JPS61197467A - Manufacture of carbon fiber reinforced composite material - Google Patents

Manufacture of carbon fiber reinforced composite material

Info

Publication number
JPS61197467A
JPS61197467A JP60035050A JP3505085A JPS61197467A JP S61197467 A JPS61197467 A JP S61197467A JP 60035050 A JP60035050 A JP 60035050A JP 3505085 A JP3505085 A JP 3505085A JP S61197467 A JPS61197467 A JP S61197467A
Authority
JP
Japan
Prior art keywords
carbon fiber
base material
reinforced composite
fiber reinforced
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60035050A
Other languages
Japanese (ja)
Other versions
JPH0210116B2 (en
Inventor
岩田 幸一
正剛 阪上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60035050A priority Critical patent/JPS61197467A/en
Publication of JPS61197467A publication Critical patent/JPS61197467A/en
Publication of JPH0210116B2 publication Critical patent/JPH0210116B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高性能の炭素複合材料の簡便な製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a simple method for manufacturing high performance carbon composite materials.

従来技術及び発明が解決しようとする問題点高性能炭素
繊維強化炭素複合材料(以下CFRCと略記)の簡便な
製造方法に関し、発明者等は特願昭58−162433
及び、特願昭59−143844にて、新規な製造方法
を開示した。これらの発明は炭素質粉末を担体樹脂と混
合し、これを電気泳動し沈積(電着)法を用いて炭素繊
維基材上に沈積させ、これを成形焼成してCFRCを得
る方法に関わるものである。
Prior Art and Problems to be Solved by the Invention Regarding a simple manufacturing method for high-performance carbon fiber reinforced carbon composite materials (hereinafter abbreviated as CFRC), the inventors have filed Japanese Patent Application No. 58-162433.
In addition, a new manufacturing method was disclosed in Japanese Patent Application No. 59-143844. These inventions relate to a method of mixing carbonaceous powder with a carrier resin, electrophoresing the mixture, depositing it on a carbon fiber base material using a deposition (electrodeposition) method, and molding and firing the mixture to obtain CFRC. It is.

上記の発明においては、電着の際炭素繊維基材に通電を
行う必要から、炭素繊維基材の形態として炭素繊維織布
、ペーパー、マット、不織布のような二次元的な基材を
用いるか、ひも、フィラメント糸、テープ等の一次元的
な基材を用い、電着を積層、巻きつけ等の方法を用い成
形し、焼成する方法が述べられている。即ちこれらの発
明の方法では、いわゆるチョツプドファイバー及び細か
く切断された織布のような短繊維基材は連続的に通電す
ることが出来ず、炭素質粉末及び担体樹脂を能率的に電
着することが出来ないため使用できない。
In the above invention, since it is necessary to conduct electricity to the carbon fiber base material during electrodeposition, a two-dimensional base material such as carbon fiber woven fabric, paper, mat, or non-woven fabric is used as the form of the carbon fiber base material. , a method is described in which a one-dimensional base material such as string, filament thread, tape, etc. is used, and the material is formed by electrodeposition, laminated, wrapped, etc., and then fired. That is, in the methods of these inventions, short fiber base materials such as so-called chopped fibers and finely cut woven fabrics cannot be continuously energized, and the carbonaceous powder and carrier resin cannot be efficiently electrodeposited. It cannot be used because it cannot be done.

このような短繊維基材を被覆するためには通電を要しな
い、浸漬被覆等によることになるが、これらの方法では
、基材との密着性が不十分なため、あとの混合操作等に
おいて基材と被覆層との分離脱落を生じやすいという問
題点がある。
In order to coat such short fiber base materials, dip coating, etc., which does not require electricity, is used, but these methods do not provide sufficient adhesion to the base material, so it is difficult to coat them during subsequent mixing operations. There is a problem in that the base material and the coating layer are likely to separate and fall off.

しかるに積層法、まきつけ法等の成形法で作ったCFR
Cは、引張強度、曲げ強度、せん断強度及び物理的機械
的性質に異方性を生じやすい、CFRCの用途は異方性
を利用できる分野もあるが、構造材料等では等方向に強
化されたCFRCが必要な分野も多い。
However, CFR made by forming methods such as lamination method and winding method
C tends to cause anisotropy in tensile strength, bending strength, shear strength, and physical and mechanical properties.While there are some fields in which CFRC can be used to utilize anisotropy, structural materials etc. are reinforced in an iso-directional manner. There are many fields that require CFRC.

問題点を解決するための手段 電着法は基材に炭素質粉末を所望の割合で均一に強固に
密着させることが出来る方法であり、これを短繊維基材
に応用できれば電着を行った短繊維をランダムにからみ
合せ混合し、成形焼成することにより、異方性を改善し
たCFRCを作ることが出来る。従来の考え方では短繊
維基材は通電できないために電着不可能としていた訳で
あるが、発明者らは連続的な基材に通電しながら電着し
、炭素質粉末及び担体を付着させたあと、所望の長さに
切断し、炭素質粉末で被覆された短繊維基材を得ること
が出来た。この場合切断操作により、被覆層が基材と分
離することが懸念されるが電着法による被覆層は基材と
の密着性が良好であるため通常の浸漬法による被覆に見
られるような切断時著しい脱落は起こらない。
Means to Solve the Problem Electrodeposition is a method that can uniformly and firmly adhere carbonaceous powder to a base material in a desired ratio, and if this can be applied to a short fiber base material, electrodeposition will be used. CFRC with improved anisotropy can be made by randomly intertwining and mixing short fibers, shaping and firing. The conventional thinking was that electrodeposition was impossible because short fiber base materials could not be energized, but the inventors applied electrodeposition to a continuous base material while energizing it to adhere the carbonaceous powder and carrier. Then, it was cut into a desired length to obtain a short fiber base material coated with carbonaceous powder. In this case, there is a concern that the coating layer may separate from the base material due to the cutting operation, but since the coating layer made by electrodeposition has good adhesion to the base material, it is difficult to cut the coating layer as seen in coatings made by the usual dipping method. No significant shedding occurs.

得られた被覆短繊維基材を混合し、ランダムにからみ合
わせ成形焼成を行うことにより、三次元的に強化された
CFRCを製造することが可能である。以下に本発明の
内容を更に詳しく述べる。
It is possible to produce three-dimensionally reinforced CFRC by mixing the obtained coated short fiber base materials, randomly entangling them, forming and firing them. The content of the present invention will be described in more detail below.

本発明に用いる原料としての炭素繊維基材は単繊維を束
ねたひも、フィラメント糸、織布、テープ、ペーパー、
マット等が使用できる。微細化した炭素質粉末に担体樹
脂を付着させ液体中に分散させ分散液を作る。
Carbon fiber base materials as raw materials used in the present invention include strings made of bundled single fibers, filament yarns, woven fabrics, tapes, paper,
Mats etc. can be used. A carrier resin is attached to the finely divided carbonaceous powder and dispersed in a liquid to create a dispersion liquid.

この場合炭素質粉末には焼結助剤、セラミックス等の無
機粉末等の添加剤を加えることが出来る。
In this case, additives such as sintering aids and inorganic powders such as ceramics can be added to the carbonaceous powder.

担体樹脂としては液体中でイオン化可能な熱可塑性及び
熱硬化性の樹脂が使用可能である。また粉末と樹脂の混
合及び分散に際しては、分散剤、界面活性剤を用いる場
合もある。分散媒体は水を用いるのが取扱いが容易であ
るが、目的により非水7容媒を用いることもできる。
Thermoplastic and thermosetting resins that can be ionized in liquid can be used as carrier resins. Further, when mixing and dispersing the powder and resin, a dispersant and a surfactant may be used. Although it is easy to use water as the dispersion medium, it is also possible to use a non-aqueous medium depending on the purpose.

次に上記分散液に炭素繊維基材を浸漬し、直流電圧を印
加して炭素質粉末と担体とを基材上に沈積させる。この
操作は連続的に基材を供給して行うか、またはバッチ処
理にて行うことが出来る。
Next, a carbon fiber base material is immersed in the above-mentioned dispersion liquid, and a direct current voltage is applied to deposit the carbonaceous powder and carrier on the base material. This operation can be carried out by continuously feeding the base material or by batch processing.

続いて基材を液より引上げ、必要により洗浄等の処理を
行い乾燥することにより、被覆された基材を得る。乾燥
は、担体として熱硬化性樹脂を使用する場合は、硬化反
応が進行しすぎない程度の温度及び時間範囲で行う必要
がある。
Subsequently, the base material is pulled up from the liquid, and if necessary, subjected to treatments such as washing and dried, thereby obtaining a coated base material. When a thermosetting resin is used as a carrier, drying must be carried out at a temperature and time range that does not allow the curing reaction to proceed too much.

このあと被覆された基材を適当な長さもしくは大きさに
切断し、所定量を型に入れて成形する。
Thereafter, the coated base material is cut to an appropriate length or size, and a predetermined amount is placed in a mold and molded.

成形の際の温度、圧力等の条件は樹脂及び粉末、基材の
性質により適切な条件に調節する。この段階で成形体は
、細かく切断された炭素繊維基材が複雑にからみ合った
構造となり、ランダムな方向に強化された材料となって
いる。
Conditions such as temperature and pressure during molding are adjusted to appropriate conditions depending on the properties of the resin, powder, and base material. At this stage, the molded body has a structure in which finely cut carbon fiber base materials are intricately intertwined, and the material is reinforced in random directions.

切断時の長さはIIIII以下ではからみ合いの効果が
少なく 、100+wa+以上では作業性が悪くなる。
If the cutting length is less than III, the effect of entanglement will be small, and if it is more than 100+wa+, workability will be poor.

成形体の形については、任意の形状の型に充填して成形
すれば良く、積層法、巻きつけ法等と比較して形状的な
制限が少ない、また成形は通常の圧縮成形及び静水圧成
形が可能であるが、特に等方性の成形体を目的とする場
合は等方静水圧成形が望ましい、成形体は、必要により
不融化、硬化、アニール、脱バインダー等の処理を行っ
たあと炭化焼成しCFRCとする。
As for the shape of the molded product, it can be molded by filling it into a mold of any shape, and there are fewer restrictions on the shape compared to lamination methods, wrapping methods, etc., and molding can be done by ordinary compression molding or isostatic pressing. However, isostatic isostatic pressing is particularly preferable when the purpose is an isotropic molded product.The molded product is carbonized after being subjected to treatments such as infusibility, hardening, annealing, and removal of binders as necessary. It is fired to become CFRC.

焼成温度は材料の使用目的に応じて選択するが、良好な
強度を得るためには700〜2000℃が適当である。
The firing temperature is selected depending on the intended use of the material, but in order to obtain good strength, a temperature of 700 to 2000°C is appropriate.

黒鉛化を行う場合は更に2000℃〜3000℃の焼成
を行う、焼成時加圧しながら焼成を行うことにより、高
密度な焼成体を得ることが出来る。加圧方法は圧縮加圧
、等方静圧加圧、雰囲気加圧等の方法を目的により選択
する。
In the case of graphitization, a high-density fired body can be obtained by further firing at 2000° C. to 3000° C. and firing while applying pressure during firing. The pressurization method is selected from compression pressurization, isostatic pressure pressurization, atmospheric pressurization, etc. depending on the purpose.

実施例 以下実施例につき説明する。Example Examples will be explained below.

実施例1 (1)自己焼結性のある炭素質粉末と仮焼コークスの粉
末を1:lの割合で混合し平均粒径5μ請とした。
Example 1 (1) Self-sintering carbonaceous powder and calcined coke powder were mixed at a ratio of 1:1 to give an average particle size of 5 μm.

(n)上記粉末をポリアクリロニドルーアクリル酸系電
着用樹脂及び溶剤とよく混練したのち、水に分散させ、
いわゆるアニオン系塗料分散液状態とした。この状態で
炭素粉末と樹脂の比率は重量比でl:1であった。
(n) After thoroughly kneading the above powder with a polyacrylonidol-acrylic acid electrodeposition resin and a solvent, dispersing it in water,
It was in the state of a so-called anionic paint dispersion. In this state, the ratio of carbon powder to resin was 1:1 by weight.

(DI)次にPAN系の炭素繊維フィラメント糸を用意
し、連続的に分散液中に供給浸漬し、同時に対向電極と
して使用するステンレス板との間に炭素繊維を陽極とし
て150vの電圧を印加し、よく攪拌しながら通電し電
着した。電着後の糸は乾燥機を通過し、80℃の雰囲気
で乾燥される。
(DI) Next, a PAN-based carbon fiber filament yarn was prepared, and it was continuously supplied and immersed in the dispersion liquid, and at the same time, a voltage of 150 V was applied between it and a stainless steel plate used as a counter electrode, using the carbon fiber as an anode. Electrodeposition was carried out by applying electricity while stirring well. The yarn after electrodeposition is passed through a dryer and dried in an atmosphere of 80°C.

乾燥後基材と電着物の重量比は1:1.5であった。After drying, the weight ratio of the substrate to the electrodeposited material was 1:1.5.

(IV)電着された基材糸を3〜10m−の長さに切断
して被覆ファイバーとし、この被覆ファイバーを金型内
に充填し温度200℃、面圧力20kg/cdで10分
間加圧し成形した。
(IV) The electrodeposited base yarn was cut into a length of 3 to 10 m to obtain a coated fiber, and the coated fiber was filled into a mold and pressed at a temperature of 200°C and a surface pressure of 20 kg/cd for 10 minutes. Molded.

(V)このあと20kir/−の圧力下でクランプしな
がら空気中で250℃、280℃の各温度でそれぞれ4
時間加熱し不融化した。
(V) After this, while clamping under a pressure of 20kir/-, at each temperature of 250℃ and 280℃ in air,
It was heated for an hour to make it infusible.

(VT)この硬化体を不活性雰囲気中で200kg/a
JO面圧下で30℃/11rの昇温速度にて1000℃
まで昇温し、その後100℃10rの昇温速度で200
0 ’Cまで昇温し、2000℃にて1時間保持し、後
室温まで冷却しCFRCを得た。CFRCの最終的形状
は直径50fi、厚さ40龍の円筒状とした。
(VT) This cured product was heated at 200 kg/a in an inert atmosphere.
1000℃ at a heating rate of 30℃/11r under JO surface pressure
200°C at a heating rate of 10r.
The temperature was raised to 0'C, held at 2000C for 1 hour, and then cooled to room temperature to obtain a CFRC. The final shape of the CFRC was a cylinder with a diameter of 50fi and a thickness of 40mm.

比較例1 (1)実施例1と同じ粉末組成及び樹脂を用いた電着用
分散液を用い、基材として実施例1のフィラメント糸と
同質の炭素繊維を用いた織布を使用し、炭素繊維織布と
電着物の乾燥後の重量比は実施例1と同じt:t、5に
なるように電着条件を調整した。
Comparative Example 1 (1) An electrodepositing dispersion using the same powder composition and resin as in Example 1 was used, and a woven fabric using carbon fiber of the same quality as the filament yarn of Example 1 was used as the base material. The electrodeposition conditions were adjusted so that the weight ratio of the woven fabric and the electrodeposited material after drying was the same as in Example 1, t:t, 5.

(n)得られた被覆炭素繊維織布を80枚積層し、圧縮
プレスにて温度150℃面圧力150に+r/dの条件
で20分間加圧成形し、その後実施例1と同様に不融化
及び加圧焼成を行い、実施例1と同様の形状のCFRC
とした。
(n) 80 sheets of the obtained coated carbon fiber woven fabric were laminated and pressure-molded in a compression press at a temperature of 150°C and a surface pressure of 150° and +r/d for 20 minutes, and then infusible in the same manner as in Example 1. and pressure firing to produce a CFRC with the same shape as in Example 1.
And so.

実施例2 実施例1と同様の方法で被覆ファイバを作り、200℃
にて圧力201qr10Jにて静圧成形した。その後空
気中で250℃、280℃各4時間加熱し、不融化した
。これを熱間静圧成形にて30℃/Hr昇温速度で10
00℃まで焼成し、その後常圧不活性雰囲気中で100
℃/Hrの昇温速度で2000℃まで昇温し、2000
℃にて1時間保持し焼成した。最終形状は実施例1と同
様の形状のCFRCとした。
Example 2 A coated fiber was made in the same manner as in Example 1, and heated at 200°C.
Static pressure molding was carried out at a pressure of 201qr10J. Thereafter, it was heated in air at 250°C and 280°C for 4 hours each to make it infusible. This was subjected to hot isostatic pressing at a heating rate of 30°C/Hr for 10
00℃, then 100℃ in an inert atmosphere at normal pressure.
The temperature was raised to 2000 °C at a temperature increase rate of °C/Hr.
It was held at ℃ for 1 hour and fired. The final shape was a CFRC having the same shape as in Example 1.

上記実施例及び比較例について密度及び曲げ強度を測定
した結果を第1表に示す。
Table 1 shows the results of measuring the density and bending strength of the above Examples and Comparative Examples.

第   1   表 (注)曲げ強度において A:篩形時の加圧方向と同一方向に曲げ荷重を加える。Chapter 1 Table (Note) In terms of bending strength A: A bending load is applied in the same direction as the pressure direction when forming a sieve.

但し、実施例2においては形状的に実施例1と同じ方向
とした。
However, in Example 2, the direction was the same as in Example 1 in terms of shape.

(スパン30mm・厚さ 311IIで実施した)BA
Aと垂直な方向に曲げ荷重を加えた。
(Conducted with span 30mm, thickness 311II) BA
A bending load was applied in the direction perpendicular to A.

上記に示すように実施例1及び実施例2の方法では比較
例1よりも強度の異方性が大巾に減少しまた、製造時の
作業性も積層などの繁雑な作業を要しないため、非常に
改善された。
As shown above, in the methods of Examples 1 and 2, the strength anisotropy is significantly reduced compared to Comparative Example 1, and the workability during manufacturing does not require complicated operations such as lamination. Much improved.

実施例3 基材として炭素繊維のテープを用い、実施例1と同様の
工程を通してCFRCを製造したところ密度1.65 
、曲げ強度A : 90MPa、 B : 70MPa
であった。
Example 3 CFRC was manufactured through the same process as Example 1 using carbon fiber tape as the base material, and the density was 1.65.
, Bending strength A: 90MPa, B: 70MPa
Met.

実施例4 電着用樹脂としてフェノール系の樹脂を改質したものを
用い、他は実施例1と同様にしてCFRCを製造したと
ころ密度1.7、曲げ強度A:90M Pa、  B 
: 75M Paであった。
Example 4 CFRC was produced in the same manner as in Example 1 except that a modified phenolic resin was used as the electrodepositing resin, and the density was 1.7 and the bending strength A: 90 M Pa, B
: It was 75M Pa.

発明の効果 以上に示した如く、本発明によると各方向とも強度のバ
ランスがとれた機械的強度の優れた且つ、各層間の密着
の強固な炭素繊維強化複合材料が容易に、安価に製造出
来る。
Effects of the Invention As shown above, according to the present invention, a carbon fiber reinforced composite material having excellent mechanical strength with well-balanced strength in each direction and strong adhesion between each layer can be easily and inexpensively produced. .

手続補正書 昭和60年10月メ/日 ]、゛ グ 特許庁長官  宇 賀 道 部 殿 1、事件の表示 昭和60年 特許願 第035050号2、発明の名称
                    力 込 、
l炭素繊維強化複合材料の製造方ン去    に]讐、
゛3、補正をする者 事件との関係     特 許 出 願 人住  所 
  大阪市東区北浜5丁目15番地名 称(213)住
友電気工業株式会社社  長  川  上  哲  部 4、代理人 住  所   大阪市此花区島屋1丁目1番3号住友電
気工業株式会社内 6、補正の対象 明細書中、発明の詳細な説明の欄 7、補正の内容 (1)明細書の第7頁下から2行目の、「ポリアクリロ
ニトル」を「ポリアクリロニトリル」に訂正する。
Procedural amendment dated October 1985], Mr. Michibu Uga, Commissioner of the Japan Patent Office1, Indication of the case, 1985 Patent Application No. 0350502, Name of the invention:
1) How to manufacture carbon fiber reinforced composite materials]
゛3.Relationship with the case of the person making the amendment Patent application address
5-15 Kitahama, Higashi-ku, Osaka Name (213) President: Tetsu Kawakami Department 4, Sumitomo Electric Industries, Ltd. Address: 6, Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka In the subject specification, column 7 of the detailed description of the invention, content of amendment (1) "Polyacrylonitrile" in the second line from the bottom of page 7 of the specification is corrected to "polyacrylonitrile".

Claims (5)

【特許請求の範囲】[Claims] (1)炭素質の微粉末に、液体中でイオン化し得る担体
を付着させたのち、液体中に分散させ分散液とし、炭素
繊維基材を該分散液に浸漬し、基材と対向電極との間に
直流電圧を印加し、炭素質粉末及び担体を炭素繊維基材
上に析出させ、炭素繊維を炭素質粉末及び担体とで被覆
した、被覆物を得、更に上記被覆物を1〜100mmの
長さに切断し、切断した被覆物を型に充填し、成形及び
焼成することを特徴とする炭素繊維強化複合材料の製造
方法。
(1) After attaching a carrier that can be ionized in a liquid to carbonaceous fine powder, it is dispersed in the liquid to form a dispersion liquid, and a carbon fiber base material is immersed in the dispersion liquid, and the base material and the counter electrode are A DC voltage is applied during the process to deposit the carbonaceous powder and the carrier on the carbon fiber base material to obtain a coating in which the carbon fibers are coated with the carbonaceous powder and the carrier. 1. A method for producing a carbon fiber reinforced composite material, which comprises cutting the material into lengths, filling the cut coating into a mold, molding and firing.
(2)炭素繊維基材が単繊維を束ねたひもまたは糸状の
ものあるいは織布、ペーパー、不織布のいずれかである
ことを特徴とする特許請求の範囲第1項記載の炭素繊維
強化複合材料の製造方法。
(2) The carbon fiber reinforced composite material according to claim 1, wherein the carbon fiber base material is a string or thread-like material made of bundled single fibers, or a woven fabric, paper, or nonwoven fabric. Production method.
(3)成形、焼成工程において加圧成形及び加圧焼成を
行うことを特徴とする特許請求の範囲第1項又は第2項
記載の炭素繊維強化複合材料の製造方法。
(3) The method for manufacturing a carbon fiber reinforced composite material according to claim 1 or 2, characterized in that pressure forming and pressure firing are performed in the molding and firing steps.
(4)成形、焼成工程において等方静圧成形及び等方静
圧焼成を行うことを特徴とする特許請求の範囲第1項又
は第2項記載の炭素繊維強化複合材料の製造方法。
(4) The method for manufacturing a carbon fiber reinforced composite material according to claim 1 or 2, characterized in that isostatic pressure forming and isostatic pressure firing are performed in the molding and firing steps.
(5)担体がポリアクリロニトリル樹脂誘導体もしくは
、熱硬化性樹脂であることを特徴とする特許請求の範囲
第1項、第2項、第3項又は第4項記載の炭素繊維強化
複合材料の製造方法。
(5) Production of a carbon fiber reinforced composite material according to claim 1, 2, 3 or 4, wherein the carrier is a polyacrylonitrile resin derivative or a thermosetting resin. Method.
JP60035050A 1985-02-22 1985-02-22 Manufacture of carbon fiber reinforced composite material Granted JPS61197467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60035050A JPS61197467A (en) 1985-02-22 1985-02-22 Manufacture of carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60035050A JPS61197467A (en) 1985-02-22 1985-02-22 Manufacture of carbon fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JPS61197467A true JPS61197467A (en) 1986-09-01
JPH0210116B2 JPH0210116B2 (en) 1990-03-06

Family

ID=12431208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60035050A Granted JPS61197467A (en) 1985-02-22 1985-02-22 Manufacture of carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPS61197467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236639A (en) * 1990-12-28 1993-08-17 Sumitomo Electric Industries, Ltd. Method of manufacture composite material of carbon fibers in a carbon matrix

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572528U (en) * 1992-03-09 1993-10-05 亨一 村田 Vehicle visor mounting structure
US7562025B2 (en) 2003-09-19 2009-07-14 Vesta Medical, Llc Waste sorting system with query function, and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236639A (en) * 1990-12-28 1993-08-17 Sumitomo Electric Industries, Ltd. Method of manufacture composite material of carbon fibers in a carbon matrix

Also Published As

Publication number Publication date
JPH0210116B2 (en) 1990-03-06

Similar Documents

Publication Publication Date Title
US5071700A (en) Carbon fiber-reinforced carbon composite material
US4321298A (en) Carbon fabrics sequentially resin coated with (1) a metal-containing composition and (2) a boron-containing composition are laminated and carbonized
US20060177663A1 (en) Carbon-carbon composite article manufactured with needled fibers
JPH0210115B2 (en)
JP2012036018A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
JPH0559072B2 (en)
JPS61197467A (en) Manufacture of carbon fiber reinforced composite material
US3295559A (en) Induction heating susceptor and method for producing same
JPH0578182A (en) Production of porous carbon formed product and electrode material
JPH0517225A (en) Production of carbon fiber reinforced carbon composite material
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
GB2112827A (en) Carbon fiber materials
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
JP2019043099A (en) Carbon fiber sheet laminate and manufacturing method therefor
JPH0570227A (en) Production of fiber reinforced composite material
JP2002255664A (en) C/c composite material and production method therefor
JP2665957B2 (en) Carbon fiber / carbon composite
JPH0442857A (en) Preparation of carbon fiber-reinforced composite material
JPH09290474A (en) Preparation of carbonaceous molded article
JPS61231222A (en) Production of carbon fiber reinforced carbon composite material
JPH01160868A (en) Production of high-density carbon fiber reinforced carbon composite material
JPS6215380A (en) Production of carbon fiber reinforced composite material
JP3380271B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3220983B2 (en) Method for producing carbon fiber reinforced carbon material
JPH0551257A (en) Production of carbon fiber reinforced carbon material