JPH02248824A - Apparatus for measuring residual stress - Google Patents

Apparatus for measuring residual stress

Info

Publication number
JPH02248824A
JPH02248824A JP1071018A JP7101889A JPH02248824A JP H02248824 A JPH02248824 A JP H02248824A JP 1071018 A JP1071018 A JP 1071018A JP 7101889 A JP7101889 A JP 7101889A JP H02248824 A JPH02248824 A JP H02248824A
Authority
JP
Japan
Prior art keywords
residual stress
propagation time
propagation
inspected
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1071018A
Other languages
Japanese (ja)
Inventor
Riichi Murayama
村山 理一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1071018A priority Critical patent/JPH02248824A/en
Publication of JPH02248824A publication Critical patent/JPH02248824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately measure residual stress without receiving the effect of temp. by measuring the propagation time of the electromagnetic ultrasonic wave generated on the side of a magnet over the predetermined distance in the magnet and correcting the propagation time measured value of an ultrasonic wave through a material to be inspected on the basis of the measured result. CONSTITUTION:Electromagnetic ultrasonic waves polarized in two directions mutually crossing at a right angle with respect to an iron core 11 having predetermined reference temp. in the measurement of residual stress are generated on one end surface of the iron core 11 by probe coils 13a, 13b and reflected from the other end surface thereof and one reciprocating time of said ultrasonic waves between both surfaces is measured to calculate the reference propagation speed in the iron core 11. Then, the deviation with the reference value of a propagation speed is calculated from the propagation time of a material 2 to be inspected. Since the ratio of this deviation to the reference value is equal to the ratio of the deviation of the propagation speed measured in the material 2 to be inspected with the reference value to the reference value, the propagation time over the predetermined distance in the material to be inspected is corrected on the basis of said ratio. By this method, residual stress can be accurately measured without receiving the effect of temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は所謂電磁超音波を利用して被検材の残留応力を
測定する残留応力測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a residual stress measuring device that measures residual stress in a test material using so-called electromagnetic ultrasonic waves.

〔従来技術〕[Prior art]

近年、金属材等を非破壊的に検査する一手法として、物
質の背伸性(acoustoelasticity)を
利用する手法が普及している。これは、偏波した横波(
剪断波)の伝播速度が物質に加わっている応力に応じて
変化するという背伸性の性質を利用したものである。
In recent years, a method that utilizes the acoustoelasticity of materials has become popular as a method for non-destructively inspecting metal materials and the like. This is a polarized transverse wave (
This method takes advantage of the property of stretchability, in which the propagation speed of shear waves changes depending on the stress applied to the material.

具体的には、偏波した横波がプローブから被検材内部へ
向けて発せられ、その被検材の反対面からの反射波をプ
ローブコイルにて電気信号として受信し、その送受信間
の時間を計時する。次に、上述の場合とは90’異なる
方向に偏波した横波を発するようにプローブコイルの方
向性を変えて同様の測定を行えば、両者の時間差から被
検材の内部残留応力が測定可能である。
Specifically, a polarized transverse wave is emitted from the probe toward the inside of the material to be tested, and the reflected wave from the opposite surface of the material to be tested is received as an electrical signal by the probe coil, and the time between transmission and reception is To measure time. Next, if you change the direction of the probe coil so that it emits a transverse wave polarized in a direction 90' different from the above case and perform a similar measurement, it is possible to measure the internal residual stress in the test material from the time difference between the two. It is.

以下前記音弾性を利用した残留応力の測定原理について
説明する。被検材である二軸応力状態にある弾性体にお
いて、主応力方向に偏向した2つの横波の伝播速度を夫
々V、、V2とすれば、弾性体の直交異方性の軸(一般
に鋼材の圧延の圧延方向とそれに直交する方向)の方向
と主応力方向とが一致する場合には、前記二軸応力の夫
々の軸の主応力σ1.σ2の偏差である主応力差(σ1
σ2)と伝播速度差(V、  V2)とが下記(11式
に示す如き関係となる。
The principle of measuring residual stress using the acoustic elasticity will be explained below. If the propagation velocities of two transverse waves deflected in the principal stress direction are V, V2, respectively, in the elastic body under biaxial stress, which is the test material, then the orthotropic axis of the elastic body (generally, the When the direction (the rolling direction of rolling and the direction perpendicular thereto) coincides with the principal stress direction, the principal stress σ1 of each axis of the biaxial stress. Principal stress difference (σ1
σ2) and the propagation velocity difference (V, V2) have a relationship as shown in equation 11 below.

但し、VOI+  ■02’無応力状態のV、、V2α
:被検材の組織音響異方性を考慮した定数 C八:背伸性定数 (11式に示す如き比例関係は伝播速度V、、V2を伝
播時間T、、T2に置き換えると、下記(2)式%式% 残留応力の実際の測定にあっては、横波の伝播時間T、
、T、を計測し、(2)式を用いて残留応力を算出する
。このような測定原理を利用した残留応力の測定装置と
しては、例えば直交する2方向に偏波した横波を発生さ
せ、これらの伝播時間差を計測することにより2応力場
で主応力差(σ1σ2)を求める装置が提案されている
(実開昭63−175830号公報、実開昭63−14
8843号公報)。
However, VOI+ ■02'V in the stress-free state, , V2α
: Constant C that takes into consideration the tissue acoustic anisotropy of the material to be tested. ) Formula % Formula % In actual measurement of residual stress, the propagation time T of the transverse wave,
, T, are measured, and residual stress is calculated using equation (2). A residual stress measuring device using such a measurement principle, for example, generates transverse waves polarized in two orthogonal directions and measures the difference in propagation time between them to calculate the principal stress difference (σ1σ2) in two stress fields. A device for this purpose has been proposed (Japanese Utility Model Application Publication No. 175830/1983, Japanese Utility Model Application No. 63-14
Publication No. 8843).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した如き音弾性を利用し、残留応力を求めるべく横
波の伝播時間を計測する場合、残留応力による伝播時間
の変化率は例えば厚さ125mmの車輪の場合には約5
 ns/kg/ml112である。これに対して被検材
の温度の変動に対する伝播時間の変化率は約10ns/
”Cであり、又、計器精度は経時変化により数+nsの
範囲で変動する。これらは横波の伝播時間計測の誤差の
要因となるが、音弾性を利用して残留応力を求める場合
、2種類の横波の伝播速度差より残留応力を求めるため
前記誤差の要因の大部分は相殺される。しかし、横波の
伝播時間の計測はnsのオーダで行われるため、相殺さ
れずに残った誤差が計測結果に与える影響は大きいとい
うのが現状である。
When measuring the propagation time of transverse waves to determine residual stress using acoustic elasticity as described above, the rate of change in propagation time due to residual stress is, for example, approximately 5 for a wheel with a thickness of 125 mm.
ns/kg/ml112. On the other hand, the rate of change in propagation time with respect to changes in the temperature of the test material is approximately 10 ns/
"C, and the accuracy of the instrument fluctuates in the range of several + nanoseconds due to changes over time. These factors cause errors in measuring the propagation time of transverse waves, but when determining residual stress using acoustic elasticity, there are two types. Since the residual stress is determined from the difference in the propagation speed of the transverse waves, most of the error factors described above are canceled out. However, since the measurement of the propagation time of the transverse waves is performed on the order of nanoseconds, the remaining error that is not canceled out is The current situation is that the impact on results is significant.

本発明は斯かる事情に鑑みてなされたものであり、磁石
に発生する電磁超音波が磁石中の所定距離を伝播するに
要する伝播時間を計測し、この計測結果によって被検材
中の電磁超音波の伝播時間計測値を補正することにより
被検材の温度及び計器精度に影響を受けることなく計測
精度が良い残留応力測定装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and it measures the propagation time required for electromagnetic ultrasonic waves generated in a magnet to propagate a predetermined distance in the magnet, and uses this measurement result to determine the electromagnetic ultrasonic wave in the specimen material. It is an object of the present invention to provide a residual stress measuring device that has good measurement accuracy without being affected by the temperature of a material to be tested and the precision of the instrument by correcting the measured value of the propagation time of a sound wave.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る第1の残留応力測定装置は、被検材に対し
て磁石及びプローブコイルを対向配置し、磁石及びプロ
ーブコイルに通電することにより直交する2方向に偏波
した電磁超音波を被検材に発生させ、これらの電磁超音
波が被検材中の所定距離を伝播するに要する伝播時間の
差を計測することにより被検材の残留応力を測定する残
留応力測定装置において、前記電磁超音波の夫々が該磁
石中の所定距離を伝播するに要する伝播時間を計測する
手段と、該手段の計測結果に基づき前記被検材中の伝播
時間の計測値の補正を行う手段とを具備することを特徴
とする。
The first residual stress measuring device according to the present invention arranges a magnet and a probe coil facing each other with respect to a test material, and receives electromagnetic ultrasonic waves polarized in two orthogonal directions by energizing the magnet and probe coil. In a residual stress measuring device that measures the residual stress of a material to be inspected by generating electromagnetic ultrasonic waves in the material to be inspected and measuring the difference in propagation time required for these electromagnetic ultrasonic waves to propagate a predetermined distance in the material to be inspected, A means for measuring the propagation time required for each ultrasonic wave to propagate a predetermined distance in the magnet, and a means for correcting the measured value of the propagation time in the test material based on the measurement result of the means. It is characterized by

また、本発明に係る第2の残留応力測定装置は、計測結
果に基づき前記伝播時間の計測値の有効性を判断するこ
とを特徴とする。
Further, the second residual stress measuring device according to the present invention is characterized in that the validity of the measured value of the propagation time is determined based on the measurement result.

〔作用〕[Effect]

磁石内を伝播する電磁超音波の伝播速度は温度変化及び
計器精度の変化が無い場合、一定値であるため、この伝
播速度を基準値とし、実際に計測された磁石内の伝播時
間より伝播速度の前記基準値よりの偏差を求める。該偏
差の前記基準値に対する比は被検材において計測される
伝播速度とその基準値との偏差の該基準値に対する比に
等しいため、この比で被検材中の所定距離間の伝播時間
の補正を行う。また、経年変化により計器精度が悪化し
た場合、計測値に異常値が現れる。これを検知すべ(直
交する2方向の電磁超音波の伝播速度の基1!値を予め
定めておき、該基準値と実測値との比較を行い、基準値
と実測値との偏差が所定値より大きい場合はこの実測値
を異常値と見なし、有効ではないと判断する。
The propagation velocity of electromagnetic ultrasonic waves propagating inside a magnet is a constant value when there are no changes in temperature or instrument accuracy, so this propagation velocity is used as the reference value, and the propagation velocity is calculated from the actually measured propagation time inside the magnet. Find the deviation from the reference value. Since the ratio of the deviation to the reference value is equal to the ratio of the deviation between the propagation velocity measured in the test material and its reference value to the reference value, this ratio determines the propagation time for a predetermined distance in the test material. Make corrections. Furthermore, if the accuracy of the instrument deteriorates due to aging, abnormal values will appear in the measured values. This should be detected (base 1! value of the propagation velocity of electromagnetic ultrasound in two orthogonal directions is determined in advance, the reference value and the actual measurement value are compared, and the deviation between the reference value and the actual measurement value is a predetermined value. If it is larger than that, the actual measured value is regarded as an abnormal value and is determined to be invalid.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき具体的に説
明する。第1図は本発明に係る残留応力測定装置の全体
の構成を示すブロック図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof. FIG. 1 is a block diagram showing the overall configuration of a residual stress measuring device according to the present invention.

図中1は電磁石であり、該電磁石1のコの字形鉄心11
の夫々の両脚部には磁化コイル12が巻回されており、
該磁化コイル12に直流電源35より電流が通流される
ことにより、鉄心11の一端部がS極に、また他端部が
N極になって電磁石として作用する。
In the figure, 1 is an electromagnet, and the U-shaped iron core 11 of the electromagnet 1 is
A magnetizing coil 12 is wound around each leg of the
When a current is passed through the magnetizing coil 12 from the DC power source 35, one end of the iron core 11 becomes an S pole and the other end becomes an N pole, thereby acting as an electromagnet.

鉄心11はその先端部である磁極面が被検材に対向する
ように配設されており、この電磁石の磁力により被検材
2の内部に磁場が発生する。N極側の先端部である磁極
面には楕円形の第1のプローブコイル13aをその長軸
を鉄心11の両磁極を結ぶ方向と一致させて設けてあり
、楕円形の第2のプローブコイル13bをその長軸をプ
ローブコイル13aの長軸の方向と直交する方向に設け
である。
The iron core 11 is disposed so that the magnetic pole surface, which is the tip thereof, faces the material to be tested, and a magnetic field is generated inside the material to be tested 2 due to the magnetic force of this electromagnet. An elliptical first probe coil 13a is provided on the magnetic pole surface, which is the tip on the N pole side, with its long axis aligned with the direction connecting both magnetic poles of the iron core 11, and an elliptical second probe coil 13a is provided. 13b is provided with its long axis in a direction perpendicular to the direction of the long axis of the probe coil 13a.

プローブコイル13aはパルス発振回路33に接続され
、またプローブコイル13bはパルス発振回路34に接
続されており、パルス発振回路33又はパルス発振回路
34はトリガ回路31より切換回路32を経て入力され
るトリガ信号の入力タイミングに応じてプローブコイル
13a又はプローブコイル13bにパルス信号を与える
。なお、前記切換回路32は後述する切換回路43と連
動するようになっている。
The probe coil 13a is connected to a pulse oscillation circuit 33, and the probe coil 13b is connected to a pulse oscillation circuit 34.The pulse oscillation circuit 33 or 34 receives a trigger input from the trigger circuit 31 via the switching circuit 32. A pulse signal is given to the probe coil 13a or the probe coil 13b depending on the input timing of the signal. Note that the switching circuit 32 is designed to work in conjunction with a switching circuit 43, which will be described later.

プローブコイル13a及びプローブコイル13bは入力
された夫々のパルス信号による電磁誘導によって被検材
2の表面に渦電流を発生させる。この渦電流と電磁石1
により発生させられる磁場との相互作用によりローレン
ツ力が作用し、被検材2の表面より電磁超音波が被検材
2の内部方向へ伝播される。また、これと同様に鉄心1
1の磁極面よりその内部へ電磁超音波が伝播される。ブ
ローフコイル13a及びプローブコイル13bより夫々
発せられる電磁超音波は、被検材2内及び鉄心11の脚
部内を伝播されてその他端面にて反射され、再度被検材
2の表面及び鉄心11の磁極面まで戻り、ここで磁場と
の相互作用によりプローブコイル13a及びプローブコ
イル13bに誘導電流が誘起される。
The probe coil 13a and the probe coil 13b generate eddy currents on the surface of the test material 2 by electromagnetic induction caused by the input pulse signals. This eddy current and electromagnet 1
Due to the interaction with the magnetic field generated by the Lorentz force, electromagnetic ultrasonic waves are propagated from the surface of the test material 2 toward the inside of the test material 2 . Also, similarly to this, iron core 1
Electromagnetic ultrasonic waves are propagated from the magnetic pole surface of 1 to the inside thereof. The electromagnetic ultrasonic waves emitted from the blow coil 13a and the probe coil 13b are propagated within the test material 2 and the legs of the iron core 11, are reflected at the other end faces, and are reflected again on the surface of the test material 2 and the magnetic pole face of the iron core 11. At this point, induced currents are induced in the probe coils 13a and 13b by interaction with the magnetic field.

これらの誘導電流はプローブコイル13aより前置増幅
器41へ与えられ、プローブコイル13bより前置増幅
器42へ与えられる。
These induced currents are applied to the preamplifier 41 from the probe coil 13a, and are applied to the preamplifier 42 from the probe coil 13b.

前置増幅器41及び前置増幅器42では、入力された信
号を所定量増幅して切換回路32と連動する切換回路4
3を経て主増幅器44へ入力させる。主増幅器44では
入力された信号を所定量増幅し、計時装置45へ入力さ
せる。
The preamplifier 41 and the preamplifier 42 amplify the input signal by a predetermined amount and operate the switching circuit 4 in conjunction with the switching circuit 32.
3 to the main amplifier 44. The main amplifier 44 amplifies the input signal by a predetermined amount and inputs it to the clock device 45 .

以上説明した信号系においては、切換回路32の接続切
換えによってパルス発振回路33.34よりプローブコ
イル13.13bに対してパルス信号が交互に与えられ
る。これによりプローブコイル13a、13bの夫々が
交互に通電され、直交する2方向の電磁超音波が交互に
被検材2内を伝播する。この反射波の受信信号はプロー
ブコイル13aより前置増幅器42へ入力され、またプ
ローブコイル13bより前置増幅器41へ入力される。
In the signal system described above, pulse signals are alternately applied from the pulse oscillation circuits 33.34 to the probe coils 13.13b by switching the connection of the switching circuit 32. As a result, each of the probe coils 13a and 13b is alternately energized, and electromagnetic ultrasonic waves in two orthogonal directions are alternately propagated within the specimen 2. The received signal of this reflected wave is input to the preamplifier 42 from the probe coil 13a, and is also input to the preamplifier 41 from the probe coil 13b.

そして切換回路43は前記切換回路32と連動している
ため、測定を実施しているプローブコイル13a(又は
13b)に接続されている前置増幅器41(又は42)
の出力は、常に主増幅器44を経て計時装置45へ入力
される。
Since the switching circuit 43 is interlocked with the switching circuit 32, the preamplifier 41 (or 42) connected to the probe coil 13a (or 13b) performing the measurement
The output is always input to the clock device 45 via the main amplifier 44.

第2図は主増幅器44より出力される前記電磁超音波の
受信波形を示す波形図である。(a)はプローブコイル
13aにより受信された波形であり、(blはプローブ
コイル13bにより受信された波形である。
FIG. 2 is a waveform diagram showing the received waveform of the electromagnetic ultrasound output from the main amplifier 44. (a) is a waveform received by the probe coil 13a, and (bl is a waveform received by the probe coil 13b).

図においてSは送信波、Tは鉄心11内を往復した反射
波、Bは被検材2内を往復した反射波である。
In the figure, S is a transmitted wave, T is a reflected wave that has gone back and forth within the iron core 11, and B is a reflected wave that has gone back and forth within the test material 2.

前記計時装置45では、プローブコイル13bにより受
信された結果よりパルス発振回路33がパルス信号を受
信した時点より、鉄心ll内の他端にて反射した反射波
Tが受信された時点までの時間T、と、被検材2内の他
端にて反射した反射波Bが受信された時点までの時間B
+ とを夫々計時すると共に、パルス発振回路34がパ
ルス信号を発信した時点より前記反射波Tが受信された
時点までの時間T2と、前記反射波Bが受信された時点
までの時間B2とを夫々計時する。これらの計時結果T
、、B、。
In the timing device 45, the time T from the time when the pulse oscillation circuit 33 receives the pulse signal to the time when the reflected wave T reflected at the other end in the iron core 11 is received based on the result received by the probe coil 13b. , and the time B until the reflected wave B reflected at the other end of the test material 2 is received.
+ and time respectively, and also measure the time T2 from the time when the pulse oscillation circuit 34 emits the pulse signal to the time when the reflected wave T is received, and the time B2 from the time when the reflected wave B is received. Time each person. These timing results T
,,B,.

T2 、Bzは演算回路46へ与えられ、該演算回路4
6では、計時結果T、、T2により計時結果BB2を補
正し、補正後のBl、B2の値に基づき被検材2の残留
応力を算出すると共に、計時結果T、とT2との偏差に
より計時結果B、、B2の有効性を判定する。
T2 and Bz are given to the arithmetic circuit 46, and the arithmetic circuit 4
In step 6, the timing result BB2 is corrected using the timing results T, T2, and the residual stress of the test material 2 is calculated based on the corrected values of Bl and B2. Determine the validity of results B,,B2.

次に本発明の第1の残留応力測定装置において、前記演
算回路46にて行われる計時結果Bl、B2の補正方法
について説明する。残留応力測定における基準温度であ
る所定温度状態の鉄心11において、プローブコイル1
3a、13bによりこれらに対向する夫々の一端面にて
発生し、他端面に向けて伝播する、直交する2方向に偏
波した電磁超音波が他端面にて反射し、■往復するまで
の時間を測定し、これにより鉄心ll内の基準伝播速度
■。I+■0を夫々予め求めておく。被検材2の厚さを
り3、これに対向する方向の鉄心11の厚さをDTとす
ると、前記1往復に要する時間’I’+、Ttは下記(
3)(4)式に示す如く求められる。
Next, a method of correcting the time measurement results B1 and B2 performed by the arithmetic circuit 46 in the first residual stress measuring device of the present invention will be described. In the iron core 11 at a predetermined temperature, which is the reference temperature in residual stress measurement, the probe coil 1
3a and 13b, electromagnetic ultrasonic waves polarized in two orthogonal directions that are generated at one end face facing these and propagate toward the other end face are reflected at the other end face, and ■ Time it takes for it to travel back and forth. Measure the reference propagation velocity in the iron core II. Each of I+■0 is determined in advance. Assuming that the thickness of the material 2 to be inspected is 3 and the thickness of the iron core 11 in the opposite direction is DT, the time 'I'+, Tt required for one round trip is as follows (
3) It is obtained as shown in equation (4).

T+ =Dr / (V。、+に−C)  ・・・(3
)Tz −Dr / (Voz+に−C)  ・・・(
4)但し、K:鉄心温度の基準温度差からの変化量によ
る伝播速度の変化率 C:鉄心温度の基準温度差からの変化量(31,(41
式においてKCは基準伝播速度V 61.  V 6 
zに対する鉄心温度に起因する伝播速度の変化量である
。この伝播速度の変化量KCを前記(3)、 (41式
の平均をとることにより下記(5)式の如く求める。
T+ = Dr / (V., + to -C) ... (3
) Tz -Dr / (-C to Voz+) ...(
4) However, K: The rate of change in propagation velocity due to the amount of change in core temperature from the reference temperature difference C: The amount of change in iron core temperature from the reference temperature difference (31, (41
In the formula, KC is the standard propagation velocity V 61. V6
This is the amount of change in propagation velocity due to core temperature with respect to z. The amount of change KC in the propagation velocity is determined by the following equation (5) by taking the average of equations (3) and (41).

伝播速度■。It  VOZとにより鉄心11内の伝播
速度はK C/ Vow、  K C/ Vozの比率
にて変化することがわかる。このKC/V。It  K
C/Vozを用いて下記+61. (7)式の如(被検
材2中の温度状態に起因する電磁超音波の伝播速度の変
化を補償することにより計時結果B、、B2を補正し、
計時結果補正値Bl  、Bz’を得る。
Propagation speed■. It can be seen that the propagation velocity within the iron core 11 changes at the ratio of K C/Vow and K C/Voz. This KC/V. It K
+61. below using C/Voz. (7) (correcting the timing results B, B2 by compensating for changes in the propagation velocity of electromagnetic ultrasound caused by the temperature state in the test material 2,
Time measurement result correction values Bl and Bz' are obtained.

B+’ =B+  (1+KC/Vow) ・(6)B
z’ =Bz  (1+KC/V。2)・・・(7)ま
た、本発明に係る第2の残留応力測定装置において前記
計時結果B+、Bzの有効性を判断する方法について説
明する。前記基準温度において、予め鉄心11内の直交
する2方向の電磁超音波の伝播時間差TI  T!−Δ
T0を測定しておき、このΔToと実際の計時結果の伝
播時間差ΔTとがΔTo−ΔT<L(Lは定数)の条件
を満たすか否かを判断し、この条件が満たされない場合
は、補正結果Bl  + 82′が計器の精度不良に起
因する異常値であり、有効ではないと認識し、被検材2
内の伝播時間差B、’−B、=ΔBより前記伝播時間差
ΔTのその基準値ΔT、に対する偏差(ΔT0−八T)
へ減じ、被検材2内の伝播時間差ΔBをΔB−(ΔT0
−ΔT)に補正し、残留応力を計算する。このようにす
れば、経年変化による計器精度の悪化に起因する異常値
が計時結果より排除される。
B+' =B+ (1+KC/Vow) ・(6)B
z' = Bz (1+KC/V.2) (7) Also, a method for determining the validity of the time measurement results B+ and Bz in the second residual stress measuring device according to the present invention will be explained. At the reference temperature, the propagation time difference of electromagnetic ultrasonic waves in two orthogonal directions within the iron core 11 is determined in advance TIT! −Δ
Measure T0, and judge whether this ΔTo and the propagation time difference ΔT of the actual timing result satisfy the condition of ΔTo - ΔT<L (L is a constant). If this condition is not satisfied, make a correction. Recognizing that the result Bl + 82' is an abnormal value due to poor accuracy of the meter and not valid, we decided to test material 2.
From the propagation time difference B, '-B, = ΔB, the deviation of the propagation time difference ΔT from its reference value ΔT (ΔT0-8T)
, and the propagation time difference ΔB in the test material 2 is ΔB−(ΔT0
−ΔT) and calculate the residual stress. In this way, abnormal values caused by deterioration of instrument accuracy due to aging are eliminated from the time measurement results.

このようにして求められた計時結果Bl、B2を用い、
下記(8)式によって残留応力の応力値を算出する。
Using the time measurement results Bl and B2 obtained in this way,
The stress value of the residual stress is calculated using the following equation (8).

そして演算回路46では前記応力値の算出結果を出力す
ると共に、計時結果が異常である場合は異常データであ
ることを出力する。
The arithmetic circuit 46 outputs the calculation result of the stress value, and also outputs abnormal data if the time measurement result is abnormal.

〔効果〕〔effect〕

以上詳述した如く本発明に係る残留応力測定装置におい
ては、磁石側に発生する電磁超音波が磁石中の所定距離
を伝播するに要する伝播時間を計測し、この計測結果に
より被検材中の電磁超音波の伝播時間計測値を補正する
と共に、該伝播時間計測値の有効性を判別するため、被
検材の温度及び計器精度に影響を受けずに残留応力を精
度良く測定することができる等本発明は優れた効果を奏
する。
As detailed above, in the residual stress measuring device according to the present invention, the propagation time required for the electromagnetic ultrasonic waves generated on the magnet side to propagate a predetermined distance in the magnet is measured, and the measurement results are used to measure the propagation time of the electromagnetic ultrasonic waves generated on the magnet side. In addition to correcting the propagation time measurement value of electromagnetic ultrasonic waves, the validity of the propagation time measurement value is determined, so residual stress can be measured with high accuracy without being affected by the temperature of the test material and the accuracy of the instrument. The present invention exhibits excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る残留応力測定装置の全体の構成を
示すブロック図、第2図は電磁超音波の受信波形を示す
波形図である。 1・・・電磁石 2・・・被検材 13a、 13b・
・・プローブコイル 45・・・計時装置 46・・・
演算回路・・・(8)
FIG. 1 is a block diagram showing the overall configuration of the residual stress measuring device according to the present invention, and FIG. 2 is a waveform diagram showing the received waveform of electromagnetic ultrasonic waves. 1... Electromagnet 2... Test material 13a, 13b・
... Probe coil 45 ... Timing device 46 ...
Arithmetic circuit...(8)

Claims (1)

【特許請求の範囲】 1、被検材に対して磁石及びプローブコイルを対向配置
し、磁石及びプローブコイルに通電することにより直交
する2方向に偏波した電磁超音波を被検材に発生させ、
これらの電磁超音波が被検材中の所定距離を伝播するに
要する伝播時間の差を計測することにより被検材の残留
応力を測定する残留応力測定装置において、 前記電磁超音波の夫々が該磁石中の所定距 離を伝播するに要する伝播時間を計測する手段と、 該手段の計測結果に基づき前記被検材中の 伝播時間の計測値の補正を行う手段とを具備することを
特徴とする残留応力測定装置。 2、前記計測結果に基づき前記伝播時間の計測値の有効
性を判断することを特徴とする請求項1記載の残留応力
測定装置。
[Claims] 1. A magnet and a probe coil are arranged opposite to the material to be inspected, and electromagnetic ultrasonic waves polarized in two orthogonal directions are generated in the material to be inspected by energizing the magnet and the probe coil. ,
In a residual stress measurement device that measures the residual stress of a test material by measuring the difference in propagation time required for these electromagnetic ultrasound waves to propagate a predetermined distance in the test material, It is characterized by comprising means for measuring the propagation time required for propagation over a predetermined distance in the magnet, and means for correcting the measured value of the propagation time in the test material based on the measurement result of the means. Residual stress measuring device. 2. The residual stress measuring device according to claim 1, wherein the validity of the measured value of the propagation time is determined based on the measurement result.
JP1071018A 1989-03-22 1989-03-22 Apparatus for measuring residual stress Pending JPH02248824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1071018A JPH02248824A (en) 1989-03-22 1989-03-22 Apparatus for measuring residual stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1071018A JPH02248824A (en) 1989-03-22 1989-03-22 Apparatus for measuring residual stress

Publications (1)

Publication Number Publication Date
JPH02248824A true JPH02248824A (en) 1990-10-04

Family

ID=13448357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1071018A Pending JPH02248824A (en) 1989-03-22 1989-03-22 Apparatus for measuring residual stress

Country Status (1)

Country Link
JP (1) JPH02248824A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499540A (en) * 1994-02-15 1996-03-19 The Babcock & Wilcox Company Electromagnetic acoustic transducer for bolt tension and load measurement
US5675087A (en) * 1994-02-15 1997-10-07 The Babcock & Wilcox Company Fastener characterization with an electromagnetic acoustic transducer
JP2016513264A (en) * 2013-02-28 2016-05-12 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツングAreva GmbH Method for detecting time-varying thermomechanical stresses and / or stress gradients through the wall thickness of metal objects

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499540A (en) * 1994-02-15 1996-03-19 The Babcock & Wilcox Company Electromagnetic acoustic transducer for bolt tension and load measurement
US5675087A (en) * 1994-02-15 1997-10-07 The Babcock & Wilcox Company Fastener characterization with an electromagnetic acoustic transducer
JP2016513264A (en) * 2013-02-28 2016-05-12 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツングAreva GmbH Method for detecting time-varying thermomechanical stresses and / or stress gradients through the wall thickness of metal objects

Similar Documents

Publication Publication Date Title
JPH0350285B2 (en)
CN112710417B (en) Plane stress measurement system and method for unknown thickness of test piece
JPS6156450B2 (en)
JP3177700B2 (en) Measuring device using magnetostrictive wire
JPH02248824A (en) Apparatus for measuring residual stress
JP2009025093A (en) Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave
JPH11326286A (en) Electromagnetic ultrasonic flaw detection apparatus and method using magnetic strain effect
JPH02223834A (en) Probe for stress measurement
JPH02183117A (en) Displacement detector
CN219608164U (en) Signal processing system for magnetostrictive level meter
JPH1038862A (en) Method and device for iron loss value evaluation
JPH03167418A (en) Clad-thickness measuring apparatus
JPS58179305A (en) Electromagnetic ultrasonic measuring device
JPH07286916A (en) Method for measuring residual stress
JPS6027361B2 (en) How to measure the thickness of conductive materials
JPH038688B2 (en)
JPS6256857A (en) Electromagnetic ultrasonic wave transducer for transverse wave using high frequency magnetic core
JPS5892821A (en) Ultrasonic flow meter
JPH07174735A (en) Correcting method for sensitivity of electromagnetic equipment angle-beam ultrasonic flaw detection
JP2001153639A (en) Length measuring device using magnetostriction line
CN116448217A (en) Signal processing system for magnetostrictive level meter
JPS60205358A (en) Measuring method of anisotropy
JPH04134230A (en) Measurement of and measuring device for bolt axial
JPH07174736A (en) Correcting method for angle of propagation of ultrasonic wave of electromagnetic equipment angle-beam ultrasonic flaw detection
JP2000258259A (en) Strain detector