JPH038688B2 - - Google Patents

Info

Publication number
JPH038688B2
JPH038688B2 JP58179954A JP17995483A JPH038688B2 JP H038688 B2 JPH038688 B2 JP H038688B2 JP 58179954 A JP58179954 A JP 58179954A JP 17995483 A JP17995483 A JP 17995483A JP H038688 B2 JPH038688 B2 JP H038688B2
Authority
JP
Japan
Prior art keywords
time
reflected
value
ultrasonic waves
dead zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58179954A
Other languages
Japanese (ja)
Other versions
JPS6070306A (en
Inventor
Riichi Murayama
Hisao Yamaguchi
Kazuo Fujisawa
Takashi Kadowaki
Susumu Ito
Soji Sasaki
Kazuya Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Corp
Original Assignee
Hitachi Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Sumitomo Metal Industries Ltd filed Critical Hitachi Ltd
Priority to JP17995483A priority Critical patent/JPS6070306A/en
Publication of JPS6070306A publication Critical patent/JPS6070306A/en
Publication of JPH038688B2 publication Critical patent/JPH038688B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【発明の詳細な説明】 本発明は電磁超音波発生装置を用いて被測定材
から超音波を伝播させ、裏面からの反射超音波を
表面側で検出し、その反射超音波の検出時間に基
づき被測定材の厚さを測定する方法に関する。
Detailed Description of the Invention The present invention uses an electromagnetic ultrasonic generator to propagate ultrasonic waves from a material to be measured, detects reflected ultrasonic waves from the back side on the front side, and detects the reflected ultrasonic waves based on the detection time of the reflected ultrasonic waves. This invention relates to a method for measuring the thickness of a material to be measured.

熱間鋼材等の厚さを測定する方法として電磁超
音波発生装置を用いて被測定材表面から超音波を
伝播させて、表面と裏面間で往復反射する超音波
を表面側で検出し、そのときの検出時間のうち相
前後する反射波の検出時間を下記(1)式に代入して
厚さDを求める方法が知られている。
As a method of measuring the thickness of hot steel materials, etc., an electromagnetic ultrasonic generator is used to propagate ultrasonic waves from the surface of the material to be measured, and the ultrasonic waves that are reflected back and forth between the front and back surfaces are detected on the front side. A method is known in which the thickness D is determined by substituting the detection times of successive reflected waves among the detection times at the time into the following equation (1).

D=(To+1−To)・V/2 ……(1) 但し、Tn:超音波伝播開始時点からn番目の
反射超音波検出までの時間 To+1:超音波伝播開始時点からn+1番目の
反射超音波検出までの時間 V:被測定材中の音速 而して裏面からの反射超音波以外に被測定材中
に欠陥部又は不純物等が存在する場合は、それら
からの反射超音波も検出されて裏面からの反射波
と紛らわしいので、裏面からの反射超音波出力値
よりも低いレベルでしかも欠陥部又は不純物等か
らの反射超音波の出力値よりも高いレベルにしき
い値を設定し、或には検出不要な送信波から受信
波まで時間帯に不感帯を設定して厚さを測定する
ことが行われている。しかしながらこのような場
合においても裏面からの反射超音波以外の高出力
の反射超音波がしいき値を超えて検出されること
があり、または不感帯は被測定材の厚さが変動す
ることから余裕をみて設定されるので不感帯外で
裏面からの反射超音波以外のもの、つまり裏面に
近い位置の欠陥部等からの反射波が検出されるこ
とがままあり、そしてこの場合には被測定材の厚
さが厚いときよりも薄いときの方が誤差が大きか
つた。つまり不感帯は信号間の分離程度を考慮し
て設定しているため、その反射波を検知し得る欠
陥部の裏面からの距離は薄物においても厚物とさ
ほど変らず、相対的に精度が低くなるのである。
したがつてしきい値及び不感帯を設定して測定し
てもそれだけでは十分とは言い難かつた。
D=(T o+1 −T o )・V/2 ...(1) However, Tn: Time from the start of ultrasonic propagation to detection of the nth reflected ultrasonic wave T o+1 : Time of start of ultrasonic propagation Time from to detection of the n+1th reflected ultrasound V: Sound velocity in the material to be measured If there are defects or impurities in the material to be measured other than the ultrasound reflected from the back surface, the reflection from them Ultrasonic waves are also detected and can be confused with reflected waves from the back surface, so the threshold value is set to a level lower than the output value of the reflected ultrasound waves from the back surface, but higher than the output value of the reflected ultrasound waves from defects or impurities. The thickness is measured by setting a dead zone between the transmitted waves and the received waves that do not require detection. However, even in such cases, high-power reflected ultrasound waves other than the reflected ultrasound waves from the back surface may be detected exceeding the threshold, or the dead zone may have a margin due to fluctuations in the thickness of the material being measured. Therefore, waves other than the reflected ultrasonic waves from the back surface may be detected outside the dead zone, that is, reflected waves from defects near the back surface, etc., and in this case, the The error was larger when the thickness was thinner than when it was thicker. In other words, since the dead zone is set taking into account the degree of separation between signals, the distance from the back surface of the defective part where the reflected wave can be detected is not much different even for thin objects than for thick objects, resulting in relatively low accuracy. It is.
Therefore, even if a threshold value and a dead zone are set and measured, it cannot be said that this alone is sufficient.

本発明は斯かる事情に鑑みてなされてものであ
り、従来同様にしきい値を設定すると共に、測定
に利用する複数の反射波夫々につき不感帯を設定
し、更に超音波伝播開始から裏面からの反射超音
波の検出時点までの時間はどの反射波についても
本来は1往復時間の整数倍であることを利用して
補正演算することにより、特に被測定材厚さが薄
い場合にも高精度で厚さを測定し得る方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and in addition to setting a threshold value as in the conventional method, a dead zone is set for each of a plurality of reflected waves used for measurement, and furthermore, from the start of ultrasonic propagation to the reflection from the back surface. By performing correction calculations based on the fact that the time it takes to detect an ultrasonic wave is an integer multiple of one round trip time for any reflected wave, thickness measurement can be performed with high precision, especially when the thickness of the material to be measured is thin. The purpose is to provide a method that can measure the

本発明に係る厚さ測定方法は被測定材表面から
電磁超音波を伝播させて、その裏面からの反射超
音波を表面側にて検出するに際して、所定レベル
のしきい値を設定すると共に、該しきい値を超え
る反射超音波が検出される都度所定時間を不感帯
として設定し、検出された反射超音波の超音波伝
播開始時点からの時間To(nは裏面での反射回数
を示す添字)を求め、この時間を用いて下式によ
り厚さDを算出することを特徴とする。
The thickness measuring method according to the present invention propagates electromagnetic ultrasonic waves from the surface of the material to be measured and detects the reflected ultrasonic waves from the back side on the front side. Each time a reflected ultrasound exceeding a threshold is detected, a predetermined time is set as a dead zone, and the time from the start of ultrasound propagation of the detected reflected ultrasound is T o (n is a subscript indicating the number of reflections on the back surface). This time is used to calculate the thickness D using the following formula.

D=To・V/2・N 又は D=(To+To+1+…+To+n・V/2・(m+1)・
(N+m/2) 但し、V:被測定材中の音速 N:裏面での反射回数nの補正値 (=*〔To/To+1−To〕) *〔 〕:〔 〕内の数値に最も近い整数値とす
る記号 m:自然数 次に本発明を図面に基づき具体的に説明する。
第1図は本発明の実施状態を示す模式図であり、
図中1は電磁超音波発生部を示す。電磁超音波送
信部1は鋼管P表面に平行な磁場を発生すると共
に鋼管P表面に誘導電流を発生せしめまた鋼管P
表面の電流を検出するものであり、その下方を鋼
管Pが軸方向に移送されている。
D=T o・V/2・N or D=(T o +T o+1 +…+T o+n・V/2・(m+1)・
(N+m/2) However, V: Sound velocity in the material to be measured N: Correction value for the number of reflections n on the back surface (= * [T o /T o+1 −T o ]) * [ ]: Values in [ ] A symbol representing an integer value closest to a numerical value m: Natural number Next, the present invention will be specifically explained based on the drawings.
FIG. 1 is a schematic diagram showing the implementation state of the present invention,
In the figure, 1 indicates an electromagnetic ultrasonic wave generator. The electromagnetic ultrasonic transmitter 1 generates a magnetic field parallel to the surface of the steel pipe P and generates an induced current on the surface of the steel pipe P.
It detects the current on the surface, and a steel pipe P is transported in the axial direction below it.

送受信部1の電磁石は、断面C字形の鉄心2及
びその中間部に内装された励磁コイル3a,3b
からなり、鉄心2の対向する先端部で挾まれた開
口部2aは鋼管Pに向けられてあつて、励磁コイ
ル3a,3bには図示しない直流電源が接続され
ている。したがつて鉄心2の開口部2aの端部が
磁極となつて鋼管Pの開口部2aに対向する部分
に軸方向の直流磁界を付与する。開口部2aには
リング状の送信コイル4aとそれよりも大径でリ
ング状の受信コイル4bとが同心状に組合され
て、その軸長方向を鋼管Pの半径方向に一致させ
た状態で配されている。送信コイル4aにはパル
ス電流発生回路6が接続されており、同期パルス
発生回路5からのトリガー信号に基づいたパルス
電流が与えられる。
The electromagnet of the transmitting/receiving section 1 includes an iron core 2 having a C-shaped cross section and excitation coils 3a and 3b installed in the middle part thereof.
The opening 2a sandwiched between the opposing tips of the iron core 2 faces the steel pipe P, and a DC power source (not shown) is connected to the excitation coils 3a and 3b. Therefore, the end of the opening 2a of the iron core 2 serves as a magnetic pole and applies an axial DC magnetic field to the portion of the steel pipe P facing the opening 2a. A ring-shaped transmitting coil 4a and a ring-shaped receiving coil 4b having a larger diameter than the ring-shaped transmitting coil 4a are concentrically assembled in the opening 2a, and are arranged with their axial lengths aligned with the radial direction of the steel pipe P. has been done. A pulse current generating circuit 6 is connected to the transmitting coil 4a, and a pulse current based on a trigger signal from the synchronous pulse generating circuit 5 is applied.

前記励磁コイル3a,3bにより直流磁界と上
記パルス電流とはそれ自体公知の電磁電磁超音波
発生作用をなす。つまり励磁コイル3a,3bに
よる鋼管Pのコイル4a,4bの直下部分に軸方
向の直流磁界を与えておき、送信コイル4aにパ
ルス電流を印加すると鋼管Pの半径方向の磁束が
変化し、この磁速変化に伴つて鋼管Pの表面に渦
電流が発生する。この渦電流と、予め与えておい
た前記直流磁界の鋼管P表面に平行な方向の磁界
とによるーレンツ力が発生して鋼管P表面と垂直
な方向(フレミングの左手の法則)に変化する歪
が発生し、該歪は鋼管Pの表面と垂直な方向に伝
播する。即ち鋼管P表面から縦波の超音波が発生
する。この超音波は鋼管P内を伝播し、鋼管P内
周面で反射し、この反射超音波は前述と逆の過程
(フレミングの右手の法則)により受信コイル4
bで渦電流により発生する誘起電圧として検出さ
れる。
The DC magnetic field generated by the excitation coils 3a and 3b and the pulsed current generate electromagnetic ultrasonic waves, which is known per se. In other words, when an axial DC magnetic field is applied to the portion directly below the coils 4a and 4b of the steel pipe P by the excitation coils 3a and 3b, and a pulse current is applied to the transmitter coil 4a, the magnetic flux in the radial direction of the steel pipe P changes, and this magnetic Eddy currents are generated on the surface of the steel pipe P as the speed changes. Lenz force is generated by this eddy current and the previously applied DC magnetic field in a direction parallel to the surface of the steel pipe P, resulting in strain that changes in a direction perpendicular to the surface of the steel pipe P (Fleming's left-hand rule). The strain is generated and the strain propagates in a direction perpendicular to the surface of the steel pipe P. That is, longitudinal ultrasonic waves are generated from the surface of the steel pipe P. This ultrasonic wave propagates inside the steel pipe P and is reflected on the inner circumferential surface of the steel pipe P, and this reflected ultrasonic wave is transmitted to the receiving coil 4 by the process opposite to that described above (Fleming's right-hand rule).
b is detected as an induced voltage generated by an eddy current.

受信コイル4bの端子電圧は増幅器7へ与えら
れて、ここで増幅され、増幅された信号は同期検
波器8にて包路線検波された〔第2図イ〕時間差
測定回路9へ与えられる。
The terminal voltage of the receiving coil 4b is applied to an amplifier 7, where it is amplified, and the amplified signal is subjected to envelope detection by a synchronous detector 8 (FIG. 2A) and applied to a time difference measuring circuit 9.

時間差測定回路9はn番目、n+1番目、n+
2番目…の反射波のトリガー信号からの各時間
To、To+1、To+2…を計測するものであり、その
構成は次のようになつている。即ち、第3図は時
間差測定回路9のブロツク図を示している。同期
パルス発生回路5からのトリガー信号がカウンタ
ー95、タイマー96及びタイマー97に与えら
れると、カウンター95はその信号によりリセツ
トされる共にクロツクパルス発生回路99からの
クロツクパルスを計数開始する。〔第2図ハ〕。こ
れと同時にタイマー96は計時を開始し、め設定
された時間、例えば超音波が鋼管Pの表裏面間を
略々n−2回往復するに要する時間〔第2図ニ〕
ハイレベル信号を出力する。この信号はORゲー
ト98を介してANDゲート91の負論理入力端
子に与えられる。ANDゲート91の他端子には
同期検波器8の出力が与えられている。タイマー
96がハイレベル信号を出力している間ANDゲ
ート91は閉じられており、同期検波器8出力は
後段の比較器93へ入力されない。つまりこの間
不感帯となる。またタイマー97はリセツトされ
る。そしてタイマー96の設定時間に達するタイ
マー96出力はローレベルとなり、これにより
ANDゲート91が開いて同期検波器8からの信
号は比較器93へ与えられる。比較器93にはし
きい値設定器92からしきい値とする所定レベル
電圧が与えられており、入力信号がしきい値より
高い場合にハイレベル信号が出力されて、ワンシ
ヨツトマルチ94へ送られる。ワンシヨツトマル
チ94はこの信号によりトリガーされて短時間幅
のパルス信号を発する。〔第2図ロ〕。このパルス
信号はタイマー96、タイマー97に与えられ、
タイマー96はリセツトされて再び計時を開始
し、またタイマー97は計時を開始し超音波が鋼
管Pの表裏面間を1往復する時間より少し短い時
間(80%程度)〔第2図ホ〕ハイレベル信号を
ANDゲート91へ出力する。従つてこの間の同
期検波器8出力は比較器93に入力されず、不感
帯となる。一方ワンシヨツトマルチ94が出力す
るパルス信号はインターフエース10を経て演算
回路11に与えられ、演算回路11はその時点で
カウンター95の計数値をインターフエース10
を介して読込む。この計数値は超音波がn−1回
往復するに要した時間To+1に相当する。
The time difference measuring circuit 9 is the n-th, n+1-th, n+
Each time from the trigger signal of the second reflected wave
It measures T o , T o+1 , T o+2 , etc., and its configuration is as follows. That is, FIG. 3 shows a block diagram of the time difference measuring circuit 9. As shown in FIG. When the trigger signal from the synchronizing pulse generating circuit 5 is applied to the counter 95, timer 96 and timer 97, the counter 95 is reset by the signal and starts counting clock pulses from the clock pulse generating circuit 99. [Figure 2 C]. At the same time, the timer 96 starts measuring a set time, for example, the time required for the ultrasonic wave to travel back and forth approximately n-2 times between the front and back surfaces of the steel pipe P [Fig. 2 (d)]
Outputs a high level signal. This signal is applied to the negative logic input terminal of AND gate 91 via OR gate 98. The output of the synchronous detector 8 is given to the other terminal of the AND gate 91. While the timer 96 is outputting a high level signal, the AND gate 91 is closed, and the output of the synchronous detector 8 is not input to the comparator 93 at the subsequent stage. In other words, this period becomes a dead zone. Also, the timer 97 is reset. When the timer 96 reaches the set time, the timer 96 output becomes low level.
AND gate 91 opens and the signal from synchronous detector 8 is applied to comparator 93. The comparator 93 is given a predetermined level voltage as a threshold from the threshold setting device 92, and when the input signal is higher than the threshold, a high level signal is output and sent to the one shot multi 94. It will be done. The one-shot multi 94 is triggered by this signal and emits a short-time pulse signal. [Figure 2 b]. This pulse signal is given to timer 96 and timer 97,
The timer 96 is reset and starts counting again, and the timer 97 starts counting for a time slightly shorter (approximately 80%) than the time it takes for the ultrasonic waves to make one round trip between the front and back surfaces of the steel pipe P [Fig. 2 H] level signal
Output to AND gate 91. Therefore, the output of the synchronous detector 8 during this period is not input to the comparator 93, and becomes a dead zone. On the other hand, the pulse signal output by the one-shot multi 94 is given to the arithmetic circuit 11 via the interface 10, and the arithmetic circuit 11 at that point transfers the count value of the counter 95 to the interface 10.
Load via. This count value corresponds to the time T o+1 required for the ultrasonic wave to make n-1 round trips.

タイマー97の設定時間が経過するとその出力
がローレベルとなつてANDゲート91が開き、
同期検波器8出力は比較器93へ入力される。そ
うするとn回目の反射波がしきい値を超えたとこ
ろでワンシヨツトマルチ94がトリガーされ、そ
の時点のカウンター95の計数値を読込む。この
計数値は超音波がn回往復するに要した時間To
に相当する。
When the set time of the timer 97 has elapsed, its output becomes low level and the AND gate 91 opens.
The output of the synchronous detector 8 is input to a comparator 93. Then, when the nth reflected wave exceeds the threshold value, the one-shot multi 94 is triggered and reads the count value of the counter 95 at that time. This count value is the time T o required for the ultrasonic wave to reciprocate n times.
corresponds to

以下同様にして所要数のデータTo+1、To+2
を読込む。なおこの間タイマー96出力はローレ
ベルを維持したままである。
Similarly, the required number of data T o+1 , T o+2 ...
Load. Note that during this time, the output of the timer 96 remains at a low level.

次に演算回路11における演算内容につき説明
する。まずTo+1−Toの減算を行い、超音波が鋼
管Pの表裏面間を1往復する時間を求め、次に
To/(To+1−To)の除算を行う。この値は超音
波の反射数となる。この上記除算の分母にはTo
−To-1を用いない方がよい。これは場合によつ
ては第4図に示す如くタイマー96による不感帯
時間と重なつてn−1回目の反射波出力が正しく
検出されない場合があるからである。
Next, the contents of the calculation in the calculation circuit 11 will be explained. First, subtract T o+1T o to find the time it takes for the ultrasonic wave to make one round trip between the front and back surfaces of the steel pipe P, and then
Perform division of T o /(T o+1T o ). This value is the number of ultrasound reflections. The denominator of this above division is T o
−It is better not to use T o-1 . This is because in some cases, as shown in FIG. 4, the n-1th reflected wave output may not be detected correctly because it overlaps with the dead zone time of the timer 96.

さて、前述のようにn=To/(To+1−To)と
なる筈であるが、例えばタイマー97の設定時間
が長過ぎた場合、或いはしきい値の設定が低すぎ
裏面からの反射波に近い時点で、欠陥部等からの
反射波が検出されたような場合には上記To
(To+1+To)値は整数値nとはならない。
Now, as mentioned above, n = T o / (T o +1 - T o ), but if, for example, the timer 97 is set too long, or the threshold value is set too low, If the reflected wave from a defective part is detected at a point close to the reflected wave from the above T o /
(T o+1 +T o ) value is not an integer value n.

そこで本発明ではTo/(To+1)が整数値にな
らない場合はこれを整数値になるように補正し
て、測定誤差要因を排除する。即ち下記(2)式で表
わされる裏面での反射回数nの補正値Nをnに替
え用いる。
Therefore, in the present invention, if T o /(T o+1 ) is not an integer value, it is corrected to become an integer value to eliminate measurement error factors. That is, the correction value N for the number of reflections n on the back surface expressed by the following equation (2) is used instead of n.

N=*〔To/To+1−To〕 ……(2) 但し、*〔 〕:〔 〕内の数値に最も近い整数値
とする記号 そして D=To・V/2・N ……(3) (3)式により鋼管Pの厚さDを算出する。このD
値を表示器12に表示させ、また記録計13に記
録させる。
N= * [T o /T o+1 −T o ] ...(2) However, * [ ]: symbol that is the closest integer value to the value in [ ], and D=T o・V/2・N ...(3) Calculate the thickness D of the steel pipe P using equation (3). This D
The value is displayed on the display 12 and recorded on the recorder 13.

なおToとしては上述の例に限らずタイマー9
6による不感帯が解除された後2番目以降の任意
の検出信号に依つてもよい。
Note that T o is not limited to the above example; timer 9
It is also possible to rely on any detection signal after the second one after the dead zone in No. 6 is released.

次に本発明の他の方法につき説明する。この方
法は前述した(3)式の替わりに下記(4)式により厚さ
Dを求める。
Next, another method of the present invention will be explained. In this method, the thickness D is determined using the following equation (4) instead of the above-mentioned equation (3).

D=(To+To+1+…To+n・V/2・(m+1)・(N+
m/2)……(4) 但し、m:自然数であり、演算に用いる反射信
号数−1に相当 この方法を具体的に説明すると、例えば最初の
3つのデータTo、To+1、To+2を用い、To、To+1
を(2)式に代入して求めたN値とTo、To+1、To+2
とを(4)式に代入することにより厚さDを算出す
る。得られたD値は、To、To+1、To+2を平均し
た時間、つまりn回目、n+1回目、n+2回目
の反射超音波の平均時間を求め、この時間に見掛
け上相当する往復回数N+1を用いて更に平均化
されて求められた値 〔=(To+To+1+To+2)・V/2・3・(N
+1)〕 であり、N値の導入により誤差要因が排除されて
正確である。
D=(T o +T o+1 +...T o+n・V/2・(m+1)・(N+
m/2)...(4) However, m is a natural number and corresponds to the number of reflected signals used for calculation - 1. To explain this method in detail, for example, the first three data T o , T o +1 , Using T o+2 , T o , T o+1
N value obtained by substituting into equation (2) and T o , T o+1 , T o+2
The thickness D is calculated by substituting and into equation (4). The obtained D value is obtained by calculating the average time of T o , T o +1 , and T o +2 , that is, the average time of the nth, n+1, and n+2 reflected ultrasound waves, and apparently corresponding to this time. The value obtained by further averaging using the number of round trips N+1 [=(T o +T o+1 +T o+2 )・V/2・3・(N
+1)] and is accurate because error factors are eliminated by introducing the N value.

なお本発明では鋼管の厚さを測定する場合に限
らず板状のものでも測定できる。また被測定材表
面に平行に直流磁場を与える装置としては前述の
如く電磁石に限らず永久磁石を用いてもよい。そ
してまた送信用コイル、受信用コイルを各別に設
けたが1つのコイルを送受信兼用としてもよい。
更にこのように構成された装置を複数用いて所要
箇所を同時に測定できるのは勿論である。
Note that the present invention is not limited to measuring the thickness of steel pipes, but can also measure plate-shaped ones. Furthermore, as a device for applying a DC magnetic field parallel to the surface of the material to be measured, not only the electromagnet as described above but also a permanent magnet may be used. Also, although separate transmitting coils and receiving coils are provided, one coil may be used for both transmitting and receiving purposes.
Furthermore, it goes without saying that a plurality of devices configured in this manner can be used to simultaneously measure required locations.

次に本発明の効果によいて説明する。しきい値
を裏面からの反射超音波出力値よりも低いレベル
に設定し、また不感帯を反射超音波がしきい値を
超える都度その時点から被測定材内を超音波が1
往復する時間の80%に相当する期間に設定し、本
発明方法により鋼管の周面を全長に亘つて測定し
た。
Next, the effects of the present invention will be explained. The threshold value is set to a level lower than the output value of the reflected ultrasonic waves from the back side, and the dead zone is set so that each time the reflected ultrasonic waves exceed the threshold value, the ultrasonic waves inside the material to be measured are set to 1.
A period corresponding to 80% of the reciprocating time was set, and the circumferential surface of the steel pipe was measured over its entire length using the method of the present invention.

第5図は横軸に長さ(m)をとり縦軸に鋼管の
厚さ(mm)をとつて、その測定結果を示したグラ
フであり、比較のために各反射超音波が検出され
る都度、不感帯を設けずして求めたTo値及び
To+1を(1)式に代入して算出した結果(比較例1)
及び同様にして各反射波が検出された後、不感帯
を設けないで求めたTo+1、To、To+1、To+2、…
値を下記(5)式に代入して算出した結果(比較例
2)を併せて示している。
Figure 5 is a graph showing the measurement results with length (m) on the horizontal axis and thickness (mm) of the steel pipe on the vertical axis, and each reflected ultrasonic wave is detected for comparison. In each case, the T o value obtained without setting a dead zone and
Results calculated by substituting T o+1 into equation (1) (Comparative Example 1)
And in the same way, after each reflected wave is detected, T o+1 , T o , T o+1 , T o+2 ,... are obtained without providing a dead zone.
The results (Comparative Example 2) calculated by substituting the values into the following equation (5) are also shown.

D=To・V/2o ……(5) この図より本発明による場合は厚さ測定値が安
定しており、比較例1、比較例2のように部分的
に大きく変動することがなく、このことから裏面
以外からの反射超音波による影響が無いことがわ
かる。また比較例2の管端で見られる反射回数n
の誤りによる厚さ測定値の異常も無くなることが
わかる。したがつてこのような理由によつて管等
の製造工程中に本発明により測定した値は制御情
報として利用することができる。
D=T o・V/2 o ...(5) This figure shows that the thickness measurement value is stable in the case of the present invention, and does not vary greatly locally as in Comparative Example 1 and Comparative Example 2. This shows that there is no influence of reflected ultrasound waves from other than the back surface. Also, the number of reflections n observed at the tube end of Comparative Example 2
It can be seen that abnormalities in the thickness measurement values due to errors in the above are also eliminated. Therefore, for these reasons, the values measured by the present invention during the manufacturing process of pipes etc. can be used as control information.

以上詳述した如く本発明は検出精度向上のため
にしきい値及び不感帯を設定し、更に超音波伝播
開始から裏面からの反射超音波検出時点までの時
間が1往復時間の整数倍であることを利用して厚
さを求めるので、特に被測定材の厚さが薄い場合
でも正確に厚さを測定できる優れた効果を奏す
る。更に本願発明は(3)又は(4)式に見られるように
超音波伝播開始時点から、反射超音波の検出時点
までの時間To等を用いて計算するので、相前後
する反射超音波の時間差、例えばTo−To-1を用
いるものに比して精度が高い。即ち(3)式に基いて
説明すると、To、To-1に含まれる誤差をΔTo
ΔTo-1とすると厚さに含まれる誤差はΔTo/2Nであ る。これに対し、相前後する反射超音波の時間差
を利用する場合の厚さはD=(To−To-1V/2で表 わされるので誤差の最大値は正負符号を考慮する
と ΔTo+ΔTo-1/2 となる。
As detailed above, the present invention sets a threshold value and a dead zone to improve detection accuracy, and furthermore, it is necessary to set a threshold value and a dead zone in order to improve detection accuracy, and furthermore, it is assumed that the time from the start of ultrasonic propagation to the point of detection of reflected ultrasonic waves from the back side is an integral multiple of one round trip time. Since the thickness is determined by using this method, it has an excellent effect of accurately measuring the thickness even when the thickness of the material to be measured is thin. Furthermore, as shown in equation (3) or (4), the present invention calculates using the time T o from the start of ultrasonic propagation to the time of detection of reflected ultrasonic waves. The accuracy is higher than that using a time difference, for example, T o −T o-1 . That is, to explain based on equation (3), the error included in T o and T o-1 is expressed as ΔT o ,
Assuming ΔT o -1 , the error included in the thickness is ΔT o /2N. On the other hand, when using the time difference between successive reflected ultrasound waves, the thickness is expressed as D = (T o - T o-1 V/2, so the maximum error value is ΔT o + ΔT considering the positive and negative signs. It becomes o-1 /2.

このように本願発明では時間差を利用する測定
力法に比して著しく誤差を低減できるのである。
In this way, the present invention can significantly reduce errors compared to the measuring force method that uses time differences.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状態を示す模式図、第2
図は本発明の測定内容説明図、第3図は本発明に
用いる装置の時間差測定回路のブロツク図、第4
図は不感帯による弁別不能信号説明図、第5図は
本発明方法による測定結果を示したグラフであ
る。 P……鋼管、1……電磁超音波送受信部、9…
…時間差測定回路、11……演算回路。
Figure 1 is a schematic diagram showing the implementation state of the present invention, Figure 2 is a schematic diagram showing the implementation state of the present invention.
3 is a block diagram of the time difference measuring circuit of the device used in the present invention, and 4.
The figure is an explanatory diagram of an indistinguishable signal due to a dead zone, and FIG. 5 is a graph showing measurement results according to the method of the present invention. P...Steel pipe, 1...Electromagnetic ultrasonic transmitter/receiver, 9...
...Time difference measurement circuit, 11...Arithmetic circuit.

Claims (1)

【特許請求の範囲】 1 被測定材表面から電磁超音波を伝播させて、
その裏面からの反射超音波を表面側にて検出する
に際して、所定レベルのしきい値を設定すると共
に、該しきい値を超える反射超音波が検出される
都度所定時間を不感帯として設定し、検出された
反射超音波の超音波伝播開始時点からの時間To
(nは裏面での反射回数を示す添字)を求め、 N=*〔To/To+1−To〕 但し、*〔 〕:〔 〕内の数値に最も近い整数値
とする記号 にて表わされる裏面での反射回数nの補正値Nを
算出し、このN値と前記時間とを用いて下式によ
り厚さDを算出することを特徴とする厚さ測定方
法。 D=To・V/2・N 但し、V:被測定材中の音速 2 前記時間Toは送信波に係る不感帯以後に検
出された反射超音波のうち1番目以降の反射超音
波に係るものである特許請求の範囲第1項記載の
厚さ測定方法。 3 被測定材表面から電磁超音波を伝播させて、
その裏面からの反射超音波を表面側にて検出する
に際して、所定レベルのしきい値を設定すると共
に、該しきい値を超える反射超音波が検出される
都度所定時間を不感帯として設定し、検出された
反射超音波の超音波伝播開始時点からの時間To
(nは裏面での反射回数を示す添字)を求め、 N=*〔To/To+1−To〕 但し、*〔 〕:〔 〕内の数値に最も近い整数値
とする記号 にて表わされる裏面での反射回数nの補正値Nを
算出し、このN値と前記時間とを用いて下式によ
り厚さDを算出することを特徴とする厚さ測定方
法。 D=(To+To+1+…+To+n・V/2・(m+1)・
(N+m/2) 但し、V:被測定材中の音速 m:自然数 4 前記時間Toは送信波に係る不感帯以後に検
出された反射超音波のうち1番目以降の反射超音
波に係るものである特許請求の範囲第3項記載の
厚さ測定方法。
[Claims] 1. Propagating electromagnetic ultrasonic waves from the surface of a material to be measured,
When detecting reflected ultrasonic waves from the back side on the front side, a threshold of a predetermined level is set, and each time a reflected ultrasonic wave exceeding the threshold is detected, a predetermined time is set as a dead zone, and the detection is performed. Time T o from the start of ultrasound propagation of the reflected ultrasound
(where n is the subscript indicating the number of reflections on the back surface), N= * [T o /T o+1 −T o ] However, * [ ]: The symbol that is the closest integer value to the number in [ ] A method for measuring thickness, comprising: calculating a correction value N for the number of reflections n on the back surface expressed as n, and calculating thickness D using the following formula using this N value and the time. D=T o・V/2・N However, V: Sound velocity in the material to be measured 2 The above-mentioned time T o is related to the first and subsequent reflected ultrasonic waves detected after the dead zone related to the transmitted wave. A method for measuring thickness according to claim 1. 3 Propagate electromagnetic ultrasonic waves from the surface of the material to be measured,
When detecting reflected ultrasonic waves from the back side on the front side, a threshold of a predetermined level is set, and each time a reflected ultrasonic wave exceeding the threshold is detected, a predetermined time is set as a dead zone, and the detection is performed. Time T o from the start of ultrasound propagation of the reflected ultrasound
(where n is the subscript indicating the number of reflections on the back surface), N= * [T o /T o+1 −T o ] However, * [ ]: The symbol that is the closest integer value to the number in [ ] A method for measuring thickness, comprising: calculating a correction value N for the number of reflections n on the back surface expressed as n, and calculating thickness D using the following formula using this N value and the time. D=(T o +T o+1 +…+T o+n・V/2・(m+1)・
(N+m/2) However, V: Sound velocity in the material to be measured m: Natural number 4 The above time T o is related to the first and subsequent reflected ultrasounds among the reflected ultrasounds detected after the dead zone related to the transmitted wave. A method for measuring thickness according to claim 3.
JP17995483A 1983-09-27 1983-09-27 Thickness measuring method Granted JPS6070306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17995483A JPS6070306A (en) 1983-09-27 1983-09-27 Thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17995483A JPS6070306A (en) 1983-09-27 1983-09-27 Thickness measuring method

Publications (2)

Publication Number Publication Date
JPS6070306A JPS6070306A (en) 1985-04-22
JPH038688B2 true JPH038688B2 (en) 1991-02-06

Family

ID=16074859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17995483A Granted JPS6070306A (en) 1983-09-27 1983-09-27 Thickness measuring method

Country Status (1)

Country Link
JP (1) JPS6070306A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292010A (en) * 1987-05-25 1988-11-29 Sharp Corp Ultrasonic apparatus for measuring thickness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542153A (en) * 1977-06-07 1979-01-09 Mitsubishi Electric Corp Ultrasonic thickness gauge
JPS54107359A (en) * 1978-02-09 1979-08-23 Mitsubishi Electric Corp Ultrasonic thickness gauge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542153A (en) * 1977-06-07 1979-01-09 Mitsubishi Electric Corp Ultrasonic thickness gauge
JPS54107359A (en) * 1978-02-09 1979-08-23 Mitsubishi Electric Corp Ultrasonic thickness gauge

Also Published As

Publication number Publication date
JPS6070306A (en) 1985-04-22

Similar Documents

Publication Publication Date Title
US4654590A (en) Method and apparatus for detecting the position of a movable object utilizing the magnetostrictive effect to generate ultrasonic waves
EP0024495B1 (en) Acoustic pulse delay line system for measuring distances along a magnetostrictive wire
EP0204184B1 (en) Position detecting apparatus
US4603589A (en) Ultrasonic flowmeter
JPH038688B2 (en)
JPH1048009A (en) Ultrasound temperature current meter
JPH0530202B2 (en)
JPS6031009A (en) Apparatus for measuring thickness of solidified cast piece
JPH02248824A (en) Apparatus for measuring residual stress
JPS6027361B2 (en) How to measure the thickness of conductive materials
JP2840656B2 (en) Peak detection type ultrasonic thickness gauge
JPH03167418A (en) Clad-thickness measuring apparatus
JPH02183117A (en) Displacement detector
RU2085858C1 (en) Ultrasound method for detection of product volume which runs through pipe and device which implements said method
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
JPS5943304A (en) Position detector
JP2000258214A (en) Ultrasonic flowmeter
JPS5892821A (en) Ultrasonic flow meter
JPS5925182B2 (en) AE monitoring device
JPS6053806A (en) Thickness measuring method
JPS609562A (en) Device for measuring solidification thickness of billet
JPS63311192A (en) Ultrasonic range finder
JPS6345622A (en) Ultrasonic tablet
JPS6078318A (en) Magnetostriction potentiometer
JPH0113534B2 (en)