JPH04130086A - Method and apparatus for production of high dissociation pressure single crystal - Google Patents

Method and apparatus for production of high dissociation pressure single crystal

Info

Publication number
JPH04130086A
JPH04130086A JP24735690A JP24735690A JPH04130086A JP H04130086 A JPH04130086 A JP H04130086A JP 24735690 A JP24735690 A JP 24735690A JP 24735690 A JP24735690 A JP 24735690A JP H04130086 A JPH04130086 A JP H04130086A
Authority
JP
Japan
Prior art keywords
single crystal
airtight container
liquid
crystal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24735690A
Other languages
Japanese (ja)
Other versions
JP2830437B2 (en
Inventor
Tomohiro Kawase
智博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24735690A priority Critical patent/JP2830437B2/en
Publication of JPH04130086A publication Critical patent/JPH04130086A/en
Application granted granted Critical
Publication of JP2830437B2 publication Critical patent/JP2830437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce the compd. semiconductor single crystal having a low dislocation density and good quality at a good yield by maintaining the B2O3 liquid sealants in a hermetic vessel which is filled with gaseous high-dissociation pressure component elements and pulls up a single crystal from a raw material melt to a specific temp. CONSTITUTION:The gases formed by heating and evaporating high-dissociation pressure component elements 13, such as AS and P, housed in an ampoule 12 by a heater are filled into the hermetic vessel 2 disposed in a high-pressure chamber 1. The raw material melt 16 and the liquid sealant 17 heated and melted by a heater 19 are housed into a crucible 15 in a susceptor 14 rotationally supported by a lower shaft 4 in this hermetic vessel 2. While a single crystal 26 is grown via the seed crystal 18 mounted to the bottom end of the upper shaft 3, the single crystal is pulled up under rotation. The B2O3 liquid sealants 7, 8 in liquid pools 5, 6 are interposed in the spacings of the parts where the above-mentioned upper and lower shafts 3, 4 penetrate the hermetic vessel 2 and the temp. thereof is kept up to above 700 to 1100 deg.C by heaters 9, 10. The drop of the partial pressure of the above-mentioned gases is averted and the good-quality single crystal is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液体対Iヒチョクラルスキー法により、Ga
As GaP、 InAs、 InP等のm−v族化合
物半導体を製造する方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is a method for producing Ga
The present invention relates to a method and apparatus for manufacturing m-v group compound semiconductors such as AsGaP, InAs, and InP.

(従来の技術) 高解離圧成分元素ガスを満たした気密容器内でチョクラ
ルスキー法又は液体封止チョクラルスキー法により化合
物半導体単結晶を製造する方法は、上記雰囲気ガス圧に
より引き上げ結晶表面における分解反応を抑えることが
できるため、非常に小さな温度勾配の下で結晶成長を行
うことを可能にした。その結果、低転位密度の単結晶を
得ることができるようになった。
(Prior art) A method for producing a compound semiconductor single crystal by the Czochralski method or the liquid-sealed Czochralski method in an airtight container filled with a high dissociation pressure component gas is to Since decomposition reactions can be suppressed, it has become possible to grow crystals under extremely small temperature gradients. As a result, it has become possible to obtain single crystals with low dislocation density.

第1図及び第2図は、従来の液体封止チョクラルスキー
法置の断面図である。第1図の装置は、高圧チャンバー
1内に気密容器2を設け、るつぼ15のサセプタ14を
支持する下軸4が気密容器2を貫通する部分に液溜6を
設け、液体封止剤8を収容し、ヒータ10で液体封止剤
8を加熱溶融して/−ルを形成するとともに、種結晶1
8を下端に取り付けた」二軸3か気密容器2をπ通する
部分に液溜5を設け、液体封止剤7を収容し、ヒータ9
で加熱溶融してンールを形成する。そして、気密容器2
には、アンプル12を導管11を介して連通させ、アン
プル12内の高解離圧成分元素13をヒータ25で加熱
蒸発して気密容器2内に該成分元素ガスを満たしたもの
である。
FIGS. 1 and 2 are cross-sectional views of a conventional liquid-sealed Czochralski implant. In the apparatus shown in FIG. 1, an airtight container 2 is provided in a high-pressure chamber 1, a liquid reservoir 6 is provided at a portion where a lower shaft 4 that supports a susceptor 14 of a crucible 15 passes through the airtight container 2, and a liquid sealant 8 is provided. The liquid sealant 8 is heated and melted by the heater 10 to form a seed crystal 1.
A liquid reservoir 5 is provided at the part where the two shafts 3 and the airtight container 2 pass through, and a liquid sealant 7 is accommodated therein.
It is heated and melted to form a hole. And airtight container 2
In this case, the ampoule 12 is communicated through the conduit 11, and the high dissociation pressure component element 13 in the ampoule 12 is heated and evaporated by the heater 25, so that the airtight container 2 is filled with the component element gas.

次に、結晶成長の手順を説明すると、高圧チャンバー】
を真空に引き、窒素、アルゴン等の不活性ガスを導入し
てから、ヒータ9及び10を加熱して上下軸の液溜の液
体封止剤7及び8を加熱溶融して気密容器2を密閉する
。ヒータ25を加熱して高解離圧成分元素13を蒸発さ
せ、気密容器2内に所定の分圧を保持するとともに、気
密容器2の内外の圧力をバランスするように、高圧チャ
ンバー1内の不活性ガス圧力を増加する。その後、ヒー
タ19及び20を加熱して原料16及び液体封止剤17
を溶融し、るつぼ15を回転しながら原料融液16の温
度を安定させてから、」−軸3を下降させ、その先端の
種結晶18を原料融液I6に浸漬し、回転させながら上
軸3を引き上げることにより単結晶26を成長させる。
Next, to explain the procedure of crystal growth, high pressure chamber]
is evacuated, an inert gas such as nitrogen or argon is introduced, and the heaters 9 and 10 are heated to heat and melt the liquid sealants 7 and 8 in the liquid reservoirs on the upper and lower axes, thereby sealing the airtight container 2. do. The heater 25 is heated to evaporate the high dissociation pressure component element 13 to maintain a predetermined partial pressure in the airtight container 2 and to balance the pressure inside and outside the airtight container 2. Increase gas pressure. Thereafter, the heaters 19 and 20 are heated to release the raw material 16 and the liquid sealant 17.
After stabilizing the temperature of the raw material melt 16 while rotating the crucible 15, lower the shaft 3, immerse the seed crystal 18 at its tip in the raw material melt I6, and lower the upper shaft while rotating. 3, a single crystal 26 is grown.

第2図の装置は、第1図の装置の変形であり、気密容器
を上部21と下部22に分割して、原料等の投入と引き
」こげ単結晶の回収を容易にしたものであり、気密容器
の下部22をるつぼ15を内蔵するサセプタとして使用
し、その上端部周囲に環状溝23を設けて液体封止剤2
4を収容するとともに、気密容器の上部21の下端を上
記液体)・1+h剤24に浸漬して気密を確保するよう
にしたものである。その他の構成は、第1図の装置と同
じてあり、結晶成長手順も同じため、その説明を省略す
る。
The device shown in FIG. 2 is a modification of the device shown in FIG. 1, in which the airtight container is divided into an upper part 21 and a lower part 22 to facilitate the introduction of raw materials and the recovery of burnt single crystals. The lower part 22 of the airtight container is used as a susceptor containing the crucible 15, and an annular groove 23 is provided around the upper end to contain the liquid sealant 2.
4, and the lower end of the upper part 21 of the airtight container is immersed in the liquid).1+h agent 24 to ensure airtightness. The rest of the structure is the same as that of the apparatus shown in FIG. 1, and the crystal growth procedure is also the same, so a description thereof will be omitted.

(発明が解決しようとする課題) 上記装置において、シール部の液体封止剤の温度は一般
に高い方が液体封止剤の粘性を低下させることができ、
」二下軸等の回転を円滑にすることができるので良いと
考えられていた。そして、この種の装置を用いて、緩や
かな温度勾配の下で結晶成長を行う場合は、7一ル部の
液体封止剤の温度は高くなり易く、特に、第2図の装置
のように、るつぼの周囲に液体封止剤中めが設けられて
いる場合は、構造的に液体封止剤の温度が高くなるのは
避けることができない。
(Problems to be Solved by the Invention) In the above device, generally speaking, the higher the temperature of the liquid sealant in the sealing portion, the lower the viscosity of the liquid sealant;
It was thought that this was a good idea because it allowed smooth rotation of the two lower shafts, etc. When crystal growth is performed under a gentle temperature gradient using this type of equipment, the temperature of the liquid sealant in the 7th part tends to rise, especially in the equipment shown in Figure 2. When a liquid sealant medium is provided around the crucible, it is structurally unavoidable that the temperature of the liquid sealant increases.

しかし、本発明者は、上記装置を用いて結晶成長を行う
中で、種結晶の劣化により、成長の途中で結晶が落下し
たり、成長結晶の表面の劣化が起こり、気密容器中の高
解離圧成分元素ガスの分圧の低下に気が付いた。
However, during crystal growth using the above-mentioned apparatus, the present inventor discovered that due to deterioration of the seed crystal, the crystal may fall during the growth, or the surface of the growing crystal may deteriorate, resulting in high dissociation in the airtight container. I noticed a decrease in the partial pressure of the pressure component element gas.

そこで、本発明は、気密容器中の高解離圧成分元素ガス
の分圧低下を回避し、種結晶及び成長結晶の劣化を防止
して転位密度の低い良質の化合物半導体単結晶を歩留ま
り良く製造することのできる方法及びその装置を提供し
ようとするものである。
Therefore, the present invention avoids a drop in the partial pressure of a high dissociation pressure component gas in an airtight container, prevents deterioration of a seed crystal and a grown crystal, and produces a high-quality compound semiconductor single crystal with a low dislocation density at a high yield. The purpose of this paper is to provide a method and device that can achieve this goal.

(課題を解決するための手段) 本発明は、気密容器の接続部分、及び、軸が気密容器を
貫通する部分の隙間にB2O3液体封止剤を介在させる
ことにより密閉した気密容器に高解離圧成分元素ガスを
満たし、下軸て支持されたるつぼの原料融液から上軸を
用いて単結晶を引き」二げる化合物半導体単結晶の製造
方法において、」1記密閉用のB2O3液体封止剤を、
700°Cを越えて1100°C以下の温度に保持して
単結晶を引き」−げることを特徴とする化合物半導体単
結晶の製造方法、及び、上記製造方法に使用する装置に
おいて、気密容器の接続部分をるつぼから離れた位置に
設けたことを特徴とする化合物半導体単結晶の製造装置
である。
(Means for Solving the Problems) The present invention provides a high dissociation pressure in a sealed airtight container by interposing a B2O3 liquid sealant in the gap between the connection part of the airtight container and the part where the shaft penetrates the airtight container. In a method for manufacturing a compound semiconductor single crystal, in which a single crystal is pulled from a raw material melt in a crucible filled with component gas and supported by a lower axis using an upper axis, agent,
A method for manufacturing a compound semiconductor single crystal, characterized in that the single crystal is pulled by holding it at a temperature exceeding 700°C and not more than 1100°C, and an apparatus used in the above manufacturing method, wherein an airtight container is provided. This is a compound semiconductor single crystal manufacturing apparatus characterized in that a connecting portion of the crucible is provided at a position away from a crucible.

なお、上記高解離圧成分元素ガスとして砒素又は燐のガ
スを用いることができる。
Note that arsenic or phosphorus gas can be used as the high dissociation pressure component element gas.

(作用) 本発明者は、上記の液体封止チョクラルスキー装置にお
いて、高解離圧成分元素ガスの分圧の低下の原因を調べ
たところ、該ガスが気密容器から抜ける経路は、■気密
容器内の圧力が高圧チャンバー内の圧力より高くなる時
に、ンール部の液体封止剤中を気泡となって外部に放出
されるか、■液体封止剤中に溶は込み、液体封止剤中を
拡散して外部に放出される、2つの場合かある。
(Function) The present inventor investigated the cause of the decrease in the partial pressure of the high dissociation pressure component elemental gas in the liquid-sealed Czochralski apparatus described above, and found that the path through which the gas escapes from the airtight container is: When the pressure inside the high-pressure chamber becomes higher than the pressure inside the high-pressure chamber, the liquid sealant in the chamber becomes bubbles and is released to the outside. There are two cases in which it is diffused and released to the outside.

方、上記のように、」二下軸等の回転を円滑にするため
に、液体側りに剤の温度を高くして粘性を低下させると
きには、液体封止剤中に気泡か発生し易(、また、高解
離圧成分元素ガスが液体封止剤中に溶は込み易い状態に
なる。
On the other hand, as mentioned above, when increasing the temperature of the agent on the liquid side to lower the viscosity in order to smooth the rotation of the lower shaft, bubbles are likely to form in the liquid sealant ( In addition, the high dissociation pressure component gas easily dissolves into the liquid sealant.

そこで、本発明者は、B2O3液体封止剤を用いて実験
を重ねることにより、B2O3液体封止剤の温度と高解
離圧成分元素ガスの抜けの関係を調へた結果、ンール部
のB2O3液体封止剤の温度が1100℃を越えると抜
けが顕著になり、気密容器内の高解離圧成分元素ガス分
圧の維持が困難となって、原料融液の組成のずれや種結
晶並びに引上結晶の劣化を来し、また、700℃以下に
なると、上下軸等の回転に円滑さが欠け、特に、上軸に
振動が発生すると、上軸に接続したロードセルのノイズ
が太き(なり、引上結晶の正確な重量測定が困難となり
、結晶直径を正確に制御することができなくなり、かつ
、結晶欠陥を発生させる原因となることを見いだした。
Therefore, through repeated experiments using a B2O3 liquid sealant, the inventor investigated the relationship between the temperature of the B2O3 liquid sealant and the release of the high dissociation pressure component element gas. When the temperature of the sealant exceeds 1100°C, leakage becomes noticeable, and it becomes difficult to maintain the partial pressure of the high dissociation pressure component gas in the airtight container, resulting in deviations in the composition of the raw material melt, seed crystals, and pulling. If the temperature is lower than 700℃, the rotation of the vertical axis will not be smooth, and especially if vibration occurs in the upper axis, the noise of the load cell connected to the upper axis will become louder. It has been found that this makes it difficult to accurately measure the weight of the pulled crystal, making it impossible to accurately control the crystal diameter, and causing crystal defects.

即ち、回転部分を伴うB2O3液体封止剤を、700°
Cを越えて1100℃以下の温度に保持するごとにより
、気密容器からの高解離圧成分元素ガスの抜けを防止し
、円滑な回転で結晶成長を行うことを保証し、低転位密
度の良質の化合物半導体単結晶を歩留まり良く製造する
ことを可能にした。
That is, the B2O3 liquid sealant with rotating parts is rotated at 700°.
By maintaining the temperature above C and below 1100℃, it prevents the escape of high dissociation pressure component gas from the airtight container, guarantees crystal growth with smooth rotation, and produces high-quality products with low dislocation density. This made it possible to manufacture compound semiconductor single crystals with high yield.

第3図は、上記の製造方法を容易に実施するために、第
2図の装置を改良したものであり、気密容器上部21と
るつぼ15のサセプタを兼ねる気密容器下部22との接
続部分を最上部に設けて、高温の原料融液16から離し
た点が特徴である。
FIG. 3 shows an improved version of the apparatus shown in FIG. 2 in order to easily carry out the above manufacturing method, and the connecting portion between the upper part 21 of the airtight container and the lower part 22 of the airtight container, which also serves as a susceptor for the crucible 15, is optimized. The feature is that it is provided at the upper part and separated from the high-temperature raw material melt 16.

なお、その他の装置構成は、第2図の装置と同じである
ため、説明は省略する。
Note that the other device configurations are the same as the device shown in FIG. 2, so explanations will be omitted.

(実施例) 第1図の装置を用い、GaAs単結晶を育成した。(Example) A GaAs single crystal was grown using the apparatus shown in FIG.

直径6インチのp311製るつぼにGaAs多結晶原料
40kgと液体封止剤としてBtOs500 g収容し
、上下軸の貫通する部分に設けた液溜に液体封止剤B2
O3を入れ、高解離圧成分元素ガス供給用原料としてA
s500gをアンプルに収容した。
40 kg of GaAs polycrystalline raw material and 500 g of BtOs as a liquid sealant were stored in a P311 crucible with a diameter of 6 inches, and liquid sealant B2 was placed in the liquid reservoir provided in the part where the vertical axis penetrated.
O3 is added to A as a raw material for supplying high dissociation pressure component element gas.
s500g was placed in an ampoule.

まず、高圧チャンバー内を真空に引き、上下軸の貫通す
る液溜の液体封止剤をその周囲のヒーターで950〜J
000°Cに加熱して気密容器を完全に密閉した後、ア
ンプルを約617°Cに加熱して気密容器内にAsの分
圧が約1気圧となるように調整し、さらに、全圧が15
気圧となるように窒素ガスを加えた。そして、気密容器
周囲のヒーターで原料融液の温度勾配を10℃/1m1
1に調整し、るつぼの回転数を5rpm、上軸の回転数
を3rpm、引上速度を6mm/hrで結晶成長を行っ
たところ、直径約8511I11、長さ約150mmの
GaAs単結晶を育成することができた。育成後、成長
結晶と残留原料の重量を測定して使用原料と対比するこ
とにより、原料ロスを測定したところ、僅かIgであり
、原料組成のずれがほとんどないことが確認された。ま
た、種結晶と成長結晶表面に劣化は見られなかった。成
長結晶を成長軸に垂直に切り出して転位密度を測定した
ところ、結晶の外周近くで転位密度が高くなることはな
く、3インチ平均で2000c+s−″と極めて良好で
あった。
First, the inside of the high-pressure chamber is evacuated, and the liquid sealant in the liquid reservoir penetrated by the upper and lower shafts is heated to 95~J
After heating the ampoule to 000°C and completely sealing the airtight container, the ampoule was heated to about 617°C and the partial pressure of As in the airtight container was adjusted to about 1 atm. 15
Nitrogen gas was added to achieve atmospheric pressure. Then, the temperature gradient of the raw material melt was adjusted to 10℃/1m1 using a heater around the airtight container.
1, and crystal growth was performed with the rotation speed of the crucible at 5 rpm, the rotation speed of the upper shaft at 3 rpm, and the pulling speed at 6 mm/hr. As a result, a GaAs single crystal with a diameter of about 8511I11 and a length of about 150 mm was grown. I was able to do that. After the growth, the weight of the grown crystal and the remaining raw material was measured and compared with the raw material used to measure the raw material loss, and it was confirmed that it was only Ig, and there was almost no deviation in the raw material composition. Further, no deterioration was observed on the surfaces of the seed crystal and the grown crystal. When the grown crystal was cut out perpendicularly to the growth axis and the dislocation density was measured, the dislocation density did not become high near the outer periphery of the crystal, and was extremely good at 2000 c+s-'' on average for 3 inches.

上記の育成条件の中で、上下軸の貫通する液溜の液体封
止剤の温度のみ1150℃に変更して、同様にGaAs
単結晶を育成したところ、原料ロスは40gあり、種結
晶と成長結晶表面に劣化が認められた。
Among the above growth conditions, only the temperature of the liquid sealant in the liquid reservoir penetrated by the upper and lower axes was changed to 1150°C, and GaAs was grown in the same way.
When a single crystal was grown, there was a raw material loss of 40 g, and deterioration was observed on the seed crystal and the surface of the grown crystal.

また、上記と同様に転位密度を測定したところ、結晶の
外周近くで転位密度は50000cm−”と高く、全体
の平均でも100100O0”と高い値を示した。
Further, when the dislocation density was measured in the same manner as above, it was found that the dislocation density near the outer periphery of the crystal was as high as 50,000 cm-'', and the overall average was as high as 100,100 O''.

(発明の効果) 本発明は、上記の構成を採用することにより、気密容器
から高解離圧成分元素ガスの抜けを防止することができ
、該ガスの分圧を十分に確保することができるため、種
結晶と成長結晶の表面を劣化させることがなく、低転位
密度で高品質の高解離圧単結晶を歩留まり良く製造する
ことができるようになった。
(Effects of the Invention) By adopting the above configuration, the present invention can prevent the escape of high dissociation pressure component element gas from the airtight container, and can sufficiently ensure the partial pressure of the gas. It has now become possible to produce high-quality, high-dissociation-pressure single crystals with low dislocation density and high yield without deteriorating the surfaces of the seed crystal and growing crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (3)

【特許請求の範囲】[Claims] (1)気密容器の接続部分、及び、軸が気密容器を貫通
する部分の隙間にB_2O_3液体封止剤を介在させる
ことにより密閉した気密容器に高解離圧成分元素ガスを
満たし、下軸で支持されたるつぼの原料融液から上軸を
用いて単結晶を引き上げる化合物半導体単結晶の製造方
法において、上記密閉用の液体封止剤を、700℃を越
えて1100℃以下の温度に保持して単結晶を引き上げ
ることを特徴とする化合物半導体単結晶の製造方法。
(1) By interposing B_2O_3 liquid sealant in the gap between the connection part of the airtight container and the part where the shaft penetrates the airtight container, the airtight container is filled with high dissociation pressure component element gas and supported by the lower shaft. In a method for producing a compound semiconductor single crystal, in which a single crystal is pulled from a raw material melt in a crucible using an upper axis, the liquid sealant for sealing is maintained at a temperature exceeding 700 °C and below 1100 °C. A method for producing a compound semiconductor single crystal, characterized by pulling the single crystal.
(2)上記高解離圧成分元素ガスとして砒素又は燐のガ
スを用いることを特徴とする請求項(1)記載の化合物
半導体単結晶の製造方法。
(2) The method for manufacturing a compound semiconductor single crystal according to claim (1), characterized in that arsenic or phosphorus gas is used as the high dissociation pressure component element gas.
(3)請求項(1)又は(2)記載の化合物半導体単結
晶の製造方法に使用する装置において、気密容器の接続
部分をるつぼから離れた位置に設けたことを特徴とする
化合物半導体単結晶の製造装置。
(3) In the apparatus used in the method for manufacturing a compound semiconductor single crystal according to claim (1) or (2), the compound semiconductor single crystal is characterized in that the connecting portion of the airtight container is provided at a position away from the crucible. manufacturing equipment.
JP24735690A 1990-09-19 1990-09-19 Method and apparatus for producing high dissociation pressure single crystal Expired - Fee Related JP2830437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24735690A JP2830437B2 (en) 1990-09-19 1990-09-19 Method and apparatus for producing high dissociation pressure single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24735690A JP2830437B2 (en) 1990-09-19 1990-09-19 Method and apparatus for producing high dissociation pressure single crystal

Publications (2)

Publication Number Publication Date
JPH04130086A true JPH04130086A (en) 1992-05-01
JP2830437B2 JP2830437B2 (en) 1998-12-02

Family

ID=17162201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24735690A Expired - Fee Related JP2830437B2 (en) 1990-09-19 1990-09-19 Method and apparatus for producing high dissociation pressure single crystal

Country Status (1)

Country Link
JP (1) JP2830437B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483240B2 (en) * 2019-02-22 2024-05-15 インパクト エスアー Single crystal growth apparatus and method for producing III-V group semiconductor single crystal

Also Published As

Publication number Publication date
JP2830437B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US5290395A (en) Method of and apparatus for preparing single crystal
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
JPH10167898A (en) Production of semi-insulative gaas single crystal
JP2979770B2 (en) Single crystal manufacturing equipment
JPH04130086A (en) Method and apparatus for production of high dissociation pressure single crystal
JPH11335195A (en) Production of compound semiconductor crystal and compound semiconductor crystal
JPH11147785A (en) Production of single crystal
US5840115A (en) Single crystal growth method
JPS6395194A (en) Production of compound single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2830307B2 (en) Method for producing high dissociation pressure single crystal
JP3158661B2 (en) Method and apparatus for producing high dissociation pressure single crystal
JP3627255B2 (en) III-V compound semiconductor single crystal growth method
JPH08277192A (en) Apparatus for producing compound semiconductor single crystal and its production
JPH02283690A (en) Production of single crystal of compound semiconductor
JPH0483794A (en) Method and apparatus for growing compound semiconductor single crystal
JPS6335600B2 (en)
JP2005200224A (en) Apparatus for growing single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JPH04124089A (en) Production of compound semiconductor single crystal
JPH01286992A (en) Apparatus for growing single crystal
JPS62197397A (en) Production of single crystal
JP2000327496A (en) Production of inp single crystal
JPH0873294A (en) Apparatus for growing single crystal
JPH0274585A (en) Device for producing single crystal of compound having high-dissociation pressure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees