JPH04134833U - solid electrolytic capacitor - Google Patents

solid electrolytic capacitor

Info

Publication number
JPH04134833U
JPH04134833U JP5077891U JP5077891U JPH04134833U JP H04134833 U JPH04134833 U JP H04134833U JP 5077891 U JP5077891 U JP 5077891U JP 5077891 U JP5077891 U JP 5077891U JP H04134833 U JPH04134833 U JP H04134833U
Authority
JP
Japan
Prior art keywords
insulating layer
polymer film
anode
anode body
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5077891U
Other languages
Japanese (ja)
Inventor
聡 湯澤
明広 井上
Original Assignee
マルコン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルコン電子株式会社 filed Critical マルコン電子株式会社
Priority to JP5077891U priority Critical patent/JPH04134833U/en
Publication of JPH04134833U publication Critical patent/JPH04134833U/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】 【目的】 化学重合膜及び電解重合膜からなる導電性高
分子膜を固体電解質として用いた平板形の固体電解コン
デンサにおける複数間でのバラツキのない所望の静電容
量のものを容易に得るようにする。 【構成】 角板状の陽極体2の一辺に突起部1を設け、
この突起部1に陽極引出端子3を取着し、この取着部に
絶縁層4を設けて前記陽極体2表面に化学重合膜5及び
電解重合膜7を順次形成した構造とする。これによっ
て、前記陽極体2の静電容量に寄与する部分を絶縁層4
で疎外することなく有効に活用することが可能となり、
静電容量の低下及びバラツキのない信頼性に富む効果が
得られる。
(57) [Summary] [Purpose] To obtain a desired capacitance without variation among multiple plate-type solid electrolytic capacitors using a conductive polymer film consisting of a chemically polymerized film and an electrolytically polymerized film as a solid electrolyte. be easily obtained. [Structure] A protrusion 1 is provided on one side of a square plate-shaped anode body 2,
The anode lead-out terminal 3 is attached to this protrusion 1, an insulating layer 4 is provided on this attaching portion, and a chemical polymer film 5 and an electrolytic polymer film 7 are sequentially formed on the surface of the anode body 2. As a result, a portion of the anode body 2 that contributes to the capacitance is transferred to the insulating layer 4.
It is now possible to use the information effectively without alienating it.
A highly reliable effect with no reduction in capacitance and no variation can be obtained.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は化学重合膜及び電解重合膜等の導電性高分子膜を固体電解質として用 いた平板形の固体電解コンデンサに関する。 This invention uses conductive polymer membranes such as chemically polymerized membranes and electrolytically polymerized membranes as solid electrolytes. This paper relates to flat plate solid electrolytic capacitors.

【0002】0002

【従来の技術】[Conventional technology]

表面に誘電体酸化皮膜を生成したアルミニウム、タンタルなどの皮膜生成性金 属からなる陽極体に、例えばポリピロ−ル、ポリチオフェン、ポリアニリン、ポ リフラン等の導電性高分子膜を固体電解質とした固体電解コンデンサが知られて いる。 Film-forming gold such as aluminum or tantalum that has a dielectric oxide film on its surface For example, polypyrrole, polythiophene, polyaniline, polymer Solid electrolytic capacitors using conductive polymer membranes such as reflan as solid electrolytes are known. There is.

【0003】 これら導電性高分子膜を固体電解質として用いた固体電解コンデンサは、従来 一般化している駆動用電解液を使用したもの、又は近年注目を集めている有機半 導体を固体電解質として用いた固体電解コンデンサに比べ、温度特性や周波数及 び高温負荷特性(寿命)などは優れているが、陽極体が平板形のものは、積層形 又は巻回形と比較して静電容量の大きなものを得るには形状的な制約から困難で ある問題を抱えていた。0003 Solid electrolytic capacitors using these conductive polymer films as solid electrolytes are One that uses a driving electrolyte that has become commonplace, or one that uses an organic semiconductor that has been attracting attention in recent years. Compared to solid electrolytic capacitors that use a conductor as a solid electrolyte, the temperature characteristics, frequency and Although the anode body has excellent properties such as high-temperature load characteristics (life), the flat anode body is superior to the laminated one. Or, it is difficult to obtain a large capacitance compared to the wound type due to shape constraints. I had a problem.

【0004】 しかして、これら平板形の固体電解コンデンサとして従来提案されている構造 は、図5及び図6に示すように表面を粗面化して誘電体酸化皮膜を生成した、例 えば高純度アルミニウム箔の一方辺近傍に陽極引出端子11を取着した後、所望 の長さに切断して得た角板状の陽極体12の前記陽極引出端子11接続部に、例 えばマレイミド樹脂を塗布・加熱硬化させ絶縁層13を形成し、次いで前記陽極 引出端子11を構成するリ−ド線14の根元部にシリコ−ンチュ−ブ15を被冠 し、前記リ−ド線14の根元部をも絶縁化する。0004 However, the structures conventionally proposed for these flat solid electrolytic capacitors is an example in which the surface is roughened to form a dielectric oxide film as shown in Figures 5 and 6. For example, after attaching the anode lead terminal 11 near one side of the high-purity aluminum foil, For example, at the connection part of the anode lead terminal 11 of the square plate-shaped anode body 12 obtained by cutting the anode body 12 to a length of For example, a maleimide resin is applied and cured by heating to form the insulating layer 13, and then the anode A silicone tube 15 is attached to the base of the lead wire 14 constituting the extraction terminal 11. The root portion of the lead wire 14 is also insulated.

【0005】 次に前記陽極体12部に化学重合膜−電解重合膜−陰極層を順次形成し、この 陰極層に陰極引出端子を取着し、最後に樹脂外装を施して完成品としてなるもの である。[0005] Next, a chemical polymer film, an electrolytic polymer film, and a cathode layer are sequentially formed on the 12 parts of the anode body. A cathode lead-out terminal is attached to the cathode layer, and a resin exterior is finally applied to create a finished product. It is.

【0006】 しかしながら、上記のような構成になる固体電解コンデンサは、駆動用電解液 を使用したもののような皮膜生成能力がないか、あっても極わずかであり、端子 接続部が漏れ電流増大や短絡不良の原因となるのを防止する目的で行う陽極引出 端子11接続部への絶縁層13形成面積を複数個間でバラツキなく均一化するこ とは極めて困難であり、どうしても複数間で絶縁層13形成面積に差が出ざるを 得なかった。[0006] However, solid electrolytic capacitors with the above configuration require a drive electrolyte. It does not have the ability to form a film like those using Anode extraction is performed to prevent the connection from increasing leakage current or causing short circuits. The formation area of the insulating layer 13 on the terminal 11 connection portion can be made uniform among a plurality of terminals without variation. It is extremely difficult to do this, and it is inevitable that there will be differences in the formation area of the insulating layer 13 between multiple layers. I didn't get it.

【0007】 しかして、絶縁層13形成面の陽極体12は静電容量に全く貢献しないことよ り、絶縁層13形成面積のバラツキはそのまま静電容量特性のバラツキを誘発す る結果となっていた。[0007] Therefore, the anode body 12 on the surface on which the insulating layer 13 is formed does not contribute to the capacitance at all. Therefore, variations in the area where the insulating layer 13 is formed directly induce variations in the capacitance characteristics. The result was that

【0008】 また、上記した理由、すなわち絶縁層13形成面は静電容量に全く貢献しない ため必要とする静電容量を確保するためには陽極体12の大きさを見掛け上大き くしなければならず、電子部品の短小軽薄化要求の強い中で好ましいものとは言 えなかった。そして、このような問題は陽極体12が小さい程陽極体12に対す る絶縁層13で覆われる面積の割合が大きくなり、その分だけ静電容量の減少す る傾向が強くなる小さい陽極体12を用いるものにおいて顕著であった。[0008] Moreover, for the above-mentioned reason, that is, the surface on which the insulating layer 13 is formed does not contribute to the capacitance at all. Therefore, in order to secure the required capacitance, the size of the anode body 12 must be apparently large. However, given the strong demand for smaller, lighter, and thinner electronic components, it is difficult to say what is preferable. I couldn't. And, such a problem occurs as the anode body 12 becomes smaller. The proportion of the area covered by the insulating layer 13 increases, and the capacitance decreases accordingly. This tendency was more pronounced in those using a small anode body 12.

【0009】[0009]

【考案が解決しようとする課題】[Problem that the idea aims to solve]

以上のように従来提案されている化学重合膜及び電解重合膜の導電性高分子膜 を固体電解質として用いる平板形の固体電解コンデンサでは、バラツキのない静 電容量を確保することは不可能であり、また所望の静電容量を得るためには見掛 け上の形状を大きくしなければならず、実用上大きな問題を抱える結果となって いた。 As mentioned above, the conductive polymer membranes of chemically polymerized membranes and electrolytically polymerized membranes that have been proposed in the past In flat plate solid electrolytic capacitors, which use a solid electrolyte of It is impossible to ensure sufficient capacitance, and in order to obtain the desired capacitance, the apparent The shape of the upper part had to be enlarged, which resulted in a big practical problem. there was.

【0010】 本考案は、上記の欠点を解決するためになされたもので、陽極体の形状を改良 することによって均一な静電容量の確保を可能とし、かつ電子部品の短小軽薄化 の要請に貢献することのできる化学重合膜及び電解重合膜を固体電解質として用 いてなる平板形の固体電解コンデンサを提供することを目的とするものである。0010 This invention was made to solve the above drawbacks, and the shape of the anode body was improved. By doing so, it is possible to ensure uniform capacitance, and the electronic components can be made shorter, smaller, and thinner. Using chemically polymerized membranes and electrolytically polymerized membranes as solid electrolytes, which can contribute to the demands of The object of the present invention is to provide a flat solid electrolytic capacitor made of solid electrolytic capacitors.

【0011】[0011]

【課題を解決するための手段】[Means to solve the problem]

本考案による固体電解コンデンサは、一辺に突起部を設け表面に誘電体酸化皮 膜を生成した皮膜生成性金属からなる陽極体と、前記突起部に取着した陽極引出 端子と、この陽極引出端子の取着部を被覆した絶縁層と、この絶縁層の陽極引出 端子導出部近傍を除いた全面と前記陽極体に形成した化学重合膜と、この化学重 合膜上に形成した電解重合膜と、この電解重合膜上に形成した陰極層と、この陰 極層に取着した陰極引出端子と、この陰極引出端子と前記陽極引出端子の先端部 を除く全面を被覆した外装とを具備したことを特徴とするものである。 The solid electrolytic capacitor according to the present invention has a protrusion on one side and a dielectric oxide layer on the surface. An anode body made of a film-forming metal that has formed a film, and an anode drawer attached to the protrusion. A terminal, an insulating layer covering the attachment part of this anode lead-out terminal, and an anode lead-out of this insulating layer. The chemical polymer film formed on the entire surface except the vicinity of the terminal lead-out portion and the anode body, and An electrolytic polymer film formed on a composite film, a cathode layer formed on this electrolytic polymer film, and this cathode layer. A cathode lead-out terminal attached to the electrode layer, and the tips of this cathode lead-out terminal and the anode lead-out terminal. It is characterized by having an exterior that covers the entire surface except for.

【0012】0012

【作用】[Effect]

このように構成された固体電解コンデンサによれば、陽極引出端子を陽極体に 設けた突起部に取着し、絶縁層をこの取着部に設けた構造であるため、静電容量 として機能する陽極体の必要とする面積確保が容易でバラツキのない均一な静電 容量確保が容易となり、かつ電子部品の短小軽薄化の要請に大きく寄与する。 According to the solid electrolytic capacitor configured in this way, the anode lead terminal is connected to the anode body. Because it is attached to a protrusion provided and an insulating layer is provided on this attachment, the capacitance is reduced. It is easy to secure the required area for the anode body, which functions as an anode, and the static electricity is uniform and uniform. It becomes easier to secure capacity, and it greatly contributes to the demand for smaller, lighter, and thinner electronic components.

【0013】[0013]

【実施例】【Example】

以下、本考案の一実施例につき説明する。すなわち、図2に示すように一辺に 突起部1を設け表面を粗面化して誘電体酸化皮膜を生成した、例えば高純度アル ミニウム箔からなる角板状の陽極体2の前記突起部1に陽極引出端子3を例えば 超音波溶接にて取着し、次いで図3に示すように前記陽極引出端子3取着部に例 えばマレイミド樹脂を塗布・加熱硬化させ絶縁層4を形成する。 An embodiment of the present invention will be described below. In other words, as shown in Figure 2, For example, high-purity aluminum has protrusions 1 and a roughened surface to form a dielectric oxide film. For example, an anode lead terminal 3 is attached to the protrusion 1 of the rectangular plate-shaped anode body 2 made of aluminum foil. It is attached by ultrasonic welding, and then, as shown in FIG. For example, the insulating layer 4 is formed by applying and heating hardening a maleimide resin.

【0014】 しかして、前記絶縁層4の陽極引出端子3導出部近傍を除いた全面と前記陽極 体2部全面を2mol/リットルのピロ−ル/エタノ−ル溶液に5分間浸漬し、 その後0.5mol/リットル過硫酸アンモニウム水溶液に5分間浸漬して化学 酸化重合を行い、図4に示すように導電性高分子膜としての化学重合膜5を形成 する。[0014] Therefore, the entire surface of the insulating layer 4 except for the vicinity of the anode lead-out terminal 3 and the anode The entire surface of two parts of the body was immersed in a 2 mol/liter pyrrole/ethanol solution for 5 minutes, After that, it was immersed in a 0.5 mol/liter ammonium persulfate aqueous solution for 5 minutes to Perform oxidative polymerization to form a chemically polymerized film 5 as a conductive polymer film as shown in FIG. do.

【0015】 次に、この化学重合膜5の前記絶縁層4上に位置する箇所に、給電電極として の白金線6を接触させ陽極とし、ピロ−ルモノマ−1mol/リットル及び支持 電解質としてパラトルエンスルホン酸ナトリウム1mol/リットルを含むアセ トニトリル溶液に前記白金線6接触部下方を浸漬し、外部陰極(図示せず)との 間に定電流を印加し、定電流電解酸化重合(1mA/cm2 、30分間)を行な い、図1に示すように導電性高分子膜としての電解重合膜7を形成する。Next, a platinum wire 6 as a power supply electrode is brought into contact with a portion of the chemically polymerized film 5 located on the insulating layer 4 to serve as an anode, and 1 mol/liter of pyrrole monomer and paratoluenesulfone as a supporting electrolyte are added The lower part of the contact with the platinum wire 6 was immersed in an acetonitrile solution containing 1 mol/liter of sodium chloride, and a constant current was applied between it and an external cathode (not shown) to perform constant current electrolytic oxidation polymerization (1 mA/cm 2 , 30 1) to form an electrolytic polymer film 7 as a conductive polymer film, as shown in FIG.

【0016】 次に、この電解重合膜7表面にコロイダルカ−ボンを塗布−乾燥しコロイダル カ−ボン層8を形成し、しかる後このコロイダルカ−ボン層8表面に銀ペ−スト を塗布して陰極層9を形成し、最後に樹脂外装(図示せず)を施して固体電解コ ンデンサを得るものである。図中10は陽極引出端子を構成するリ−ド線部であ る。[0016] Next, colloidal carbon is applied to the surface of this electropolymerized membrane 7 and colloidal carbon is dried. A carbon layer 8 is formed, and then silver paste is applied to the surface of this colloidal carbon layer 8. is applied to form the cathode layer 9, and finally a resin sheath (not shown) is applied to form the solid electrolytic core. This is what gives you the power. In the figure, numeral 10 is a lead wire portion that constitutes an anode lead terminal. Ru.

【0017】 以上のように構成してなる固体電解コンデンサによれば、角板状の陽極体2の 一辺に突起部1を設け、陽極引出端子3をこの突起部1に取着し、かつ絶縁層4 を陽極引出端子3を取着した突起部1とした構造であるため、静電容量として機 能する陽極体2の面積は絶縁層4に疎外されることなく常に所望する分だけに確 保されることになり、均一で必要な静電容量確保が容易となり、また所望の短小 軽薄化要請に応え得る利点を有する。[0017] According to the solid electrolytic capacitor constructed as described above, the square plate-shaped anode body 2 A protrusion 1 is provided on one side, an anode lead terminal 3 is attached to this protrusion 1, and an insulating layer 4 Since it has a structure in which the anode lead terminal 3 is attached to the protrusion 1, it functions as a capacitance. The area of the anode body 2 that can be This makes it easy to secure a uniform and necessary capacitance, and also allows for the desired short and small capacitance. It has the advantage of being able to meet the demand for lighter weight.

【0018】 次に、実験結果に基づき本考案と従来例の特性比較について述べる。すなわち 、上記実施例により製作した本考案(A)と上記従来技術として図5及び図6を 参照し説明した従来例(B)との特性比較を行った結果、図7及び下表の通りで あった。[0018] Next, a comparison of the characteristics of the present invention and the conventional example will be described based on experimental results. i.e. 5 and 6 as the present invention (A) manufactured according to the above embodiment and the above conventional technology. As a result of comparing the characteristics with the conventional example (B) referred to and explained, the results are as shown in Figure 7 and the table below. there were.

【0019】 なお、試料(A)のアルミニウム箔寸法は厚さ60μmで一辺に1mm×1m mの正方形突起部を設けた3mm×3mmの正方形のものを用い、樹脂外装後の 外形寸法は厚さ1.5mm×幅4.3mm×長さ6.0mmで定格電圧10Vに 設定したものであり、試料(B)は、アルミニウム箔寸法として一辺に1mm× 1mmの正方形突起部を設けない点を除き、その他の部分は試料(A)と同一に 設定したものである。また、試料数は(A)(B)ともそれぞれ30個で表中の 数値は平均値である。[0019] The aluminum foil dimensions of sample (A) are 60 μm thick and 1 mm x 1 m on one side. Using a 3mm x 3mm square with a square protrusion of m, after resin exterior The external dimensions are 1.5 mm thick x 4.3 mm wide x 6.0 mm long, and the rated voltage is 10 V. The sample (B) has aluminum foil dimensions of 1 mm x 1 mm on each side. Other parts are the same as sample (A) except that the 1 mm square protrusion is not provided. This is the setting. In addition, the number of samples is 30 for both (A) and (B), and the number of samples in the table is 30. Values are average values.

【0020】[0020]

【表1】 [Table 1]

【0021】 図7及び上表から明らかなように、tanδ、漏れ電流、短絡不良発生率は本 考案と従来例に大差ないが、静電容量特性は絶対値及びバラツキとも本考案のも のが従来例と比較し大幅に優れていることがわかる。[0021] As is clear from Figure 7 and the table above, tan δ, leakage current, and short circuit failure rate are There is not much difference between the invention and the conventional example, but the capacitance characteristics of the invention are different both in absolute value and variation. It can be seen that this is significantly superior to the conventional example.

【0022】 この結果から、同一大きさのもので比較した場合、本考案のもは従来例のもの より約37%強の静電容量アップが可能であり、また別な見方をすれば同一静電 容量を得るためには本考案のものはそれだけ小形化が可能で、電子部品として要 請の強い短小軽薄化に大きく貢献できることを意味し、また、静電容量のバラツ キにおいて、本考案のものはほんの僅かであるのに対し、従来例のものは大幅な バラツキを示し実用的でないことを実証した。[0022] From this result, when comparing items of the same size, the product of this invention is compared to the conventional example. It is possible to increase the capacitance by about 37% or more, and from a different perspective, the same capacitance In order to obtain the capacity, the device of this invention can be made smaller, which is required as an electronic component. This means that it can greatly contribute to the reduction in size, size, and weight that are strongly demanded, and also reduces the variation in capacitance. In terms of ki, the inventive method has only a small amount, whereas the conventional method has a large amount. It was demonstrated that the results showed variations and were not practical.

【0023】 なお、上記実施例では絶縁層材料としてマレイミド樹脂を用いたものを例示し て説明したが、シリコ−ン樹脂、フッ素樹脂、エポキシ樹脂、又はポリイミド樹 脂を用いてもよいことは勿論である。[0023] Note that the above example uses maleimide resin as the insulating layer material. However, silicone resin, fluororesin, epoxy resin, or polyimide resin Of course, fat may also be used.

【0024】[0024]

【考案の効果】 本考案によれば、複数間でバラツキのない所望の静電容量のものを容易に得る ことが可能となると共に、短小軽薄化に適する実用的価値の高い化学重合膜及び 電解重合膜からなる導電性高分子膜を固体電解質として用いた平板形の固体電解 コンデンサを得ることができる。[Effect of the idea] According to the present invention, it is easy to obtain a desired capacitance with no variation among multiple chemically polymerized membranes with high practical value that are suitable for shortening, lightening, and thinning. Flat-plate solid electrolyte using a conductive polymer membrane made of electrolytic polymer membrane as a solid electrolyte You can get a capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本考案の実施例に係る固体電解コンデンサの素
子構造を示す断面図である。
FIG. 1 is a sectional view showing the element structure of a solid electrolytic capacitor according to an embodiment of the present invention.

【図2】本考案の実施例に係る固体電解コンデンサの素
子を構成する陽極体に引出端子を取着した状態を示す斜
視図である。
FIG. 2 is a perspective view showing a state in which a lead terminal is attached to an anode body constituting an element of a solid electrolytic capacitor according to an embodiment of the present invention.

【図3】本考案の実施例に係る固体電解コンデンサの素
子を構成する陽極体と引出端子の取着部に絶縁層を形成
した状態を示す斜視図である。
FIG. 3 is a perspective view showing a state in which an insulating layer is formed on the attachment portion of the anode body and the lead terminal, which constitute the element of the solid electrolytic capacitor according to the embodiment of the present invention.

【図4】本考案の実施例に係る電解酸化重合における給
電手段を説明するための平面図である。
FIG. 4 is a plan view for explaining a power supply means in electrolytic oxidative polymerization according to an embodiment of the present invention.

【図5】従来例に係る固体電解コンデンサの素子を構成
する陽極体に引出端子を取着した状態を示す斜視図であ
る。
FIG. 5 is a perspective view showing a state in which a lead terminal is attached to an anode body constituting an element of a solid electrolytic capacitor according to a conventional example.

【図6】従来例に係る固体電解コンデンサの素子を構成
する陽極体と引出端子の取着部に絶縁層を形成した状態
を示す斜視図である。
FIG. 6 is a perspective view showing a state in which an insulating layer is formed on the attachment portion of an anode body and a lead terminal, which constitute an element of a solid electrolytic capacitor according to a conventional example.

【図7】本考案と従来例の静電容量分布状態を示す特性
図である。
FIG. 7 is a characteristic diagram showing capacitance distribution states of the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1 突起部 2 陽極体 3 陽極引出端子 4 絶縁層 5 化学重合膜 7 電解重合膜 1 Protrusion 2 Anode body 3 Anode lead terminal 4 Insulating layer 5 Chemically polymerized membrane 7 Electropolymerized membrane

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 一辺に突起部を設け表面に誘電体酸化皮
膜を生成した皮膜生成性金属からなる陽極体と、前記突
起部に取着した陽極引出端子と、この陽極引出端子の取
着部を被覆した絶縁層と、この絶縁層の陽極引出端子導
出部近傍を除いた全面と前記陽極体に形成した化学重合
膜と、この化学重合膜上に形成した電解重合膜と、この
電解重合膜上に形成した陰極層と、この陰極層に取着し
た陰極引出端子と、この陰極引出端子と前記陽極引出端
子の先端部を除く全面を被覆した外装とを具備したこと
を特徴とする固体電解コンデンサ。
1. An anode body made of a film-forming metal with a protrusion on one side and a dielectric oxide film formed on the surface, an anode lead-out terminal attached to the protrusion, and a mounting portion of the anode lead-out terminal. an insulating layer covering the insulating layer, a chemical polymer film formed on the entire surface of the insulating layer except for the vicinity of the anode lead-out terminal and the anode body, an electrolytic polymer film formed on the chemical polymer film, and an electrolytic polymer film formed on the chemical polymer film. A solid electrolyte comprising: a cathode layer formed on the cathode layer; a cathode lead terminal attached to the cathode layer; and an exterior covering the entire surface of the cathode lead terminal and the anode lead terminal except for the tips thereof. capacitor.
【請求項2】 絶縁層がマレイミド樹脂、シリコ−ン樹
脂、フッ素樹脂、エポキシ樹脂又はポリイミド樹脂で構
成した請求項1記載の固体電解コンデンサ。
2. The solid electrolytic capacitor according to claim 1, wherein the insulating layer is made of maleimide resin, silicone resin, fluororesin, epoxy resin, or polyimide resin.
JP5077891U 1991-06-04 1991-06-04 solid electrolytic capacitor Pending JPH04134833U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5077891U JPH04134833U (en) 1991-06-04 1991-06-04 solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5077891U JPH04134833U (en) 1991-06-04 1991-06-04 solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH04134833U true JPH04134833U (en) 1992-12-15

Family

ID=31928044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5077891U Pending JPH04134833U (en) 1991-06-04 1991-06-04 solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH04134833U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180115A (en) * 1981-04-30 1982-11-06 Fujitsu Ltd Method of producing anode element in aluminum solid electrolytic condenser
JPH01105523A (en) * 1987-10-19 1989-04-24 Japan Carlit Co Ltd:The Solid electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180115A (en) * 1981-04-30 1982-11-06 Fujitsu Ltd Method of producing anode element in aluminum solid electrolytic condenser
JPH01105523A (en) * 1987-10-19 1989-04-24 Japan Carlit Co Ltd:The Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP2765462B2 (en) Solid electrolytic capacitor and method of manufacturing the same
KR100827160B1 (en) Stacked solid electrolytic capacitor
JP5072857B2 (en) Electrolytic capacitor manufacturing method
JP3416053B2 (en) Electrolytic capacitor and method of manufacturing the same
JP2003086459A (en) Solid electrolytic capacitor
EP1437750A1 (en) Solid electrolytic capacitor and method of manufacturing the capacitor
JP4338179B2 (en) Manufacturing method of aluminum solid electrolytic capacitor
JP2007180404A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2004088073A (en) Solid electrolytic capacitor
JP2004087713A (en) Aluminum solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JPH04134833U (en) solid electrolytic capacitor
JP3150327B2 (en) Capacitor
JP2001126958A (en) Chip-type solid electrolytic capacitor
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
JP2640866B2 (en) Method for manufacturing solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JPH05304056A (en) Manufacture of solid electrolytic capacitor
JPH06204097A (en) Layered solid-state electrolytic capacitor and its manufacture
JP2924310B2 (en) Manufacturing method of capacitor
JP2003197471A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2775762B2 (en) Solid electrolytic capacitors
JPH0487316A (en) Capacitor