is produced.
In this case, by adding a ceramic sol solution to the suspension of flat particles, the deposition efficiency can be increased and deposited.

本発明は、縦横の幅と厚み方向の差が大ききなセラミックス系の偏平状粒子を、水やアルコール等の溶媒に懸濁させて、導電性基板を挿入し電場を印加する電気泳動電着法により、各粒子を一定の方向に配向させた積層物を供するものである。
以下、本発明を実施するための最良の形態について、具体的に説明し、併せて実施例をあげて詳細に説明する。
The present invention is an electrophoretic electrodeposition method in which ceramic-based flat particles having a large difference in width and thickness direction are suspended in a solvent such as water or alcohol, a conductive substrate is inserted, and an electric field is applied. According to the method, a laminate in which each particle is oriented in a certain direction is provided.
BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be specifically described below and will be described in detail with reference to examples.

セラミックス系の偏平粒子とは、セラミックス、複合セラミックス、構造の一部に有機物や金属またその両方を含むセラミックス、表面に有機物や金属またはその両方で修飾されたセラミックスからなるもので、三次元の一方向の寸法に対し、他の2方向の寸法が大きい粒子である。具体的には厚さ方向の寸法に比べ、長さ及び幅方向の寸法が大きいアスペクト比の大きな粒子である。   Ceramic-based flat particles consist of ceramics, composite ceramics, ceramics that contain organic materials and / or metals as part of the structure, and ceramics that are modified with organic materials and / or metals on the surface. It is a particle whose dimension in the other two directions is larger than the dimension in the direction. Specifically, it is a particle having a large aspect ratio and a large size in the length and width directions compared to the size in the thickness direction.

また、これらの粒子を堆積させる電気泳動電着用の基板には、黒鉛、金属、導電性セラミックス、導電性高分子等の導電性材料を使用することができる。
電着に用いる偏平粒子の懸濁液には、必要に応じて堆積後の積層物の形状を維持する目的でポリビニルアルコール(PVA)等のバインダーを添加したり、堆積効率を高めて高密度の堆積物を作製する目的でセラミックスのゾル溶液を添加することができる。
In addition, a conductive material such as graphite, metal, conductive ceramics, and conductive polymer can be used for the electrophoretic electrodeposition substrate on which these particles are deposited.
To the suspension of flat particles used for electrodeposition, a binder such as polyvinyl alcohol (PVA) can be added as necessary to maintain the shape of the laminate after deposition, or the deposition efficiency can be increased to increase the density. A ceramic sol solution can be added for the purpose of producing a deposit.

図1は、このような粒子を堆積させる電気泳動電着装置の基本構成の一例を示す概念図である。電着に用いる偏平粒子を溶媒に分散した懸濁液を容器の中に入れ、この懸濁液に電気泳動電着用の基板として例えばPd等からなる導電性基板を浸漬する。また、この導電性基板に対向させて補助電極としてPt等からなる対極を懸濁液に浸漬する。これら懸濁液に浸漬した導電性基板と対極とに電源装置を接続し、対極が陽極、導電性基板が陰極となるようこれら一対の電極の間に直流電圧を印加する。   FIG. 1 is a conceptual diagram showing an example of a basic configuration of an electrophoretic electrodeposition apparatus for depositing such particles. A suspension in which flat particles used for electrodeposition are dispersed in a solvent is placed in a container, and a conductive substrate made of, for example, Pd is immersed in this suspension as a substrate for electrophoretic deposition. Further, a counter electrode made of Pt or the like as an auxiliary electrode is immersed in the suspension so as to face this conductive substrate. A power supply device is connected to the conductive substrate immersed in the suspension and a counter electrode, and a DC voltage is applied between the pair of electrodes so that the counter electrode serves as an anode and the conductive substrate serves as a cathode.

このような装置において、電場の作用により、懸濁液中のセラミック系の扁平粒子の長手方向が一定の方向に揃えられながら、導電性基板の表面上に堆積し、膜状或いはシート状のセラミック系粒子配向積層体が形成される。すなわち、この手法により作製した粒子の堆積物は、偏平粒子の向きが一様に配向した積層状の堆積物となり、電場を印加する時間を変えることで薄膜から厚い板状の成形体まで作製することが可能である。   In such an apparatus, by the action of an electric field, the ceramic flat particles in the suspension are deposited on the surface of the conductive substrate while the longitudinal direction of the ceramic flat particles is aligned in a certain direction, and a film-like or sheet-like ceramic A system particle oriented laminate is formed. That is, the particle deposit produced by this method becomes a laminated deposit in which the orientation of the flat particles is uniformly oriented, and it is produced from a thin film to a thick plate-like molded body by changing the electric field application time. It is possible.

従来における電気泳動電着法による層状物の製造方法では、主に結晶方向、磁性方向等の特性を揃えるための配向を目的としており、原子レベルの構造等に起因した性質を揃えるものである。
これらに対し本件発明では、偏平粒子の形状を一定方向に揃える配向を目的としている。結果として、前記のような結晶方向や磁性方向が揃えられる可能性があるが、必ずしもそれらの方向を揃えるものではなく、あくまでも偏平粒子の形状を一定方向に揃える配向を目的としている。
In the conventional method for producing a layered product by electrophoretic electrodeposition, the main purpose is to align the crystal direction, the magnetic direction, and other characteristics, and the properties resulting from the atomic structure and the like are aligned.
On the other hand, in the present invention, the purpose is to align the shape of the flat particles in a certain direction. As a result, there is a possibility that the crystal direction and the magnetic direction as described above may be aligned. However, these directions are not necessarily aligned, and the purpose is to align the flat particles in a certain direction.

このように扁平粒子の形状方向を揃える利点は、シートの製造工程或いは使用状態下において乾燥収縮の方向が揃うのでシートの割れを生じないことに加え、併せて性質を揃えられる可能性がある。特にナノメートルオーダの寸法を有する微細な粒子からなる材料では、機能性が期待されている一方で、シートの割れを生じやすいので、扁平粒子の形状方向を揃えることによりもたらされる利点は大きい。   As described above, the advantage of aligning the shape direction of the flat particles is that the direction of drying shrinkage is aligned in the manufacturing process or use state of the sheet. In particular, a material composed of fine particles having dimensions on the order of nanometers is expected to have functionality, but since the sheet is liable to crack, the advantage brought about by aligning the shape direction of the flat particles is great.

本発明の好ましい実施形態の一つとして懸濁液中にゾル溶液を添加剤として添加することがあげられる。成形したい材料と同じ組成のゾル溶液を使えば、不純物が混入することなく高品質の電気泳動電着膜を製造することが可能となる。例えばシートに酸化チタンを使用する場合、そのシート成分と同じ酸化チタンのゾル溶液を懸濁液中に添加して電気泳動電着したシートを製造する。
以下に、これらの手法の実施例を示すが、この内容が本発明の範囲を限定するものではない。
One preferred embodiment of the present invention is to add a sol solution as an additive to the suspension. If a sol solution having the same composition as the material to be molded is used, a high-quality electrophoretic electrodeposition film can be produced without mixing impurities. For example, when titanium oxide is used for the sheet, the same sol solution of titanium oxide as the sheet component is added to the suspension to produce the electrophoretic electrodeposited sheet.
Examples of these methods are shown below, but this content does not limit the scope of the present invention.

1. 電気泳動電着による偏平粒子の配向積層物の作製
偏平粒子には、株式会社アート科学製の厚さ100nm酸化チタンナノシートを使用した。この酸化チタンナノシートは、本件発明者らが提案した特開平2004−224623号公報に記載された製造方法により得られる。すなわち、テトライソプロポキシチタンをポリマー化した20%溶液を定量しながら流動する水面上に滴下し展開する流動界面ゾル−ゲル法により厚みが制御されたチタニアナノシートを得る。このチタニアナノシートは、シート内に熱的に準安定な非晶質あるいはシート厚みの1/5以下のナノ結晶粒が閉じ込められた構造の、シート間が易焼結性のシートである。これを4g対100gの割合で水に分散させてスラリーとした。
1. Production of Oriented Laminate of Flat Particles by Electrophoretic Electrodeposition As the flat particles, a 100 nm thick titanium oxide nanosheet manufactured by Art Science Co., Ltd. was used. This titanium oxide nanosheet is obtained by the production method described in Japanese Patent Application Laid-Open No. 2004-224623 proposed by the present inventors. That is, a titania nanosheet whose thickness is controlled by a fluid interface sol-gel method in which a 20% solution obtained by polymerizing tetraisopropoxytitanium is dropped and developed on a flowing water surface while quantifying is obtained. This titania nanosheet is a sheet having a structure in which a thermally metastable amorphous or nanocrystal grain having a thickness of 1/5 or less of the sheet thickness is confined in the sheet, and the sheet is easily sinterable. This was dispersed in water at a ratio of 4 g to 100 g to obtain a slurry.

次に、このスラリーを容器に入れ、次の条件1と条件2の2つの条件でチタニア層の製造試験を行った。
(条件1)スラリーに、パラジウムからなる導電性基板を浸漬し、3分後に引き上げた
(条件2)図1に示すように、スラリーに、白金板からなる対極とパラジウムからなる導電性基板を浸漬し、白金板を正極、パラジウム板を陰極として二つの基板の間に20Vの直流電圧を印加した。
Next, this slurry was put in a container, and a production test of a titania layer was performed under the following two conditions 1 and 2.
(Condition 1) The conductive substrate made of palladium was immersed in the slurry and pulled up after 3 minutes. (Condition 2) As shown in FIG. 1, the conductive substrate made of palladium and the counter electrode made of platinum plate were immersed in the slurry. Then, a DC voltage of 20 V was applied between the two substrates using the platinum plate as the positive electrode and the palladium plate as the cathode.

上記の条件においてパラジウム板上に堆積した酸化チタン膜について、走査型電子顕微鏡により表面形状観察を行った結果を図2及び図3に示した。
条件1は、薄膜作製法の1つであるディップ法であるが、酸化チタン膜の表面形状を示す図2から明らかなように、偏平粒子の方向性に秩序が無く乱雑な堆積状態であることがわかる。一方で、本発明の手法である条件2では、図3から明らかなように、偏平粒子の方向が揃って堆積していることがわかり、本発明の有効性が確認できた。
The results of surface shape observation of the titanium oxide film deposited on the palladium plate under the above conditions with a scanning electron microscope are shown in FIGS.
Condition 1 is a dip method, which is one of the thin film fabrication methods, but as shown in FIG. 2 showing the surface shape of the titanium oxide film, the orientation of the flat particles is not ordered and is a disordered deposition state. I understand. On the other hand, under condition 2 which is the method of the present invention, it is clear from FIG. 3 that the direction of the flat particles is aligned and the effectiveness of the present invention has been confirmed.

2.偏平粒子の懸濁液へのセラミックスゾル溶液の添加
前記実施例1で使用したチタニアスラリーに、酸化チタンのゾル溶液を添加して次の条件3で電気泳動電着膜を製造し、堆積物(膜)の状態を評価した。
(条件3)スラリーに、酸化チタンゾル(チタンテトライソプロポキシド 5wt%、イソプロパノール 15wt%、水 80wt% の溶液に、外割で硝酸 2wt%を添加)を5vol%添加した溶液に、白金板とパラジウム板を浸漬し、白金板を正極、パラジウム板を陰極として二つの基板の間に20Vの直流電圧を印加した。
2. Addition of ceramic sol solution to suspension of flat particles To the titania slurry used in Example 1, a sol solution of titanium oxide was added to produce an electrophoretic electrodeposition film under the following condition 3, and a deposit ( The state of the film) was evaluated.
(Condition 3) A platinum plate and palladium were added to a solution obtained by adding 5 vol% of titanium oxide sol (titanium tetraisopropoxide 5 wt%, isopropanol 15 wt%, water 80 wt% to a solution of nitric acid 2 wt%) to the slurry. The plate was immersed, and a DC voltage of 20 V was applied between the two substrates using the platinum plate as the positive electrode and the palladium plate as the negative electrode.

前記実施例1と同様にして作製した堆積物を走査型電子顕微鏡で観察した結果を図4に示す。この図4から明らかなように、条件2の図2に比べ、図4の条件3の積層配向物の方がより配向性が高く密着した高密度の堆積物となっていることがわかり、本発明の偏平粒子懸濁液へのセラミックスゾル溶液の添加の有効性が確認できた。   FIG. 4 shows the result of observation of the deposit produced in the same manner as in Example 1 with a scanning electron microscope. As is clear from FIG. 4, it can be seen that the layered alignment material of condition 3 in FIG. 4 is a highly dense deposit with higher orientation and adhesion than the condition 2 of FIG. The effectiveness of adding the ceramic sol solution to the flat particle suspension of the invention was confirmed.

3.球状微粒子の電気泳動電着
球状微粒子として、デグサ・アクチエン社製のP25を使用し、下記条件4の如く、前記実施例1の条件2と同じ条件によりスラリーを作製した。
(条件4)P25のスラリーに、白金板とパラジウム板を浸漬し、白金板を正極、パラジウム板を陰極として二つの基板の間に20Vの直流電圧を印加した。
3. Electrophoretic electrodeposition of spherical fine particles P25 manufactured by Degussa Aktien Co., Ltd. was used as spherical fine particles, and a slurry was prepared under the same conditions as in Condition 2 of Example 1 as shown in Condition 4 below.
(Condition 4) A platinum plate and a palladium plate were immersed in a slurry of P25, and a DC voltage of 20 V was applied between the two substrates using the platinum plate as a positive electrode and the palladium plate as a cathode.

P25は、1次粒子の平均粒径が30nmと微細な粒子であり、条件4によって作製した堆積物は、図5に示したように乾燥後にひび割れを生じて成形体を作製することができなかった。これに対し、前記実施例2と同様に条件3で作製した配向積層物は、図6に示したように乾燥後もひび割れすることなく比較的厚い成形体を作製することができた。   P25 is a fine particle having an average primary particle size of 30 nm, and the deposit produced under Condition 4 cannot be formed into a molded product due to cracking after drying as shown in FIG. It was. On the other hand, the oriented laminate produced under the condition 3 as in Example 2 was able to produce a relatively thick molded body without cracking after drying as shown in FIG.

本発明の一実施形態において粒子を堆積させる電気泳動電着装置の基本構成の一例を示す概念図である。It is a conceptual diagram which shows an example of the basic composition of the electrophoretic electrodeposition apparatus which deposits particle | grains in one Embodiment of this invention. 本発明の実施例1において前記条件1によりパラジウム板上に堆積した酸化チタン膜の表面形状の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface shape of the titanium oxide film deposited on the palladium plate under the condition 1 in Example 1 of the present invention. 本発明の実施例1において前記条件2によりパラジウム板上に堆積した酸化チタン膜の表面形状の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface shape of the titanium oxide film deposited on the palladium plate under the condition 2 in Example 1 of the present invention. 本発明の実施例2において前記条件3によりパラジウム板上に堆積した酸化チタン膜の表面形状の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface shape of the titanium oxide film deposited on the palladium plate under the condition 3 in Example 2 of the present invention. 本発明の実施例3において前記条件4によりパラジウム板上に堆積した酸化チタン膜の表面形状の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface shape of the titanium oxide film deposited on the palladium plate under the condition 4 in Example 3 of the present invention. 本発明の実施例3において前記条件3によりパラジウム板上に堆積した酸化チタン膜の表面形状の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface shape of the titanium oxide film deposited on the palladium plate under the condition 3 in Example 3 of the present invention.

Claims (3)

セラミックス、複合セラミックス、構造の一部に有機物や金属またその両方を含むセラミックス、表面に有機物や金属またはその両方で修飾されたセラミックスからなる偏平状粒子を溶媒に懸濁させて、黒鉛・金属・導電性セラミックス・導電性高分子等の導電性材料を基板として挿入し、懸濁液に電場を印加することにより、同懸濁液の偏平状粒子を配向させて基板上に堆積させることを特徴とするセラミック系粒子配向積層体の製造方法。 Suspended flat particles made of ceramics, composite ceramics, ceramics that contain organics and / or metals in part of the structure, and ceramics modified with organics and / or metals on the surface, in graphite, metal, By inserting a conductive material such as conductive ceramics or conductive polymer as a substrate and applying an electric field to the suspension, the flat particles of the suspension are oriented and deposited on the substrate. A method for producing a ceramic particle oriented laminated body. 偏平状粒子の懸濁液に、セラミックスのゾル溶液を添加し、堆積効率を高めて堆積させることを特徴とする請求項1に記載のセラミック系粒子配向積層体の製造方法。 The method for producing a ceramic particle oriented laminated body according to claim 1, wherein a ceramic sol solution is added to the suspension of flat particles to increase the deposition efficiency and deposit. 上記、請求項1、請求項2の製造方法により得られるセラミックス、複合セラミックス、構造の一部に有機物や金属またその両方を含むセラミックス、表面に有機物や金属またはその両方で修飾されたセラミックスからなる偏平状粒子を配向させて基板上に堆積させたことを特徴とするセラミック系粒子配向積層体。 The ceramics and composite ceramics obtained by the manufacturing method according to claim 1 and claim 2, ceramics containing a part of an organic material and / or metal, and ceramics modified on the surface with an organic material and / or metal. A ceramic-based particle oriented laminate, wherein flat particles are oriented and deposited on a substrate.
JP2005080893A 2005-03-22 2005-03-22 Article having ceramic particles oriented and layered thereon, and production method therefor Pending JP2006265571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005080893A JP2006265571A (en) 2005-03-22 2005-03-22 Article having ceramic particles oriented and layered thereon, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005080893A JP2006265571A (en) 2005-03-22 2005-03-22 Article having ceramic particles oriented and layered thereon, and production method therefor

Publications (1)

Publication Number Publication Date
JP2006265571A true JP2006265571A (en) 2006-10-05

Family

ID=37201843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005080893A Pending JP2006265571A (en) 2005-03-22 2005-03-22 Article having ceramic particles oriented and layered thereon, and production method therefor

Country Status (1)

Country Link
JP (1) JP2006265571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006311A (en) * 2007-05-31 2009-01-15 National Univ Corp Shizuoka Univ Fine particle fixing device and method
US20190330756A1 (en) * 2010-04-13 2019-10-31 Lawrence Livermore National Security, Llc Methods of three-dimensional electrophoretic deposition for ceramic and cermet applications and systems thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006311A (en) * 2007-05-31 2009-01-15 National Univ Corp Shizuoka Univ Fine particle fixing device and method
US20190330756A1 (en) * 2010-04-13 2019-10-31 Lawrence Livermore National Security, Llc Methods of three-dimensional electrophoretic deposition for ceramic and cermet applications and systems thereof
US11299816B2 (en) 2010-04-13 2022-04-12 Lawrence Livermore National Security, Llc Methods of three-dimensional electrophoretic deposition for ceramic and cermet applications and systems thereof
US11718924B2 (en) * 2010-04-13 2023-08-08 Lawrence Livermore National Security, Llc Methods of three-dimensional electrophoretic deposition for ceramic and cermet applications and systems thereof

Similar Documents

Publication Publication Date Title
Besra et al. A review on fundamentals and applications of electrophoretic deposition (EPD)
Wang et al. All-nanosheet ultrathin capacitors assembled layer-by-layer via solution-based processes
Zhitomirsky Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects
Ma et al. Deposition and packing study of sub-micron PZT ceramics using electrophoretic deposition
Dolhen et al. Sodium potassium niobate (K 0.5 Na 0.5 NbO 3, KNN) thick films by electrophoretic deposition
Su et al. Hydrothermal and electrophoretic deposition of lead zirconate titanate (PZT) films
Hasanpoor et al. In-situ study of mass and current density for electrophoretic deposition of zinc oxide nanoparticles
Tarish et al. Synchronous formation of ZnO/ZnS core/shell nanotube arrays with removal of template for meliorating photoelectronic performance
Raju et al. Electrophoretic deposition of BaTiO3 in an aqueous suspension using asymmetric alternating current
Kort et al. Oriented electrophoretic deposition of GdOCl nanoplatelets
Moreno et al. Nanoparticles dispersion and the effect of related parameters in the EPD kinetics
Mahajan et al. Unleashing the full sustainable potential of thick films of lead-free potassium sodium niobate (K0. 5Na0. 5NbO3) by aqueous electrophoretic deposition
CA2389804A1 (en) Improved method of electrophoretic deposition of ferroelectric films using a tri-functional additive and compositions for effecting same
Alavi et al. Electrophoretic deposition of electroless nickel coated YSZ core-shell nanoparticles on a nickel based superalloy
Kang et al. Solvent-induced charge formation and electrophoretic deposition of colloidal iron oxide nanoparticles
CN101845661A (en) Monocrystalline silicon slice with ultra-hydrophobicity nano silicone linear arrays on surface and preparation method thereof
Wu et al. Electrophoretic deposition of lead zirconate titanate films on metal foils for embedded components
JP2006265571A (en) Article having ceramic particles oriented and layered thereon, and production method therefor
Ouedraogo et al. Electrophoretic deposition of alumina and nickel oxide particles
US7662316B2 (en) Method for preparation of stable metal oxide nanoparticles suspensions
Bonnas et al. Electrophoretic deposition for fabrication of ceramic microparts
JP2009256790A (en) Coating method of titanium oxide
Guo et al. Preparation and magnetic properties of iron titanium oxide nanotube arrays
KR101980961B1 (en) Heat dissipation film using multi layered structure of graphene and inorganic nano particle, and method of fabricating thereof
Santos et al. Influence of synthesis conditions on the properties of electrochemically synthesized BaTiO3 nanoparticles