JPH04124089A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPH04124089A
JPH04124089A JP24190490A JP24190490A JPH04124089A JP H04124089 A JPH04124089 A JP H04124089A JP 24190490 A JP24190490 A JP 24190490A JP 24190490 A JP24190490 A JP 24190490A JP H04124089 A JPH04124089 A JP H04124089A
Authority
JP
Japan
Prior art keywords
crystal
pressure
single crystal
inert gas
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24190490A
Other languages
Japanese (ja)
Other versions
JP2781856B2 (en
Inventor
Kenji Kohiro
健司 小廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP24190490A priority Critical patent/JP2781856B2/en
Publication of JPH04124089A publication Critical patent/JPH04124089A/en
Application granted granted Critical
Publication of JP2781856B2 publication Critical patent/JP2781856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the generation of crack and dislocation in a single crystal in the production of a compound semiconductor single crystal by a liquid-encapsulating Kyropoulos process, etc., by cooling the crystal under the encapsulant using a specific method without pulling up the crystal after the growth of the single crystal. CONSTITUTION:A molten raw material 5 in a crucible 3 placed in a pressure vessel 1 is covered with a liquid encapsulant layer 6, the pressure vessel 1 is filled with high-pressure inert gas atmosphere and the molten raw material 5 is slowly cooled to effect the growth of a compound semiconductor single crystal 9. The grown single crystal 9 is cooled under the encapsulant layer 6 without being pulled out of the crucible and, when the temperature of the encapsulant layer 6 reaches 500-650 deg.C in the cooling process, the inert gas pressure in the pressure vessel 1 is decreased to expand the inert gas, gas of group V element, group VI element, etc., dissolved in the liquid encapsulant layer 6 to foam the encapsulant layer. The contacting area between the encapsulant 6 and the grown crystal 9 is decreased by this process and the crack caused by the difference of thermal expansion coefficients is generated mainly in the encapsulant layer to prevent the generation of cracks in the grown crystal 9.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、液体封止カイロポーラス法(以下、LEK法
と称する)もしくは垂直徐冷法による化合物半導体単結
晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a compound semiconductor single crystal by a liquid-enclosed chiroporous method (hereinafter referred to as LEK method) or a vertical slow cooling method.

[従来の技術] 一般に、GaP,GaAs,TnP,CdTe等の■−
■族およびI[−VT族化合物半導体は、融点付近で高
い蒸気圧を有するために、原料融液上をBtO,等から
なる液体封止剤層で覆う液体封止法により単結晶の成長
が行なわれている。現在、この液体封止法としては、液
体封止チョクラルスキー法(LEC法)やLEK法等が
知られている。
[Prior art] In general, ■- of GaP, GaAs, TnP, CdTe, etc.
Because group III and I[-VT compound semiconductors have high vapor pressures near their melting points, single crystals can be grown using a liquid sealing method in which the raw material melt is covered with a liquid sealant layer made of BtO, etc. It is being done. Currently, liquid sealing methods such as the liquid sealing Czochralski method (LEC method) and the LEK method are known.

LEC法は、結晶の成長とともに種結晶を引き上げてい
く方法であり、種付けにより結晶方位が制御可能で、ま
た高純度結晶を得やすいため、工業化されているが、直
径制御が困難であって均一の直胴が得難く、また結晶成
長時の融液中の温度勾配が大きいため熱応力が大きくな
り転位欠陥が多いという欠点を有している。
The LEC method is a method in which a seed crystal is pulled up as the crystal grows, and it has been industrialized because the crystal orientation can be controlled by seeding and it is easy to obtain high-purity crystals, but it is difficult to control the diameter and it is difficult to obtain uniform crystals. It is difficult to obtain a straight body, and the temperature gradient in the melt during crystal growth is large, resulting in large thermal stress and many dislocation defects.

これに対し、LEK法は、結晶の引上げを行わず耐火性
るつぼ中で結晶成長を行なうために、成長結晶の直径は
るつぼ内径に依存する。そのため、直径制御が容易であ
るとともに、結晶成長時の融液中湿度勾配が数℃/cm
であってLEC法に比して1桁小さいため、熱応力が小
さく、転位欠陥が少ないという利点を有している。
On the other hand, in the LEK method, the crystal is grown in a refractory crucible without pulling the crystal, so the diameter of the grown crystal depends on the inner diameter of the crucible. Therefore, it is easy to control the diameter, and the humidity gradient in the melt during crystal growth is reduced to several degrees Celsius/cm.
This is one order of magnitude smaller than that of the LEC method, so it has the advantage of low thermal stress and fewer dislocation defects.

[発明が解決しようとする課題] しかしながら、従来の一般的なLEK法は、先ず、結晶
引上げ軸によって種結晶を封止剤で覆われた原料融液中
に浸漬して、るつぼと引上げ軸を回転させながら引上げ
は行わずに単結晶を成長させ、結晶成長終了後に、結晶
を原料融液から切り離すために液体封止剤上方の高圧不
活性ガス中に引き上げて冷却させるようにしていた。
[Problems to be Solved by the Invention] However, in the conventional general LEK method, first, a seed crystal is immersed in a raw material melt covered with a sealant using a crystal pulling shaft, and then the crucible and the pulling shaft are connected. A single crystal was grown while rotating without being pulled up, and after the crystal growth was completed, the crystal was pulled into a high-pressure inert gas above the liquid sealant and cooled in order to separate it from the raw material melt.

このように上記従来の一般的なLEK法にあっては、高
圧不活性ガスで満たされた高圧容器中で結晶の冷却を行
うため、ガスの対流によって融点付近の温度であった結
晶が急激に冷却されることになるので、結晶中の熱応力
が大きくなって転位が発生し易いという欠点があった。
In this way, in the conventional general LEK method mentioned above, the crystal is cooled in a high-pressure container filled with high-pressure inert gas. Since the crystal is cooled, thermal stress in the crystal becomes large and dislocations are likely to occur.

一方、上記欠点を補うため、LEK法による結晶育成終
了後に育成結晶を封止剤上方へ引き上げずにるつぼ内の
封止剤下で冷却し、しかも封止剤と結晶との熱膨張率の
差による熱応力に起因して発生するクラックを抑えるた
め、5℃/min以下の冷却速度で徐冷する方法が提案
されている(特願平1−199200号)。
On the other hand, in order to compensate for the above drawbacks, after the crystal growth by the LEK method is completed, the grown crystal is cooled under the sealant in the crucible without being lifted above the sealant, and in addition, there is a difference in the thermal expansion coefficient between the sealant and the crystal. In order to suppress cracks that occur due to thermal stress, a method of slow cooling at a cooling rate of 5° C./min or less has been proposed (Japanese Patent Application No. 1-199200).

しかしながら、化合物半導体単結晶は、結晶の冷却方法
によって特性が大きく変わるため、冷却速度には制限が
ない方が好ましい。
However, since the properties of a compound semiconductor single crystal vary greatly depending on the method of cooling the crystal, it is preferable that there be no limit to the cooling rate.

本発明は上記のような欠点を解決すべくなされたもので
、その目的とするところは、冷却速度に制限を加えるこ
となく育成結晶へのクラックの発生を防止し、かつ転位
の少ない結晶を育成可能な結晶製造技術を提供すること
にある。
The present invention was made to solve the above-mentioned drawbacks, and its purpose is to prevent the occurrence of cracks in the grown crystal without limiting the cooling rate, and to grow a crystal with few dislocations. Our goal is to provide a possible crystal manufacturing technology.

[課題を解決するための手段] 上記問題点を解決するために本発明は、高圧容器内に配
置したるつぼ中の原料融液を液体封止剤層で覆い、かつ
高圧容器内を高圧不活性ガス雰囲気とし、原料融液を徐
々に冷却して単結晶の成長を行なう化合物半導体単結晶
の製造方法において、単結晶育成後に結晶を引き上げず
に封止剤下で冷却するとともに、冷却過程において封止
剤の温度が500〜650℃に達した時点で高圧容器内
の不活性ガス圧力を減圧して上記液体封止剤を発泡させ
るようにした。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention covers a raw material melt in a crucible placed in a high-pressure container with a liquid sealant layer, and a high-pressure inert layer inside the high-pressure container. In a compound semiconductor single crystal production method in which a single crystal is grown by gradually cooling the raw material melt in a gas atmosphere, the crystal is cooled under a sealant without being pulled up after the single crystal growth, and the crystal is cooled under a sealant during the cooling process. When the temperature of the sealant reached 500 to 650°C, the inert gas pressure in the high-pressure container was reduced to foam the liquid sealant.

[作用] 育成した結晶にクラックが入るのは、結晶と封止剤との
濡れ性がよく、しかも熱膨張係数の差が大きいため、冷
却中に封止剤によって結晶に大きな応力がかかるためで
ある。これを防止するには封止剤が結晶に密着しないよ
うにすればよい。しかし、封止剤と結晶の濡れ性を変え
ることはできない。しかるに、上記した手段によれば結
晶育成終了後の冷却過程において高圧容器内の不活性ガ
スの圧力を下げるため、封止剤中に溶は込んでいる不活
性ガスや■族、■族ガスが膨張して封止剤が発泡状態に
なる。その結果、封止剤と育成結晶との接触面積が減少
し、かつ封止剤の強度が低下するため、熱膨張率の差に
起因するクラックは封止剤の側に多く発生するようにな
り、育成結晶へのクラックの発生を防止することができ
る。しがも封止剤下で冷却を行なうため不活性ガス中に
弓き上げて冷却する場合に比べて対流による急冷が回避
され転位の発生を少なくすることができる。
[Effect] The reason why cracks appear in the grown crystal is because the crystal and the encapsulant have good wettability and the difference in coefficient of thermal expansion is large, so the encapsulant applies a large stress to the crystal during cooling. be. This can be prevented by preventing the sealant from coming into close contact with the crystal. However, it is not possible to change the wettability of the encapsulant and the crystal. However, according to the above-mentioned means, in order to lower the pressure of the inert gas in the high-pressure container during the cooling process after the completion of crystal growth, the inert gas, group Ⅰ, and group Ⅰ gases dissolved in the sealant are removed. The sealant expands and becomes foamed. As a result, the contact area between the encapsulant and the grown crystal decreases, and the strength of the encapsulant decreases, so cracks caused by differences in thermal expansion coefficients tend to occur on the encapsulant side. , it is possible to prevent the occurrence of cracks in the grown crystal. However, since cooling is performed under a sealant, rapid cooling due to convection can be avoided and the occurrence of dislocations can be reduced compared to the case where cooling is carried out by dipping into an inert gas.

なお、冷却中での減圧のタイミングを、封止剤の温度が
500〜650℃となった時としたのは、650℃以下
とならないと封止剤の粘性が充分に大きくならないため
、封止剤中からガスが抜けてしまって発泡した状態を維
持できないとともに、500℃より低くなると封止剤の
粘性が高くなりすぎて含有ガスが膨張できないまま封止
剤が固化してしまうためである。
The timing of pressure reduction during cooling was set when the temperature of the encapsulant reached 500 to 650°C, because the viscosity of the encapsulant would not become sufficiently large unless the temperature reached 650°C or lower. This is because gas escapes from the agent, making it impossible to maintain the foamed state, and at lower temperatures than 500° C., the viscosity of the sealant becomes too high, causing the sealant to solidify without allowing the gas contained therein to expand.

また、減圧直後の高圧容器内不活性ガスの圧力をゲージ
圧で2〜20kg/cflとしたのは、20kg/7以
下に減圧しないとガスの膨張が少なく封止剤が充分に発
泡しないとともに、2 kg/cnf未満まで減圧して
しまうとその後室温まで冷却したときに高圧容器内が負
圧になって外部の空気が入って結晶が酸化されるおそれ
があるためである。
In addition, the reason why the pressure of the inert gas in the high-pressure container immediately after depressurization was set to 2 to 20 kg/cfl in gauge pressure is because unless the pressure is reduced to 20 kg/7 or less, the gas will not expand sufficiently and the sealant will not foam sufficiently. This is because if the pressure is reduced to less than 2 kg/cnf, the inside of the high-pressure container becomes negative pressure when it is subsequently cooled to room temperature, and there is a risk that outside air will enter and the crystals will be oxidized.

[実施例コ 以下、本発明をLEK法による結晶成長に適用した場合
の一実施例について説明する。
[Example 1] An example in which the present invention is applied to crystal growth by the LEK method will be described below.

第1図にはLEK法による結晶成長装置の概略が示され
ている。すなわち、この結晶成長装置は、密閉型の高圧
容器1内に円筒状のヒータ2が配設されており、このヒ
ータ2の中央に耐火性のるっぽ3が配置されている。ま
た、このるっぽ3は、その下端に固着された支持軸4に
より回転可能に支持されている。そして、このるつぼ3
中には、1、 n P等の原料融液5が入れられており
、原料融液5の上面はB505等からなる液体封止剤層
6で覆われる。
FIG. 1 schematically shows a crystal growth apparatus using the LEK method. That is, in this crystal growth apparatus, a cylindrical heater 2 is arranged in a closed high-pressure container 1, and a refractory roof 3 is arranged in the center of the heater 2. Moreover, this Ruppo 3 is rotatably supported by a support shaft 4 fixed to its lower end. And this crucible 3
A raw material melt 5 such as 1, n P is placed inside, and the upper surface of the raw material melt 5 is covered with a liquid sealant layer 6 made of B505 or the like.

一方、るつぼ3の上方からは、高圧容器1内に結晶引上
げ軸7が上下動かつ回転自在に垂下されており、この結
晶引上げ軸7によって種結晶を保持し、るつぼ3中の原
料融液5の表面に接触させることができるようになって
いる。また、高圧容器1の側壁上部には、高圧の不活性
ガスを導入するためのガス導入管8が接続されており、
高圧容器1内部の圧力を所定圧力とすることができるよ
うになっている。
On the other hand, a crystal pulling shaft 7 is suspended from above the crucible 3 into the high pressure vessel 1 so as to be able to move up and down and freely rotate. can be brought into contact with the surface of Furthermore, a gas introduction pipe 8 for introducing high-pressure inert gas is connected to the upper side wall of the high-pressure container 1.
The pressure inside the high-pressure container 1 can be set to a predetermined pressure.

この実施例は、第1図に示すような結晶成長装置におい
て、るつぼ3内に所定量の原料と封止剤を入れて高圧容
器1内に設置し、容器内を高圧の不活性ガスで満たして
からヒータ2により原料を加熱溶融させた後、結晶引上
げ軸7によって種結晶を原料融液5の表面に浸漬して、
るつぼ3と弓上げ軸7を回転させながら単結晶を成長さ
せる。
In this embodiment, in a crystal growth apparatus as shown in FIG. 1, a predetermined amount of raw materials and a sealant are placed in a crucible 3, placed in a high-pressure container 1, and the container is filled with high-pressure inert gas. After that, the raw material is heated and melted by the heater 2, and then the seed crystal is immersed into the surface of the raw material melt 5 by the crystal pulling shaft 7.
A single crystal is grown while rotating the crucible 3 and the bow shaft 7.

そして、結晶の成長中引上げは行なわず、成長終了後に
、そのままの状態で冷却を開始し、500〜650℃ま
で下がった時点で高圧容器1内の高圧不活性ガスをゲー
ジ圧で2〜20kg/−まで減圧して引き続き室温まで
冷却させるものである。
Then, the crystal is not pulled up during crystal growth, and after the growth is completed, cooling is started in that state, and when the temperature has dropped to 500 to 650°C, the high pressure inert gas in the high pressure container 1 is pumped at a gauge pressure of 2 to 20 kg/g. The pressure is reduced to - and then cooled to room temperature.

−例として、内径60II1mのpBN製るつぼを用い
て第1図の結晶成長装置によりInP単結晶の成長を行
なった。
- As an example, an InP single crystal was grown using the crystal growth apparatus shown in FIG. 1 using a pBN crucible with an inner diameter of 60 II 1 m.

まず、原料として1.OkgのInP多結晶を、また封
止剤としてB、O,をるつぼ3に入れ、ヒータ2により
加熱して炉内を1100℃以上に昇温し、B、OsとI
nPを融解させた。このとき、原料融液5の表面を封止
する液体封止剤層(B、○、)6の厚さが30mmとな
るように封止剤の量を決定した。また、リンの飛散を防
止するため、ガス導入管8からアルゴンガスを導入し、
高圧容器1内を50kg/d(ゲージ圧)のアルゴンガ
ス雰囲気とした。
First, as raw materials: 1. InP polycrystal of Okg and B, O, as sealants are placed in the crucible 3, heated by the heater 2 to raise the temperature in the furnace to 1100℃ or more, and B, Os and I are placed in the crucible 3.
The nP was melted. At this time, the amount of the sealant was determined so that the thickness of the liquid sealant layer (B, ○,) 6 sealing the surface of the raw material melt 5 was 30 mm. In addition, in order to prevent phosphorus from scattering, argon gas is introduced from the gas introduction pipe 8.
The interior of the high-pressure container 1 was made into an argon gas atmosphere of 50 kg/d (gauge pressure).

次に、InP融液表面の温度がInPの融点となるよう
にヒータ2のパワーを調整し、結晶引上げ軸7によって
種結晶を原料融液5に付けて充分になじませてから、る
つぼ3を1℃/hrの割合で冷却しながら、30時間か
けて結晶の成長を行なった。この際、結晶引上げ軸7は
5 rpmで回転させ、るつぼ3は逆方向に1.Orp
mで回転させた。
Next, the power of the heater 2 is adjusted so that the temperature of the surface of the InP melt reaches the melting point of InP, and the seed crystal is applied to the raw material melt 5 using the crystal pulling shaft 7 and is thoroughly blended. Crystal growth was performed over 30 hours while cooling at a rate of 1° C./hr. At this time, the crystal pulling shaft 7 is rotated at 5 rpm, and the crucible 3 is rotated at 1.5 rpm in the opposite direction. Orp
Rotated at m.

30時間後、結晶がほぼるつぼ底部まで成長した時点で
、育成を終了し、結晶およびるつぼの回転を止め、結晶
を50℃/minで冷却した。冷却中BjO,の温度が
550℃となった時点で炉内圧力を6kg/cot(ゲ
ージ圧)まで減圧し、そのままの冷却速度で結晶を室温
まで冷却した。なお、減圧直前の炉内圧力を測定したと
ころ、28kg/cffl(ゲージ圧)であった。これ
は、冷却にともなってアルゴンガスが収縮したためであ
る。
After 30 hours, when the crystal had grown almost to the bottom of the crucible, the growth was terminated, the rotation of the crystal and crucible was stopped, and the crystal was cooled at 50° C./min. When the temperature of BjO during cooling reached 550° C., the pressure inside the furnace was reduced to 6 kg/cot (gauge pressure), and the crystal was cooled to room temperature at the same cooling rate. In addition, when the pressure inside the furnace was measured just before the pressure reduction, it was 28 kg/cffl (gauge pressure). This is because the argon gas contracted as it cooled.

このようにして得られた結晶を取り出して観察したとこ
ろ、第2図(A)に示すように結晶には全くクラックは
発生していなかった。
When the thus obtained crystal was taken out and observed, it was found that no cracks had occurred in the crystal as shown in FIG. 2(A).

また、同条件で結晶を育成し途中で減圧を行なわずに結
晶を冷却した場合には第2図(B)に示すように結晶上
部でクラックが多数発生していた。
Further, when a crystal was grown under the same conditions and cooled without reducing the pressure midway through, many cracks were generated in the upper part of the crystal as shown in FIG. 2(B).

[発明の効果] 以上のように、本発明の化合物半導体単結晶の製造方法
は、高圧容器内に配置したるつぼ中の原料融液を液体封
止剤層で覆い、かつ高圧容器内を高圧不活性ガス雰囲気
とし、原料融液を徐々に冷却して単結晶の成長を行なう
化合物半導体単結晶の製造方法において、単結晶育成後
に結晶を引き上げずに封止剤下で冷却するとともに、冷
却過程において封止剤の温度が500〜650℃に達し
た時点で高圧容器内の不活性ガス圧力を減圧するように
したので、封止剤中に溶は込んでいる不活性ガスや■族
、■族ガスが膨張して封止剤が発泡状態になり、その結
果、封止剤と育成結晶との接触面積が減少し、かつ封止
剤の強度が低下するため、熱膨張率の差に起因するクラ
ックは封止剤の側に多く発生するようになり、育成結晶
へのクラックの発生を防止することができる。しかも、
封止剤下で冷却を行なうため不活性ガス中に引き上げて
冷却する場合に比べて対流による急冷が回避され、転位
の発生を少なくすることができるという効果がある。
[Effects of the Invention] As described above, the method for producing a compound semiconductor single crystal of the present invention covers a raw material melt in a crucible placed in a high-pressure container with a liquid sealant layer, and also provides a high-pressure sealant inside the high-pressure container. In a compound semiconductor single crystal manufacturing method in which a raw material melt is gradually cooled in an active gas atmosphere to grow a single crystal, the crystal is cooled under a sealant without being pulled up after the single crystal growth, and during the cooling process When the temperature of the sealant reaches 500 to 650°C, the inert gas pressure inside the high-pressure container is reduced, so that the inert gas dissolved in the sealant and the The gas expands and the sealant becomes foamed, resulting in a decrease in the contact area between the sealant and the grown crystal and a decrease in the strength of the sealant, which is caused by a difference in thermal expansion coefficient. Cracks are more likely to occur on the side of the sealant, making it possible to prevent cracks from forming in the grown crystal. Moreover,
Since cooling is performed under a sealant, rapid cooling due to convection is avoided compared to the case where the material is cooled by being pulled up into an inert gas, which has the effect of reducing the occurrence of dislocations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用される結晶成長装置の一例
を示す縦断面図、 第2図(A)、(B)は本発明および従来の結晶製造方
法により育成された結晶のクラック発生の様子を示す外
観図である。 1・・・・高圧容器、3・・・・るつぼ、5・・・・原
料融液、6・・・・液体封止剤層、7・・・・結晶引上
げ軸、第 図 第2 図 (A) (B)
Fig. 1 is a vertical cross-sectional view showing an example of a crystal growth apparatus used in carrying out the present invention, and Figs. 2 (A) and (B) show cracks in crystals grown by the present invention and conventional crystal manufacturing methods. FIG. 1... High pressure container, 3... Crucible, 5... Raw material melt, 6... Liquid sealant layer, 7... Crystal pulling axis, Fig. 2 ( A) (B)

Claims (2)

【特許請求の範囲】[Claims] (1)高圧容器内に配置したるつぼ中の原料融液を液体
封止剤層で覆い、高圧容器内を高圧不活性ガス雰囲気と
し、原料融液を徐々に冷却して単結晶の成長を行なう化
合物半導体単結晶の製造方法において、単結晶育成後に
結晶を引き上げずに封止剤下で冷却するとともに、冷却
過程において上記液体封止剤の温度が500〜650℃
に達した時点で上記高圧容器内の不活性ガス圧力を減圧
して上記液体封止剤を発泡させるようにしたことを特徴
とする化合物半導体単結晶の製造方法。
(1) Cover the raw material melt in a crucible placed in a high-pressure container with a liquid sealant layer, create a high-pressure inert gas atmosphere inside the high-pressure container, and gradually cool the raw material melt to grow a single crystal. In the method for manufacturing a compound semiconductor single crystal, the crystal is cooled under a sealant without being pulled up after growing the single crystal, and the temperature of the liquid sealant is 500 to 650°C during the cooling process.
A method for manufacturing a compound semiconductor single crystal, characterized in that the inert gas pressure in the high-pressure container is reduced to foam the liquid sealant at the time when the liquid sealant reaches the temperature.
(2)上記冷却過程における減圧を、減圧後の高圧容器
内圧力がゲージ圧で2kg/cm^2以上20kg/c
m^2以下となるように行なうことを特徴とする請求項
1記載の化合物半導体単結晶の製造方法。
(2) The pressure in the high-pressure container after pressure reduction in the above cooling process is 2 kg/cm^2 or more 20 kg/c in gauge pressure.
2. The method for manufacturing a compound semiconductor single crystal according to claim 1, wherein the manufacturing method is carried out so that m^2 or less.
JP24190490A 1990-09-12 1990-09-12 Method for manufacturing compound semiconductor single crystal Expired - Lifetime JP2781856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24190490A JP2781856B2 (en) 1990-09-12 1990-09-12 Method for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24190490A JP2781856B2 (en) 1990-09-12 1990-09-12 Method for manufacturing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH04124089A true JPH04124089A (en) 1992-04-24
JP2781856B2 JP2781856B2 (en) 1998-07-30

Family

ID=17081286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24190490A Expired - Lifetime JP2781856B2 (en) 1990-09-12 1990-09-12 Method for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2781856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202504A (en) * 2009-02-09 2010-09-16 Sumitomo Electric Ind Ltd Method for producing group iii-v compound semiconductor crystal, method for manufacturing group iii-v compound semiconductor substrate, and group iii-v compound semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202504A (en) * 2009-02-09 2010-09-16 Sumitomo Electric Ind Ltd Method for producing group iii-v compound semiconductor crystal, method for manufacturing group iii-v compound semiconductor substrate, and group iii-v compound semiconductor substrate

Also Published As

Publication number Publication date
JP2781856B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
JP6837566B2 (en) Rotational continuous VGF crystal growth apparatus and method after horizontal injection synthesis
CN113638048B (en) Method for growing indium phosphide single crystal by VGF method
JPH04124089A (en) Production of compound semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP3158661B2 (en) Method and apparatus for producing high dissociation pressure single crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JPH0365592A (en) Production of compound semiconductor single crystal
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JP2781857B2 (en) Single crystal manufacturing method
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JPH04321590A (en) Growing method of single crystal
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0341432B2 (en)
JPS63295498A (en) Production of single-crystal of group iii-v compound semiconductor
JPH02212395A (en) Production of compound semiconductor crystal and producing device
JPS63319286A (en) Method for growing single crystal
JPH01188495A (en) Production of compound semiconductor single crystal
JPH09278582A (en) Production of single crystal and apparatus therefor
JPH0426580A (en) Production of compound semiconductor single crystal and apparatus for producing this crystal
JPH0483794A (en) Method and apparatus for growing compound semiconductor single crystal
JPH03271186A (en) Method and apparatus for pulling up single crystal
JPH01188500A (en) Production of compound semiconductor single crystal
JPS62197397A (en) Production of single crystal