JPH02283690A - Production of single crystal of compound semiconductor - Google Patents

Production of single crystal of compound semiconductor

Info

Publication number
JPH02283690A
JPH02283690A JP10464989A JP10464989A JPH02283690A JP H02283690 A JPH02283690 A JP H02283690A JP 10464989 A JP10464989 A JP 10464989A JP 10464989 A JP10464989 A JP 10464989A JP H02283690 A JPH02283690 A JP H02283690A
Authority
JP
Japan
Prior art keywords
vessel
single crystal
compound semiconductor
semiconductor single
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10464989A
Other languages
Japanese (ja)
Inventor
Jun Kono
純 河野
Masami Tatsumi
雅美 龍見
Tomohiro Kawase
智博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10464989A priority Critical patent/JPH02283690A/en
Publication of JPH02283690A publication Critical patent/JPH02283690A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent bleeding of high dissociation pressure component and texture roughening of the surface of single crystal by sealing gap between inner wall of growing vessel and sealing cap of growing vessel with liquid metal and growing single crystal of compound semiconductor. CONSTITUTION:Polycrystalline raw material 2 and seed crystal 1 are enclosed in a growing vessel A1 and metal having low melting point 8 such as Ga or In is set between tapered part 7 at upper end of the vessel A1 and cap 3. Next, the vessel A1 is set in a furnace, then inside of the furnace and inside of the vessel A1 are evacuated, thus inert gas purged out after once re-pressurized inside of the vessel with the inert gas. Further, temperature of a heater B is raised to melt the low-melting metal 8 and the vessel is sealed by penetration of resultant liquid metal into gap with the cap 3. Next, high dissociation pressure component 4 is heated by a heater C and sublimated, then inside of the vessel A1 is filled with gas of the high dissociation pressure component through a perforated hole 10 having small diameter to grow the aimed single crystal of compound semiconductor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高解離圧成分ガス中において、化合物半導体単
結晶を鉛直方向に育成するVGF(Vertical 
Gradient Freeze)法による化合物半導
体単結晶の製造方法に関し、詳しくは製造装置成長室の
シール方法を改良した製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to VGF (vertical
The present invention relates to a method for manufacturing a compound semiconductor single crystal using the Gradient Freeze method, and more specifically to a method for manufacturing a compound semiconductor single crystal using an improved sealing method for a growth chamber of a manufacturing device.

[従来の技術] 第2図は従来のVGF法による単結晶育成方法の装置構
成を示す概略図であって、この方法は図示のように種結
晶l及び原料多結晶体2が封入されている成長室(成長
ベッセル)Aが、原料溶融用の上段ヒーターBと、高解
離圧成分4の昇華用に設けた下段ヒーターCに囲まれた
状態で、原料多結晶体2を一端から順次鉛直方向に加熱
熔融することにより、種結晶lの一端に単結晶を成長さ
せるものである[参考文献:W、A、ゴールド外、ジャ
ーナル オブ クリスタル グロウス、74(1986
年)491〜506頁、アムステルダム]。
[Prior Art] Fig. 2 is a schematic diagram showing the equipment configuration of a conventional single crystal growth method using the VGF method, and as shown in the figure, a seed crystal 1 and a raw material polycrystalline body 2 are enclosed. In a state where the growth chamber (growth vessel) A is surrounded by an upper heater B for melting the raw material and a lower heater C provided for sublimating the high dissociation pressure component 4, the polycrystalline raw material 2 is sequentially heated vertically from one end. By heating and melting the seed crystal, a single crystal is grown at one end of the seed crystal [References: W. A. Gold et al., Journal of Crystal Growth, 74 (1986
), pp. 491-506, Amsterdam].

第3図は第2図の成長ベッセルAの構造を詳細に示す図
であって、A3は成長ベッセル、3はキャップ、4は高
解離圧成分、5はサセプター 6はpBN 製ルツボ、
7は固体Inである。第3図の装置において、単結晶育
成開始の直前には原料多結晶体2は上段ヒーターBの加
熱により溶融され、種結晶1に接触した状態で存在する
。溶融原料からの高解離圧成分の揮散を防ぐため、下段
ヒーターCにより高解離圧成分4を加熱して高解離圧成
分ガスを発生させ、サセプター5に設けられた小貫通孔
lOを経てベッセルA、内に導入する。べ・ソセルA、
内を加熱する上段ヒーターBは2ゾ一ン形式であり、2
ゾーンのパワー比の変化によりべ・ノセルA、の縦方向
(鉛直方向)に温度勾配を形成させる。ヒーターパワー
の調整により温度勾配の低温側は原料の融点以下に、高
温側は原料の融点以上に保持されている。2ゾーンヒー
ターBの/fワー比の調整により、このような温度勾配
を種結晶側からメルト側に進行させていくと、種結晶側
からメルトが凝固し単結晶が育成されることになる。
FIG. 3 is a diagram showing in detail the structure of the growth vessel A in FIG. 2, where A3 is the growth vessel, 3 is a cap, 4 is a high dissociation pressure component, 5 is a susceptor, 6 is a crucible made of pBN,
7 is solid In. In the apparatus shown in FIG. 3, immediately before the start of single crystal growth, the raw material polycrystalline body 2 is melted by heating by the upper stage heater B, and exists in a state in which it is in contact with the seed crystal 1. In order to prevent the high dissociation pressure component from volatilizing from the molten raw material, the high dissociation pressure component 4 is heated by the lower stage heater C to generate a high dissociation pressure component gas, which is then transferred to the vessel A through the small through hole IO provided in the susceptor 5. , to be introduced within. Baie Saucel A,
The upper heater B that heats the interior is a two-zone type, with two
A temperature gradient is formed in the longitudinal direction (vertical direction) of the cell A by changing the power ratio of the zones. By adjusting the heater power, the low temperature side of the temperature gradient is maintained below the melting point of the raw material, and the high temperature side is maintained above the melting point of the raw material. When such a temperature gradient is made to advance from the seed crystal side to the melt side by adjusting the /f ratio of the two-zone heater B, the melt solidifies from the seed crystal side and a single crystal is grown.

[発明が解決しようとする課題] 上記の従来法においては、成長ベッセルA、の開口部の
キャップ3には微小な穴9があけられている。これは、
炉内を真空排気する際に成長ベッセルA3内も同時に排
気されるように設けたものであるが、結晶成長中、該成
長ベッセルA3内に充満された高解離圧成分ガスの漏れ
を生じさせる。
[Problems to be Solved by the Invention] In the conventional method described above, a minute hole 9 is made in the cap 3 at the opening of the growth vessel A. this is,
Although the growth vessel A3 is provided so that the inside of the growth vessel A3 is evacuated at the same time when the inside of the furnace is evacuated, the high dissociation pressure component gas filled in the growth vessel A3 leaks during crystal growth.

その為、成長ベッセルA、内をある一定圧力以上の高解
離圧成分ガスで充満させることは不可能であった。この
ことは、育成結晶中における高解離圧成分の漏れによる
転移密度の増加やリネージの発生をもたらし、この点の
改善が求められていた。
Therefore, it was impossible to fill the inside of the growth vessel A with a high dissociation pressure component gas above a certain pressure. This results in an increase in dislocation density and the generation of lineage due to the leakage of high dissociation pressure components in the grown crystal, and improvements in this point have been sought.

本発明は上記したような従来法の欠点を解消し、高解離
圧成分の抜けやこれによる地肌荒れを起こすことな(、
所期の組成で、高品質な化合物半導体結晶を製造できる
新規な方法を提供しようとするものである。
The present invention eliminates the drawbacks of the conventional method as described above, and prevents the high dissociation pressure component from falling out and causing skin roughness (
The aim is to provide a new method that can produce high-quality compound semiconductor crystals with a desired composition.

[課題を解決するための手段] 本発明はVGF法により当該化合物半導体単結晶の高解
離圧成分のガスを満たした成長室で化合物半導体単結晶
を育成する際に、上記成長室内壁と成長室密閉キャップ
との隙間に液体金属をしみ込ませ、該成長室内をシール
して育成することを特徴とする化合物半導体単結晶の製
造方法である。
[Means for Solving the Problems] The present invention provides a method for growing a compound semiconductor single crystal in a growth chamber filled with a gas containing a high dissociation pressure component of the compound semiconductor single crystal by the VGF method. This method of producing a compound semiconductor single crystal is characterized in that liquid metal is allowed to seep into the gap between the growth chamber and the sealing cap, and the inside of the growth chamber is sealed for growth.

本発明の特に好ましい実施態様としては、上記化合物半
導体単結晶が■−■族化合物半導体単結晶であり、上記
液体金属が■族金属であることを特徴とする上記方法が
挙げられ、各化合物半導体単結晶に関して、それを構成
している■族元素(例えばG aA s単結晶に対して
はGaを、InP 単結晶に対してはIn)を液体金属
として用いることは、結晶の高純度化の点でとりわけ好
ましい。
A particularly preferred embodiment of the present invention includes the method described above, characterized in that the compound semiconductor single crystal is a group ■-■ compound semiconductor single crystal, and the liquid metal is a group Regarding single crystals, the use of group Ⅰ elements (for example, Ga for GaAs single crystals and In for InP single crystals) constituting the single crystals as liquid metals is an effective way to increase the purity of the crystals. Particularly preferred in this respect.

[作用] 以下、図面を参照して本発明を具体的に説明する。第1
図は本発明の一実施態様を示すもので、同図中第2図又
は第3図と共通の符号部分は、第2又は3図の場合と同
じを意味する。本発明では成長室(成長ベッセル)のシ
ール方法が従来法と異なるのみで、その他の構成は第2
図、第3図のものと同様である。
[Operation] The present invention will be specifically described below with reference to the drawings. 1st
The figure shows one embodiment of the present invention, and the reference numerals common to those in FIG. 2 or 3 have the same meanings as in FIG. 2 or 3. In the present invention, the only difference from the conventional method is the method of sealing the growth chamber (growth vessel), and the other configurations are as follows.
It is similar to that in FIG.

本発明の特徴は前記のように成長ベッセル八。The characteristics of the present invention are as described above.

の開口部にあり、該開口部は上端7が外側に向かってテ
ーバ状に開いた形状に構成されており、キャップ3と成
長ベッセル上端7は機械的には殆ど密着しているが、ガ
スは僅かに通過できる程度の隙間が存在している。そし
て該隙間には、低融点金属8例えばGa、In等が設置
できるようにしである。
The opening has a shape in which the upper end 7 opens outward in a tapered shape, and although the cap 3 and the upper end 7 of the growth vessel are mechanically in close contact with each other, the gas is There is a gap that is small enough to pass through. In this gap, a low melting point metal 8 such as Ga, In, etc. can be placed.

この状態で、成長ベッセルA1内に原料多結晶体2及び
種結晶lを封入し、成長ベッセル開口部のテーパ部7と
キャップ3の隙間に低融点金属8例えば固体Inを設置
する。その後成長ベッセルA1を炉内に設置し、次に炉
内を真空排気し、窒素ガスでパージするが、このときベ
ッセルA、内もキャップ3の微小隙間を通じて同時に真
空排気、窒素パージされる。窒素パージ終了後、まず成
長ベッセルA、内を密閉するため、ヒータBを昇温しで
低融点金属8を溶融する。この低融点金属8が溶融する
と、キャップ3の微小な隙間に入り込み、成長ベッセル
A1内は完全にシールされる。
In this state, the raw material polycrystal 2 and the seed crystal 1 are sealed in the growth vessel A1, and a low melting point metal 8, for example, solid In, is placed in the gap between the tapered part 7 of the growth vessel opening and the cap 3. Thereafter, the growth vessel A1 is placed in a furnace, and then the inside of the furnace is evacuated and purged with nitrogen gas. At this time, the inside of the vessel A is also evacuated and purged with nitrogen through a small gap in the cap 3. After the nitrogen purge is completed, first, in order to seal the inside of the growth vessel A, the heater B is heated to melt the low melting point metal 8. When this low melting point metal 8 melts, it enters the minute gap in the cap 3, and the inside of the growth vessel A1 is completely sealed.

なお、微小な隙間は非常に小さいので表面張力の効果で
液体金属8がベッセル内に落ちることは殆どない。
Note that since the minute gap is very small, the liquid metal 8 hardly falls into the vessel due to the effect of surface tension.

次に高解離圧成分4をヒータCで加熱することにより昇
華させて、小貫通孔lOを通過して成長ベッセルA、内
に高解離圧成分ガスが充満するようにする。このときキ
ャップ3の微小な隙間は液体金属によりシールされた状
態となっているため、成長ベッセルA、内は非常に気密
に保たれる。従って、本発明では、従来法より高圧の高
解離圧ガスをベッセル内に充満させることができるため
、高解離成分の抜けを防止して、化合物半導体単結晶の
成長を行える。
Next, the high dissociation pressure component 4 is sublimed by heating with the heater C, so that the high dissociation pressure component gas passes through the small through hole 10 and fills the growth vessel A. At this time, the minute gap in the cap 3 is sealed by the liquid metal, so the inside of the growth vessel A is kept very airtight. Therefore, in the present invention, since the vessel can be filled with a high dissociation pressure gas higher than that in the conventional method, a compound semiconductor single crystal can be grown while preventing the high dissociation component from falling out.

本発明の方法を適用して製造する化合物半導体単結晶と
しては高解離圧化合物半導体単結晶、例えばGaAs、
 GaP、  I nAs、  I nP、 CdTe
The compound semiconductor single crystal produced by applying the method of the present invention is a high dissociation pressure compound semiconductor single crystal, such as GaAs,
GaP, InAs, InP, CdTe
.

CdHgTe、Zn5e、ZnS等が挙げられ、特に■
−■族化合物半導体単結晶、例えばGaAs、GaP。
Examples include CdHgTe, Zn5e, ZnS, and especially ■
- Group compound semiconductor single crystals, such as GaAs and GaP.

InAs、InP  等が好ましい。これら結晶に対し
てシールに用いる液体金属は、GaAs、 GaP  
のように■族元素がCaで構成されているものはGaを
、InAs、  InP  のように■族元素がinの
ものはInを用いることが好ましい。構成元素と異なる
ものを用いた場合には、シールの■族元素が気化して原
料融液を汚染する恐れがあるからである。該低融点金属
の溶融は、ヒータBにより、例えばInP の場合15
6℃以上、Gaの場合30”C以上の温度に加熱するこ
とによればよい。
InAs, InP, etc. are preferred. Liquid metals used for sealing against these crystals include GaAs and GaP.
It is preferable to use Ga in cases where the group Ⅰ element is composed of Ca, such as, and In, where the group Ⅰ element is in, such as InAs or InP. This is because if elements different from the constituent elements are used, there is a risk that the Group (1) elements of the seal will vaporize and contaminate the raw material melt. The low melting point metal is melted by heater B, for example, in the case of InP 15
This may be done by heating to a temperature of 6°C or higher, or 30''C or higher in the case of Ga.

なお、キャップの材質としては石英、不透過性カーボン
、不透過性カーボンをコーティングしたカーボン、金属
、pBN、pBNをコーティングしたカーボン等を用い
ることができる。
As the material of the cap, quartz, impermeable carbon, carbon coated with impermeable carbon, metal, pBN, carbon coated with pBN, etc. can be used.

本発明により化合物半導体単結晶を製造する場合のシー
ル方法以外の一般的な条件は、特に限定されるところは
なく、この種のVGF法における公知技術によればよい
General conditions other than the sealing method when producing a compound semiconductor single crystal according to the present invention are not particularly limited, and may be any known technique in this type of VGF method.

[実施例] 実施例1 本発明により、VGF法によるInP  単結晶の育成
を行った。第1図の装置構成において、成長ベッセルA
、内に原料としてInP  多結aloOQg。
[Examples] Example 1 According to the present invention, an InP single crystal was grown by the VGF method. In the apparatus configuration shown in Fig. 1, the growth vessel A
, InP polycondensate aloOQg as a raw material.

高解離圧成分ガス原料として赤リン81.0gを投入し
、ベッセル上端テーパ部とキャップの隙間に固体Inを
10g設置した。この状態で該成長ベッセルA、を炉内
に設置し、まず炉内を10−’torrの真空にし、次
に窒素ガスで加圧した。シール用の固体Inの溶融は1
80℃に加熱することにより行った。単結晶成長中のア
ルゴンガスとリンガスとの混合ガスは、全圧を50at
m % リンの分圧を35atmに調整した。炉内圧力
は約50atmのアルゴンガスを満たし、成長室内外の
バランスを保った。また、結晶成長速度は3IIIII
/h一定とした。以上により得られた結晶は、直径50
mm、長さ110m1の完全な単結晶であった。結晶表
面を観察してみても、従来法による結晶の表面に見られ
るような、リン抜けを示す地肌荒れは見られず、本発明
の製造方法の効果が確認できた。
81.0 g of red phosphorus was charged as a high dissociation pressure component gas raw material, and 10 g of solid In was placed in the gap between the upper end tapered portion of the vessel and the cap. In this state, the growth vessel A was placed in a furnace, and the inside of the furnace was first evacuated to 10-'torr and then pressurized with nitrogen gas. The melting of solid In for sealing is 1
This was done by heating to 80°C. The total pressure of the mixed gas of argon gas and phosphorus gas during single crystal growth is 50 at.
The partial pressure of m% phosphorus was adjusted to 35 atm. The furnace was filled with argon gas at a pressure of about 50 atm to maintain a balance between the inside and outside of the growth chamber. Also, the crystal growth rate is 3III
/h constant. The crystal obtained above has a diameter of 50
It was a perfect single crystal with a length of 110 m1. When the crystal surface was observed, no roughness indicating phosphorus removal, which is seen on the surface of crystals produced by conventional methods, was observed, confirming the effectiveness of the production method of the present invention.

[発明の効果] 以上説明したように、本発明のキャップと成長ベッセル
の隙間に低融点金属を配置しておき、成長ベッセル内の
真空封止終了後に該低融点金属を溶融してキャップの微
小隙間をシールする方法によれば、高解離圧成分ガスを
ベッセル内に高圧力で充満した状態で結晶育成をするこ
とができ、高解離圧成分抜けなく、結晶表面の地肌荒れ
のない、所望の組成の化合物半導体単結晶を容易に製造
できる。
[Effects of the Invention] As explained above, a low melting point metal is placed in the gap between the cap of the present invention and the growth vessel, and after the vacuum sealing in the growth vessel is completed, the low melting point metal is melted to form a microscopic structure in the cap. According to the method of sealing the gap, it is possible to grow the crystal in a state where the high dissociation pressure component gas is filled in the vessel at high pressure. A compound semiconductor single crystal having the same composition can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を説明する概略図、第2図は
従来のVGF法による単結晶育成の装置構成を示す概略
図、第3図は従来法を説明する図である。 図中、lは種結晶、2は原料多結晶体、3はキャップ、
4は高解離圧成分、5はサセプター 6はルツボ、7は
成長ベッセル上端、8は】n等のシール用低融点金属、
9は微小な穴、lOは小貫通孔、A、A、、A3は成長
ベッセル、Bは上段ヒー ターCは下段ヒーターを表す
。 第1図 第2図
FIG. 1 is a schematic diagram illustrating an embodiment of the present invention, FIG. 2 is a schematic diagram illustrating the configuration of an apparatus for growing a single crystal by the conventional VGF method, and FIG. 3 is a diagram illustrating the conventional method. In the figure, l is a seed crystal, 2 is a raw material polycrystal, 3 is a cap,
4 is a high dissociation pressure component, 5 is a susceptor, 6 is a crucible, 7 is the upper end of the growth vessel, 8 is a low melting point metal for sealing such as ]n,
9 is a minute hole, IO is a small through hole, A, A, A3 is a growth vessel, B is an upper heater, and C is a lower heater. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)VGF法により当該化合物半導体単結晶の高解離
圧成分のガスを満たした成長室で化合物半導体単結晶を
育成する際に、上記成長室内壁と成長室密閉キャップと
の隙間に液体金属をしみ込ませ、該成長室内をシールし
て育成することを特徴とする化合物半導体単結晶の製造
方法。
(1) When growing a compound semiconductor single crystal using the VGF method in a growth chamber filled with a gas containing a high dissociation pressure component of the compound semiconductor single crystal, liquid metal is poured into the gap between the growth chamber wall and the growth chamber sealing cap. 1. A method for producing a compound semiconductor single crystal, characterized by growing the compound semiconductor single crystal by allowing the growth chamber to soak in the growth chamber and sealing the inside of the growth chamber.
(2)上記化合物半導体単結晶がIII−V族化合物半導
体単結晶であり、上記液体金属がIII族金属であること
を特徴とする請求項(1)に記載の化合物半導体単結晶
の製造方法。
(2) The method for producing a compound semiconductor single crystal according to claim 1, wherein the compound semiconductor single crystal is a III-V group compound semiconductor single crystal, and the liquid metal is a group III metal.
(3)上記液体金属が該III−V族化合物半導体単結晶
を構成するIII族元素であることを特徴とする請求項(
2)に記載の化合物半導体単結晶の製造方法。
(3) Claim characterized in that the liquid metal is a group III element constituting the group III-V compound semiconductor single crystal (
2) The method for manufacturing a compound semiconductor single crystal according to item 2).
JP10464989A 1989-04-26 1989-04-26 Production of single crystal of compound semiconductor Pending JPH02283690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10464989A JPH02283690A (en) 1989-04-26 1989-04-26 Production of single crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10464989A JPH02283690A (en) 1989-04-26 1989-04-26 Production of single crystal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH02283690A true JPH02283690A (en) 1990-11-21

Family

ID=14386312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10464989A Pending JPH02283690A (en) 1989-04-26 1989-04-26 Production of single crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH02283690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010284A1 (en) * 1991-11-13 1993-05-27 Goldstar Cable Co., Ltd. Boat for growing a single crystal of a semiconductor compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010284A1 (en) * 1991-11-13 1993-05-27 Goldstar Cable Co., Ltd. Boat for growing a single crystal of a semiconductor compound

Similar Documents

Publication Publication Date Title
EP0751242B1 (en) Process for bulk crystal growth
JPS60251191A (en) Process for growing single crystal of compound having high dissociation pressure
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
JP2979770B2 (en) Single crystal manufacturing equipment
JPH02283690A (en) Production of single crystal of compound semiconductor
JP3254329B2 (en) Method and apparatus for producing compound single crystal
JPH07300385A (en) Production of compound semiconductor crystal and crucible therefor
JP2589985B2 (en) Method for growing compound semiconductor crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPS6051697A (en) Method and apparatus for manufacturing compound semiconductor
JP2531875B2 (en) Method for producing compound semiconductor single crystal
US3899572A (en) Process for producing phosphides
JP2576239B2 (en) Compound semiconductor crystal growth equipment
JP2690420B2 (en) Single crystal manufacturing equipment
JPS63144191A (en) Production of compound semiconductor single crystal and apparatus therefor
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JPH08119784A (en) Production of compound single crystal and production device therefor
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JPH11189499A (en) Production of compound semiconductor single crystal
JPH03237088A (en) Method for growing single crystal
JPH04130086A (en) Method and apparatus for production of high dissociation pressure single crystal
JPS6395194A (en) Production of compound single crystal
JPH0867593A (en) Method for growing single crystal
JP2002029881A (en) Method of producing compound semiconductor single crystal
JPH038800A (en) Method for growing compound semiconductor single crystal of group iii and v