JPS6027361B2 - How to measure the thickness of conductive materials - Google Patents

How to measure the thickness of conductive materials

Info

Publication number
JPS6027361B2
JPS6027361B2 JP387378A JP387378A JPS6027361B2 JP S6027361 B2 JPS6027361 B2 JP S6027361B2 JP 387378 A JP387378 A JP 387378A JP 387378 A JP387378 A JP 387378A JP S6027361 B2 JPS6027361 B2 JP S6027361B2
Authority
JP
Japan
Prior art keywords
measured
ultrasonic
thickness
sound speed
wave mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP387378A
Other languages
Japanese (ja)
Other versions
JPS5497447A (en
Inventor
一男 宮川
幸人 佐々木
新一郎 木村
修一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP387378A priority Critical patent/JPS6027361B2/en
Publication of JPS5497447A publication Critical patent/JPS5497447A/en
Publication of JPS6027361B2 publication Critical patent/JPS6027361B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【発明の詳細な説明】 本発明は、超音波を用いた導電性材料の厚さ測定方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the thickness of a conductive material using ultrasound.

鉄鋼などの製品にあっては、品質保証上の検査項目とし
て厚さ測定は不可決であり、種々の厚さ測定装置が用い
られている。
For products such as steel, thickness measurement is an essential inspection item for quality assurance, and various thickness measurement devices are used.

このなかで、超音波厚さ計は被測定材の表面に超音波送
受信器を接触させるのみで厚さが測定可能であり、また
超音波送受信器が小型であるので材料の狭い範囲の厚さ
測定ができ、さらに電気信号処理が比較的簡単で精度の
良い厚さ測定ができる特徴があり、近年著しく広く応用
され厚さ測定において重要な役割を果している。一方、
製品の厚さ測定だけでなく、製造工程中においても厚さ
測定を行ない、たとえば圧延中あるいは圧延直後に厚さ
測定を行ない、圧延不良などの問題点を早期発見して圧
延作業にフィードバックすることにより、製造工程にお
ける品質管理を図ることができる。
Among these, ultrasonic thickness gauges can measure thickness simply by touching the surface of the material to be measured with an ultrasonic transmitter/receiver, and since the ultrasonic transmitter/receiver is small, it is possible to measure the thickness of a material in a narrow range. It has the characteristics of being able to measure thickness with relatively simple electrical signal processing and being able to measure thickness with high precision, and has been widely applied in recent years and plays an important role in thickness measurement. on the other hand,
In addition to measuring the thickness of the product, we also measure the thickness during the manufacturing process. For example, we measure the thickness during or immediately after rolling to discover problems such as poor rolling early and provide feedback to the rolling operation. This allows quality control in the manufacturing process.

そのためには、製造工程とりわけ鋳造や圧延等の熱間処
理工程や連続圧延等の高速処理工程においても精度よく
厚さを測定できる厚さ計が要請される。ところが、従来
の圧電式超音波送受信器を用いて超音波厚さ計は、被測
定材への超音波伝達媒体として水、油などの接触煤質が
不可欠であり、さらに高温材料の厚さ測定のためには振
動子の前面に耐熱材を取り付けた特殊の高温用超音波送
受信器が必要である。
To this end, there is a need for a thickness gauge that can accurately measure thickness during manufacturing processes, particularly during hot treatment processes such as casting and rolling, and high-speed processing processes such as continuous rolling. However, ultrasonic thickness gauges using conventional piezoelectric ultrasonic transmitters and receivers require contact substances such as water and oil as the ultrasonic transmission medium to the material being measured, and are also difficult to measure the thickness of high-temperature materials. This requires a special high-temperature ultrasonic transceiver with a heat-resistant material attached to the front of the transducer.

しかし、この高温用超音波送受信器を用いても適用可能
温度は500℃程度が限度であり、かつ長時間測定が不
可能である。さらに耐熱材の音速が温度により著しく変
化するため、厚さ測定精度が低いという欠点がある。ま
た冷間材料の厚さ測定の場合でも、連続圧延工程の如く
、被測定材が高速で移動している工程には適用が極めて
困難であった。本発明は、上記した従釆型の圧電式超音
波送受信器を用いた超音波厚さ計による厚さ測定の欠点
を解決した厚さ測定方法を提供することも目的とする。
However, even if this high-temperature ultrasonic transceiver is used, the applicable temperature is limited to approximately 500° C., and long-term measurement is not possible. Furthermore, since the sound velocity of the heat-resistant material changes significantly depending on the temperature, there is a drawback that the accuracy of thickness measurement is low. Furthermore, even in the case of thickness measurement of cold materials, it is extremely difficult to apply the method to processes where the material to be measured moves at high speed, such as continuous rolling processes. Another object of the present invention is to provide a thickness measurement method that solves the drawbacks of thickness measurement using an ultrasonic thickness gauge using the above-mentioned follower-type piezoelectric ultrasonic transmitter/receiver.

この目的を達成するための本発明の第1の要旨は、超音
波の材料中における伝播時間を測定することにより材料
の厚さを測定する超音波を用いた厚さ測定方法において
、磁石と送受信コイルから構成される電磁式超音波送受
信器を用いて、被測定材中における横波モードの超音波
の伝播時間および縦波モードの超音波の伝播時間を求め
、両伝播時間の比から前記両モードの音速比を求め、一
方あらかじめ被測定材と同質の材料について異なる温度
における前記各モードの音速と前記両モードの音速比と
の関係を求めておき、前記被測定材について求めた前記
音速比と前記あらかじめ求めた音速を音速比との関係と
から被測定材の測定時における温度に対応した横波モー
ドまたは縦波モードの超音波の音速を求め、該音速と前
記測定した伝播時間とから被測定材の厚さを求めること
を特徴とする導電性材料の厚さ測定方法である。以下、
図示の実施例に基づき本発明を詳細に説明する。
The first aspect of the present invention to achieve this object is to provide a thickness measurement method using ultrasonic waves that measures the thickness of a material by measuring the propagation time of ultrasonic waves in the material. Using an electromagnetic ultrasonic transmitter/receiver consisting of a coil, the propagation time of transverse mode ultrasonic waves and the propagation time of longitudinal wave mode ultrasonic waves in the material to be measured are determined, and the two modes are determined from the ratio of the two propagation times. On the other hand, the relationship between the sound speed of each mode and the sound speed ratio of both modes at different temperatures for a material of the same quality as the material to be measured is determined in advance, and the sound speed ratio obtained for the material to be measured and From the relationship between the previously determined sound speed and the sound speed ratio, the sound speed of the ultrasonic wave in transverse wave mode or longitudinal wave mode corresponding to the temperature of the material to be measured is determined, and from the sound speed and the measured propagation time, the sound speed of the ultrasonic wave to be measured is determined. This is a method for measuring the thickness of a conductive material, which is characterized by determining the thickness of the material. below,
The present invention will be explained in detail based on illustrated embodiments.

第1図は本発明の第1の実施例における装置構成を示す
図、第2図は第1図の装置各部の信号のタイムチャート
を示す図、第3図は鋼材中における縦波モードおよび横
波モードの超音波の音速と音速比との関係を示す図であ
る。第1図に示すごとく、磁芯1と励磁コイル2からな
る電磁石に送受信コイル3を図示のように配設し、縦波
モードの超音波を送受信する電磁式超音波送受信器Aと
、磁芯1′と励磁コイル2′からなる電磁石に送受信コ
イル3′を図示のように配設し、横波モードの超音波を
送受信する電磁式超音波送受信器Bとを導電性の被測定
材10の表面に近接して配置する。
FIG. 1 is a diagram showing a device configuration in a first embodiment of the present invention, FIG. 2 is a diagram showing a time chart of signals of each part of the device in FIG. 1, and FIG. 3 is a diagram showing longitudinal wave modes and transverse waves in steel materials. FIG. 3 is a diagram showing the relationship between the sound speed of ultrasonic waves in a mode and the sound speed ratio. As shown in FIG. 1, an electromagnetic ultrasonic transceiver A that transmits and receives longitudinal wave mode ultrasonic waves is constructed by disposing a transmitting/receiving coil 3 on an electromagnet consisting of a magnetic core 1 and an excitation coil 2 as shown in the figure, and a magnetic core. An electromagnetic ultrasonic transmitter/receiver B, which transmits and receives transverse mode ultrasonic waves, is connected to the surface of the conductive material to be measured 10 by disposing a transmitting/receiving coil 3' on an electromagnet 1' and an excitation coil 2' as shown in the figure. be placed close to.

そして、それぞれの超音波送受信器A,Bの励磁コイル
2,2′の励磁電源200より直流あるいは間欠的な電
流を流すことにより磁束で,ぐ′を発生させる。この場
合電磁石の代りに永久磁石を用い磁束0,◇′を発生さ
せても同様である。また、送受信コイル3,3′は送受
信兼用の1つのコイルであっても、また送信用と受信用
の2つのコイルから綾成してもよい。同期回路10川こ
より駆動されるパルス発生器101,101′より高周
波パルスa,a′をそれぞれの超音波送受信器A,Bの
送受信コイル3,3′に印加すると、被測定材10表面
に禍電流1,rが生じる。この時、磁束◇,ぐ′と渦電
流1,1′との相互作用により、超音波振動F,F′が
被測定材表面に生じる。これが、振動Fは縦波モード、
振動F′は横波モードの超音波となって、被測定材10
内部を厚さ方向に伝播する。被測定材10内部を伝播し
底面で反射して再び表面に伝播して来た超音波の振動は
、磁束◇,ぐ′との相互作用により送受信コイル3,3
′に電流を譲導する。このようにして、送受信コイル3
,3′にて受信パルスリ,b′を得る。送信パルスa,
a′と受信パルスb,b′は、それぞれ増中器102,
102′、波形整形回路103,103′を経て、第2
図に示した信号c.c′とd,d′に波形整形される。
信号c,c′とd.d′はゲート回路104,104′
に入力され、スレツシユホールドレベルSから上の信号
c,dおよびc′,d′間を中とする信号e,e′の如
きゲート波形を得る。この信号e,e′のゲート中t,
t′が被測定材10の厚さの2倍に比例した情報をもつ
。この信号e,e′とクロツクソース105からのクロ
ック信号fとのアンドをとることによりアンド回路10
6,106′にてパルス信号g,g′を得、このパルス
信号g,g′をカウンタ回路107,107′でカウン
トし、デジタル信号T,T′を出力する。このようにし
て縦波モードと横波モードの超音波の被測定材中におけ
る伝播時間に比例した信号T,T′を得る。次に、この
信号T,T′を除算器108に入力しT/T′の除算を
行ない横波モードの超音波の音速V,と縦波モードの超
音波の音速V2の比に比例する信号を得る。信号T/T
′は演算器109に入力され、第3図に示す如き音速と
音速比の既知の関係を用いて被測定材の温度に対応して
横波モードの超音波の音速に比例した信号Vsに変換さ
れる。一方、信号T′は除算器112によりT′/2の
除算を行なう。次に、横波モードの超音波の被測定村中
での伝播時間の半値に比例する信号T′/2と横波モー
ドの超音波の音速に比例する信号Vsを掛算器110に
入力し掛算することにより被測定材の厚さに比例する信
号を得る。この厚さ信号は、記録表示回路111に記録
表示される。ここで、第3図の音速と音速比の関係を用
いて超音波の音速を求めることの意味について説明する
Then, a DC or intermittent current is caused to flow from the excitation power source 200 of the excitation coils 2 and 2' of the respective ultrasonic transceivers A and B to generate a magnetic flux. In this case, the same effect can be obtained even if a permanent magnet is used instead of an electromagnet to generate magnetic flux 0, ◇'. Further, the transmitting/receiving coils 3, 3' may be one coil for both transmitting and receiving purposes, or may be composed of two coils for transmitting and receiving. When high-frequency pulses a, a' are applied from pulse generators 101, 101' driven by the synchronous circuit 10 to the transmitting/receiving coils 3, 3' of the ultrasonic transmitting/receiving devices A, B, they cause damage to the surface of the material to be measured 10. A current 1,r is generated. At this time, ultrasonic vibrations F and F' are generated on the surface of the material to be measured due to the interaction between the magnetic fluxes ◇ and G' and the eddy currents 1 and 1'. This means that the vibration F is a longitudinal wave mode.
The vibration F' becomes an ultrasonic wave in a transverse wave mode, and the material to be measured 10
Propagates inside in the thickness direction. The ultrasonic vibrations that propagated inside the material to be measured 10, reflected at the bottom surface, and propagated to the surface again are transmitted to the transmitting and receiving coils 3 and 3 by interaction with the magnetic flux ◇,
′. In this way, the transmitter/receiver coil 3
, 3', the received pulse signal ,b' is obtained. Transmission pulse a,
a' and the received pulses b, b' are transmitted through the intensifier 102,
102', the waveform shaping circuit 103, 103', and the second
The signal shown in the figure c. The waveforms are shaped into c', d, and d'.
Signals c, c' and d. d' is the gate circuit 104, 104'
gate waveforms such as signals e and e' having intermediate values between signals c and d and c' and d' above the threshold level S are obtained. During the gates of these signals e and e', t,
t' has information proportional to twice the thickness of the material 10 to be measured. By ANDing these signals e, e' and the clock signal f from the clock source 105, the AND circuit 10
Pulse signals g, g' are obtained at 6, 106', these pulse signals g, g' are counted by counter circuits 107, 107', and digital signals T, T' are output. In this way, signals T and T' are obtained which are proportional to the propagation time of the ultrasonic waves in the longitudinal wave mode and transverse wave mode in the material to be measured. Next, these signals T and T' are input to the divider 108 and divided by T/T' to obtain a signal proportional to the ratio of the sound velocity V of the transverse wave mode ultrasonic wave and the sound velocity V2 of the longitudinal wave mode ultrasonic wave. obtain. Signal T/T
' is input to the calculator 109, and is converted into a signal Vs proportional to the sound speed of the ultrasonic wave in the transverse wave mode in accordance with the temperature of the material to be measured using the known relationship between sound speed and sound speed ratio as shown in FIG. Ru. On the other hand, the signal T' is divided by T'/2 by the divider 112. Next, a signal T'/2 proportional to half the propagation time of the transverse wave mode ultrasonic wave in the village to be measured and a signal Vs proportional to the sound speed of the transverse wave mode ultrasonic wave are input to the multiplier 110 and multiplied. A signal proportional to the thickness of the material to be measured is obtained. This thickness signal is recorded and displayed in the recording and display circuit 111. Here, the meaning of determining the sound speed of an ultrasonic wave using the relationship between the sound speed and the sound speed ratio in FIG. 3 will be explained.

一般に、導亀性材料の場合、温度が高くなると超音波の
音速が小さくなり、かつ縦波モードの超音波の音速と横
波モードの超音波の音速の比も小さくなる。すなわち、
超音波の音速と音速比はいずれも被測定材の温度の関数
である。音速比は被測定材の厚さが未知の場合でも伝播
時間の比から容易に求めることが出来るので、あらかじ
め被測定材と同じ材質の材料について各温度における音
速と音速比を測定し第3図に示すごとき関係を求めてお
けば、その都度被測定材の温度を測定することなく、前
述の音速比からそのときの被測定材の温度に対応する縦
波モードおよび横波モードの超音波の音速を正確に求め
ることができるのである。つぎに、本発明の第2の実施
例について説明する。
Generally, in the case of a turtle-conducting material, as the temperature increases, the sound speed of the ultrasonic wave becomes smaller, and the ratio of the sound speed of the longitudinal wave mode ultrasonic wave to the sound speed of the transverse wave mode ultrasonic wave also becomes smaller. That is,
The sound speed and sound speed ratio of ultrasonic waves are both functions of the temperature of the material being measured. Since the sound speed ratio can be easily determined from the propagation time ratio even when the thickness of the material to be measured is unknown, the sound speed and sound speed ratio at each temperature were measured in advance for the same material as the material to be measured, and as shown in Figure 3. If you obtain the relationship shown in Figure 1, you can calculate the sound speed of the ultrasonic waves in the longitudinal and transverse modes corresponding to the temperature of the material to be measured from the sound speed ratio described above, without having to measure the temperature of the material to be measured each time. can be determined accurately. Next, a second embodiment of the present invention will be described.

第4図および第5図は、超音波の反射挙動を説明する図
、第6図は本発明の第2の実施例における装置構成を示
す図、第7図は第6図の装置各部の信号のタイムチャー
トを示す図である。第4図および第5図において、10
′は被測定材の底面、Dは縦波モードの超音波の進行方
向、D′は横波モードの超音波の進行方向、Fは縦波モ
ードの超音波の振動方向、F′は横波モードの超音波の
振動方向をそれぞれ示している。第4図および第5図か
ら超音波が被測定材の底面10′で反射するとき底面1
0′は完全な平面でなく図に示す如く曲面になる。この
状態では、点P,および点P2での超音波振動方向はF
およびF′で示す成分をもつ。すなわち、縦波モードの
超音波の一部が横波モードの超音波に変換され、また横
波モードの超音波の一部が縦波モードの超音波に変換さ
れてそれぞれ反射されることになる。従って、縦波モー
ド用あるいは横波モード用超音波送信器を用いて受信さ
れる信号の中にも、縦波モードの超音波と横波モードの
超音波の両方が含まれることになる。そこで第2の実施
例においては、1個の超音波送受信器から横波モードま
たは縦波モードの超音波を送信し、底面から反射してく
る横波モードの超音波と縦波モードの超音波を同時に受
信して信号処理し、被測定材の板厚を求めるようにした
。すなわち、第6図に示す如く、磁芯1′と励磁コイル
2′からなる電磁石に送受信コイル3′を図示のように
配設した横波モード用電磁式超音波送受信器Bを導電性
の被測定材10の表面に近接して配置する。そして、第
1図について説明したようにして、横波モードの超音波
を被測定材10に送信する。被測定材10内部を伝播し
底面10′で反射される横波モードの超音波は、第5図
で説明したようにその一部分が縦波モードの超音波に変
換されて再び表面に戻って釆る。このようにして被測定
材10表面に伝播し戻ってきた構波モードおよび縦波モ
ードの超音波の振動は、磁束?′との相互作用により送
受信コイル3′に電流を誘導する。すなわち、送受信コ
イル3′にて横波モ−ドの超音波の受信パルスb′と縦
波モードの超音波の受信パルスb″を得る。送信パルス
a′と受信パルスb′,b″は、増中器102′,10
2″、波形整形回路103′,103″を経て、第7図
に示した信号に′とび,d″に波形整形される。信号c
′とd′,d″はゲート回路104′,104″に入力
され、これらとスレツシユホールドレベルSとから信号
e′,eの如きゲート波形を得る。この信号e′のゲー
ト中t′は横波モードの超音波により被測定材の厚さを
往復した伝播時間に比例した情報を持ち、信号e″のゲ
ート中t″は被測定材の厚さの往路を横波モードで復路
を縦波モードの超音波により伝播した伝播時間に比例し
た情報をもつ。この信号e′,e″とクロック105か
らのクロック信号fとのアンドをとることによりアンド
回路106′,106″にてパルス信号g,g″を得、
このパルス信号g′,g″をカウンター回路1 07′
,1 07″でカウントし、デジタル信号T′,T″を
出力する。一方信号T′を除算器112に入力してT′
/2の計算を行なう。次に信号T″とT′/2を引算器
113に入力して引算を行なって信号(T″−T′/2
)を得、されに信号(T″−T′/2)とT′/2を除
算器1o8に入力してm手′毒/2)の除算を行ない、
横波モードと縦波モードの超音波の音速比に相当する信
号を得る。信号〕声三芳/2ま演算器109に入力され
、第3図に示して音速と音速比との関係を用いて被測定
材の温度に対応した横波モードの超音波の音速に比例し
たVsに変換される。
4 and 5 are diagrams explaining the reflection behavior of ultrasonic waves, FIG. 6 is a diagram showing the device configuration in the second embodiment of the present invention, and FIG. 7 is a diagram showing signals of various parts of the device in FIG. 6. FIG. 2 is a diagram showing a time chart of FIG. In Figures 4 and 5, 10
' is the bottom surface of the material to be measured, D is the traveling direction of the ultrasonic wave in the longitudinal wave mode, D' is the traveling direction of the ultrasonic wave in the transverse wave mode, F is the vibration direction of the ultrasonic wave in the longitudinal wave mode, and F' is the traveling direction of the ultrasonic wave in the shear wave mode. Each shows the vibration direction of the ultrasonic wave. From Fig. 4 and Fig. 5, when the ultrasonic wave is reflected from the bottom surface 10' of the material to be measured, the bottom surface 1
0' is not a perfect plane but a curved surface as shown in the figure. In this state, the ultrasonic vibration direction at point P and point P2 is F
and has a component indicated by F'. That is, a portion of the longitudinal wave mode ultrasonic wave is converted to a transverse wave mode ultrasonic wave, and a portion of the transverse wave mode ultrasonic wave is converted to a longitudinal wave mode ultrasonic wave, and each of the ultrasonic waves is reflected. Therefore, signals received using a longitudinal wave mode or transverse wave mode ultrasonic transmitter include both longitudinal wave mode ultrasonic waves and transverse wave mode ultrasonic waves. Therefore, in the second embodiment, a transverse wave mode or longitudinal wave mode ultrasonic wave is transmitted from one ultrasonic transceiver, and the transverse wave mode ultrasonic wave and the longitudinal wave mode ultrasonic wave reflected from the bottom surface are simultaneously transmitted. The system receives and processes the signals to determine the thickness of the material to be measured. That is, as shown in FIG. 6, an electromagnetic ultrasonic transceiver B for transverse wave mode, which has a transmitter/receiver coil 3' arranged as shown in an electromagnet consisting of a magnetic core 1' and an excitation coil 2', is connected to a conductive object to be measured. It is placed close to the surface of the material 10. Then, as described with reference to FIG. 1, ultrasonic waves in transverse wave mode are transmitted to the material to be measured 10. As explained in FIG. 5, a portion of the transverse wave mode ultrasonic waves that propagate inside the material to be measured 10 and are reflected by the bottom surface 10' is converted into longitudinal wave mode ultrasonic waves and returns to the surface to boil. . The vibrations of the ultrasonic waves in the structured wave mode and the longitudinal wave mode that have propagated to the surface of the material to be measured 10 and returned in this way are magnetic flux? ′ induces a current in the transmitting/receiving coil 3′. That is, the transmitting/receiving coil 3' obtains a transverse mode ultrasonic reception pulse b' and a longitudinal wave mode ultrasonic reception pulse b''.The transmission pulse a' and the reception pulses b' and b'' are Middle vessel 102', 10
2'' and waveform shaping circuits 103' and 103'', the signal jumps to the signal shown in FIG. 7 and is waveform-shaped to d''. Signal c
', d', d'' are input to gate circuits 104', 104'', and gate waveforms such as signals e', e are obtained from these and the threshold level S. The gate t' of this signal e' has information proportional to the propagation time of the transverse mode ultrasonic wave through the thickness of the material to be measured, and the gate t' of the signal e'' has information about the thickness of the material to be measured. It has information proportional to the propagation time of ultrasonic waves propagated in transverse wave mode on the outward path and in longitudinal wave mode on the return path. By ANDing these signals e', e'' and the clock signal f from the clock 105, AND circuits 106', 106'' obtain pulse signals g, g'',
These pulse signals g', g'' are sent to the counter circuit 1 07'
, 107'', and outputs digital signals T', T''. On the other hand, the signal T' is input to the divider 112 and T'
/2 is calculated. Next, the signals T'' and T'/2 are input to the subtracter 113 and subtracted, resulting in a signal (T''-T'/2
) is obtained, and then the signals (T''-T'/2) and T'/2 are input to the divider 1o8 to perform division of m't'/2),
A signal corresponding to the sound speed ratio of ultrasonic waves in transverse wave mode and longitudinal wave mode is obtained. The signal] Koe Miyoshi/2 is input to the calculator 109, and using the relationship between the sound speed and the sound speed ratio as shown in FIG. converted.

一方、横波モードの超音波の被測定材中での伝播時間の
半値に比例する信号T′/2と横波モードの超音波の音
速に比例する信号Vsを掛算器1101こ入力し掛算す
ることにより被測定材の厚さに比例する信号を得る。こ
の厚さ信号は、記録表示回路111に記録表示される。
ここで、第6図に示す実施例では、横波モード用電磁式
超音波送受信器を用いる場合について説明したが、縦波
モード用電磁式超音波送受信器を用いても同様の手段に
より被測定材の厚さ測定が可能である。実際の測定にあ
たっては、たとえば鋼材の圧延ライン、とくに熱間圧延
ラインでは、被測定材の温度は、圧延材の寸法や品種に
よって、また測定時期や場所によって常温から1000
度以上の範囲におよぶものであり、また同一条件の測定
においても個々の鋼材毎に温度が一定ではないので、こ
のようなラインにおける厚さ測定においては、被測定材
の温度に対応した音速を用いないと、十分な厚さ測定精
度が得られない。
On the other hand, by inputting and multiplying the signal T'/2, which is proportional to the half value of the propagation time of the ultrasonic wave in the transverse wave mode in the material being measured, and the signal Vs, which is proportional to the sound speed of the ultrasonic wave in the transverse wave mode, to the multiplier 1101, Obtain a signal proportional to the thickness of the material being measured. This thickness signal is recorded and displayed in the recording and display circuit 111.
Here, in the embodiment shown in FIG. 6, the case where an electromagnetic ultrasonic transceiver for transverse wave mode is used has been explained, but even if an electromagnetic ultrasonic transceiver for longitudinal wave mode is used, the material to be measured can be measured by the same means. It is possible to measure the thickness of In actual measurement, for example, on a steel rolling line, especially a hot rolling line, the temperature of the material to be measured varies from room temperature to 1000 m depending on the size and type of the rolled material, as well as the time and place of measurement.
Furthermore, even when measuring under the same conditions, the temperature is not constant for each individual steel material, so when measuring thickness on such a line, the sound velocity corresponding to the temperature of the material to be measured must be determined. If not used, sufficient thickness measurement accuracy cannot be obtained.

たとえば鋼材では温度が約100oo変動すると超音波
の音速が約2%変動し、厚さ測定値は約2%の誤差を生
じる。このため、藤波モードと縦波モードの超音波の音
速比を利用して音速を簡単に求める方法を提案した。こ
の方法は測定材の表面温度を測定して音速を補正する方
法よりも装置が簡単である。以上述べたように、本発明
は被測定材の厚さ測定において、非接触に設置できる電
磁式超音波送受信器を用いていること、および縦波モー
ドと横波モードの2つの超音波の伝播時間と音速比を用
いるのみで被測定材の温度を測定し温度補正を行なった
と同程度の厚さ測定精度が容易に得られるため、従釆の
超音波厚さ計で適用可能な温度範囲および速度範囲など
を拡大したもので、その工業的価値は高い。
For example, in the case of steel, when the temperature changes by about 100 degrees, the ultrasonic sound speed changes by about 2%, resulting in an error of about 2% in the thickness measurement value. For this reason, we proposed a method to easily determine the sound speed using the sound speed ratio of ultrasonic waves in Fujinami mode and longitudinal wave mode. This method requires a simpler device than the method of measuring the surface temperature of the material to be measured and correcting the speed of sound. As described above, the present invention uses an electromagnetic ultrasonic transmitter/receiver that can be installed in a non-contact manner in measuring the thickness of a material to be measured, and the propagation time of the two ultrasonic waves in the longitudinal wave mode and the transverse wave mode. The same level of thickness measurement accuracy as measuring the temperature of the material to be measured and performing temperature correction can be easily obtained by simply using the sound velocity ratio and the temperature range applicable to the conventional ultrasonic thickness gauge. The range has been expanded, and its industrial value is high.

【図面の簡単な説明】 第1図は本発明の第1の実施例における装置構成を示す
図、第2図は第1図の装置各部の信号のタイムチャート
を示す図、第3図は鋼材中における縦波モードおよび藤
波モードの超音波の音速と音速比との関係を示す図であ
る。 第4図は縦波モードの超音波の反射挙動を説明する図、
第5図は横波モードの超音波の反射挙動を説明する図、
第6図は本発明の第2の実施例における装置構成を示す
図、第7図は第6図の装置各部の信号のタイムチャート
を示す図である。1,1′:磁芯、2,2′:励磁コイ
ル、3,3′:送受信コイル、10:被測定材、10′
:被測定材底面、100:同期回路、101,101′
:パルス発生器、102,102′,102″:増中器
、103,103′,103″:波形整形回路、104
,104′,104″:ゲート回路、105:クロツク
、106,106′,106″:アンド回路、107,
107′,107″:カウンター回路、108:除算器
、109:演算器、110:掛算器、111:記録表示
回路、1121:除算器、113:引算器、200:励
磁電源。 図 舵 図 ○ 滋 第2図 第3図 第4図 第・・5図 第7図
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a diagram showing a device configuration in a first embodiment of the present invention, Fig. 2 is a diagram showing a time chart of signals of each part of the device in Fig. 1, and Fig. 3 is a diagram showing a steel material FIG. 3 is a diagram showing the relationship between the sound speed and sound speed ratio of ultrasonic waves in longitudinal wave mode and Fuji wave mode in the middle. Figure 4 is a diagram explaining the reflection behavior of ultrasonic waves in longitudinal wave mode.
Figure 5 is a diagram explaining the reflection behavior of ultrasonic waves in transverse wave mode.
FIG. 6 is a diagram showing a device configuration in a second embodiment of the present invention, and FIG. 7 is a diagram showing a time chart of signals of various parts of the device in FIG. 1, 1': Magnetic core, 2, 2': Excitation coil, 3, 3': Transmitting/receiving coil, 10: Material to be measured, 10'
: Bottom surface of the material to be measured, 100: Synchronous circuit, 101, 101'
: Pulse generator, 102, 102', 102'': Multiplier, 103, 103', 103'': Waveform shaping circuit, 104
, 104', 104'': Gate circuit, 105: Clock, 106, 106', 106'': AND circuit, 107,
107', 107'': Counter circuit, 108: Divider, 109: Arithmetic unit, 110: Multiplier, 111: Record display circuit, 1121: Divider, 113: Subtractor, 200: Excitation power supply. ShigeruFigure 2Figure 3Figure 4Figure 5Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 超音波の材料中における伝播時間を測定することに
より材料の厚さを測定する超音波を用いた厚さ測定方法
において、磁石と送受信コイルから構成される電磁式超
音波送受信器を用いて、被測定材中における横波モード
の超音波の伝播時間および縦波モードの超音波の伝播時
陥を求め、両伝播時間の比から前記両モードの音速比を
求め、一方あらかじめ被測定材と同質の材料について異
なる温度における前記各モードの音速と前記両モードの
音速比との関係を求めておき、前記被測定材について求
めた前記音速比と前記あらかじめ求めた音速と音速比と
の関係とから被測定材の測定時における温度に対応して
横波モードまたは縦波モードの超音波の音速を求め、該
音速と前記測定した伝播時間とから被測定材の厚さを求
めることを特徴とする導電性材料の厚さ測定方法。
1. In a thickness measurement method using ultrasonic waves that measures the thickness of a material by measuring the propagation time of ultrasonic waves in the material, an electromagnetic ultrasonic transceiver consisting of a magnet and a transmitting/receiving coil is used. The propagation time of the ultrasonic wave in the transverse wave mode and the propagation time of the ultrasonic wave in the longitudinal wave mode in the material to be measured are determined, and the sound speed ratio of the two modes is determined from the ratio of both propagation times. The relationship between the sound speed of each mode and the sound speed ratio of both modes at different temperatures for the material is determined, and the sound speed ratio determined for the material to be measured and the relationship between the sound speed and the sound speed ratio determined in advance are used to determine the sound speed of the material. Conductivity characterized by determining the sound velocity of ultrasonic waves in transverse wave mode or longitudinal wave mode in accordance with the temperature of the material to be measured at the time of measurement, and determining the thickness of the material to be measured from the sound velocity and the measured propagation time. How to measure material thickness.
JP387378A 1978-01-18 1978-01-18 How to measure the thickness of conductive materials Expired JPS6027361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP387378A JPS6027361B2 (en) 1978-01-18 1978-01-18 How to measure the thickness of conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP387378A JPS6027361B2 (en) 1978-01-18 1978-01-18 How to measure the thickness of conductive materials

Publications (2)

Publication Number Publication Date
JPS5497447A JPS5497447A (en) 1979-08-01
JPS6027361B2 true JPS6027361B2 (en) 1985-06-28

Family

ID=11569296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP387378A Expired JPS6027361B2 (en) 1978-01-18 1978-01-18 How to measure the thickness of conductive materials

Country Status (1)

Country Link
JP (1) JPS6027361B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6837109B2 (en) 2002-11-05 2005-01-04 Kawasaki Steel Corporation Material thickness measurement method and apparatus
DE102004053112B3 (en) * 2004-10-28 2006-05-11 Mannesmannröhren-Werke Ag Method and device for determining the thickness of a test specimen by means of ultrasound
JP2009025093A (en) * 2007-07-18 2009-02-05 Nichizou Tec:Kk Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave
JP5157610B2 (en) * 2008-04-17 2013-03-06 Jfeスチール株式会社 Method for measuring the thickness of thin steel pipes

Also Published As

Publication number Publication date
JPS5497447A (en) 1979-08-01

Similar Documents

Publication Publication Date Title
JPS58167918A (en) Ultrasonic wave flow speed measuring device
CN106556363A (en) Thickness of continuous casting shell online test method and device
JPS6156450B2 (en)
JPS6027361B2 (en) How to measure the thickness of conductive materials
US4353256A (en) Non-contact measurement of physical properties of continuously moving metal strip
JP4534309B2 (en) Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate
EP0028540B1 (en) Method and apparatus for non-contact acoustic measurement of physical properties of continuously moving metal strip
JPS6031009A (en) Apparatus for measuring thickness of solidified cast piece
JPH03167418A (en) Clad-thickness measuring apparatus
JPH0777465A (en) Measuring method for surface layer average temperature and thickness direction temperature distribution
JPS6031010A (en) Apparatus for measuring thickness of solidified cast piece
JPH0961145A (en) Method and apparatus for measurement of thickness or sound velocity
JPH1038862A (en) Method and device for iron loss value evaluation
JPH0464788B2 (en)
JPS5919805A (en) Device for measuring thickness by ultrasonic
JPH02183117A (en) Displacement detector
JPH026746A (en) Method for estimating mechanical strength of thick steel sheet
JPS61246610A (en) Thickness measuring device using ultrasonic wave
SU761833A1 (en) Ultrasonic echo-pulse thickness gauge
JPH0117090B2 (en)
JPH02248824A (en) Apparatus for measuring residual stress
JPS6053805A (en) Ultrasonic wave thickness gage
JPH05172793A (en) Sound characteristic value measuring device
SU1307325A1 (en) Meter of ultrasound velocity
SU747812A1 (en) Magnetostriction differential displacement transducer