JP2009025093A - Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave - Google Patents

Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave Download PDF

Info

Publication number
JP2009025093A
JP2009025093A JP2007187143A JP2007187143A JP2009025093A JP 2009025093 A JP2009025093 A JP 2009025093A JP 2007187143 A JP2007187143 A JP 2007187143A JP 2007187143 A JP2007187143 A JP 2007187143A JP 2009025093 A JP2009025093 A JP 2009025093A
Authority
JP
Japan
Prior art keywords
electromagnetic ultrasonic
plate thickness
stress
wave
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007187143A
Other languages
Japanese (ja)
Inventor
Kinya Mitani
欣也 三谷
Yoshiharu Nakayama
吉晴 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichizo Tech Inc
Original Assignee
Nichizo Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichizo Tech Inc filed Critical Nichizo Tech Inc
Priority to JP2007187143A priority Critical patent/JP2009025093A/en
Publication of JP2009025093A publication Critical patent/JP2009025093A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic ultrasonic measuring device capable of measuring a material thickness and a stress inexpensively in a short time. <P>SOLUTION: An ultrasonic wave is generated on the surface of a measuring object plate. In this case, sound velocity of a transversal wave or a longitudinal wave is assumed (S11). The waveform of a received resonance spectrum is calculated (S12), and, first of all, the plate thickness is calculated (S13). Then, the sound velocity is calculated based on the plate thickness (S14). Acoustic double refraction B or a sound velocity ratio R is determined based on the calculated sound velocity. The stress is calculated based on the determined acoustic double refraction B or sound velocity ratio R (S15). Thereafter, the determined plate thickness and stress are displayed on a display part (S16). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、電磁超音波測定装置および電磁超音波を用いた板厚および応力の測定方法に関し、特に、電磁超音波共鳴法を用いて鋼構造物の板厚および応力を測定可能な電磁超音波測定測定装置および電磁超音波を用いた板厚および応力の測定方法に関する。   The present invention relates to an electromagnetic ultrasonic measuring apparatus and a method for measuring plate thickness and stress using electromagnetic ultrasonic waves, and in particular, an electromagnetic ultrasonic wave capable of measuring the plate thickness and stress of a steel structure using an electromagnetic ultrasonic resonance method. The present invention relates to a measuring and measuring apparatus and a method for measuring plate thickness and stress using electromagnetic ultrasonic waves.

管の曲げ応力測定を電磁超音波で行う方法が、たとえば、特開平9−280969号公報(特許文献1)に記載されている。   A method for measuring the bending stress of a tube with electromagnetic ultrasonic waves is described in, for example, Japanese Patent Laid-Open No. 9-280969 (Patent Document 1).

特許文献1によれば、管周方向に走査可能な電磁超音波ユニットによって管軸方向に振動する第1横波と管周方向に振動する第2横波を励起し、第1横波と第2横波の管体伝播音速を共鳴法を利用して算出し、第1横波と第2横波の管体伝播音速差の管周方向全域にわたる分布から管にかかる曲げ応力を評価している。
特開平9−280969号公報(要約)
According to Patent Document 1, a first transverse wave that vibrates in the tube axis direction and a second transverse wave that vibrates in the tube circumferential direction are excited by an electromagnetic ultrasonic unit that can scan in the tube circumferential direction, and the first transverse wave and the second transverse wave are excited. The pipe propagation sound speed is calculated using a resonance method, and the bending stress applied to the pipe is evaluated from the distribution of the tube propagation sound speed difference between the first transverse wave and the second transverse wave over the entire region in the pipe circumferential direction.
JP-A-9-280969 (summary)

従来の、超音波を用いた管の応力測定は上記のように行われていた。また板厚の測定は、たとえば、超音波厚さ計などを用いて測定していた。このように、従来は、鋼構造物における応力測定や厚さ測定は、それぞれ個別に行われていた。そのため、コストがかかるとともに、測定に時間がかかるという問題があった。   Conventional tube stress measurement using ultrasonic waves has been performed as described above. The plate thickness was measured using, for example, an ultrasonic thickness meter. Thus, conventionally, stress measurement and thickness measurement in a steel structure have been performed individually. For this reason, there is a problem that the cost is high and the measurement takes time.

この発明は、上記のような問題点に鑑みてなされたもので、安価に短時間で材料の厚さおよび応力測定のできる、電磁超音波測定装置および電磁超音波を用いた板厚および応力の測定方法を提供することを目的とする。   The present invention has been made in view of the above problems, and can measure the thickness and stress of materials at a low cost in a short time. An object is to provide a measurement method.

この発明にかかる、電磁超音波測定装置は、材料の板厚と材料にかかる応力とを、電磁超音波を用いて同時に測定する。   The electromagnetic ultrasonic measuring apparatus according to the present invention simultaneously measures the thickness of the material and the stress applied to the material using electromagnetic ultrasonic waves.

好ましくは、電磁超音波測定装置は、電磁超音波の速度値を仮定して板厚を測定する板厚測定手段と、板厚測定手段で得られた板厚値を用いて材料内の音速を求める音速検出手段と、音速検出手段の求めた音速から、材料にかかる応力を測定する応力測定手段とを含む。   Preferably, the electromagnetic ultrasonic measurement device is configured to measure a plate thickness on the assumption of a velocity value of the electromagnetic ultrasonic wave, and a sound velocity in the material using the plate thickness value obtained by the plate thickness measurement unit. A sound speed detecting means to be obtained; and a stress measuring means for measuring a stress applied to the material from the sound speed obtained by the sound speed detecting means.

さらに好ましくは、電磁超音波は横波または縦波を含み、音速検出手段は、電磁超音波の横波または縦波を検出するそれぞれのセンサを含む。   More preferably, the electromagnetic ultrasonic wave includes a transverse wave or a longitudinal wave, and the sound velocity detecting means includes respective sensors for detecting the transverse wave or the longitudinal wave of the electromagnetic ultrasonic wave.

縦波を検出する縦波検出センサは、相互に分離された送信用センサと受信用センサとを含むのが好ましい。   The longitudinal wave detection sensor for detecting longitudinal waves preferably includes a transmission sensor and a reception sensor which are separated from each other.

また、送信用センサは、第1極性を有する磁石と、第1極性を有する磁石の周囲に巻き付けられたコイルと、コイルの外部で第1極性の磁石を挟むように設けられた一対の第2極性の磁石とを含んでもよい。   The transmitting sensor includes a pair of second magnets provided so as to sandwich a magnet having the first polarity, a coil wound around the magnet having the first polarity, and the magnet having the first polarity outside the coil. And a polar magnet.

また、受信用センサは、第1極性を有する磁石と、第1極性を有する磁石の周囲に巻き付けられたコイルとを含むのが好ましい。   The receiving sensor preferably includes a magnet having a first polarity and a coil wound around the magnet having the first polarity.

この発明の他の局面においては、板厚および応力の測定方法は、材料の板厚と材料にかかる応力とを、電磁超音波を用いて同時に測定することを特徴とする。   In another aspect of the present invention, a method for measuring plate thickness and stress is characterized in that the plate thickness of a material and the stress applied to the material are simultaneously measured using electromagnetic ultrasonic waves.

好ましくは、電磁超音波の速度値を仮定して板厚を測定するステップと、板厚測定で得られた板厚値を用いて材料内の音速を求めるステップと、求めた音速から、材料にかかる応力を測定するステップとを含む。   Preferably, the step of measuring the plate thickness on the assumption of the velocity value of the electromagnetic ultrasonic wave, the step of determining the sound velocity in the material using the plate thickness value obtained by the plate thickness measurement, and the obtained sound velocity to the material Measuring such stress.

さらに好ましくは、電磁超音波は横波と縦波とを含み、電磁超音波の横波および縦波をそれぞれ検出するステップを含む。   More preferably, the electromagnetic ultrasonic wave includes a transverse wave and a longitudinal wave, and includes a step of detecting the transverse wave and the longitudinal wave of the electromagnetic ultrasonic wave, respectively.

この発明においては、材料の板厚と材料にかかる応力とを、電磁超音波を用いて同時に測定する。したがって、板厚測定用の測定装置と応力測定用の装置とを個別に用意する必要はない。   In the present invention, the plate thickness of the material and the stress applied to the material are simultaneously measured using electromagnetic ultrasonic waves. Therefore, it is not necessary to separately prepare a measuring device for measuring the plate thickness and a device for measuring the stress.

その結果、安価に短時間で材料の厚さおよび応力測定のできる電磁超音波測定装置および電磁超音波を用いた測定方法を提供することができる。   As a result, it is possible to provide an electromagnetic ultrasonic measuring apparatus and a measuring method using electromagnetic ultrasonic waves that can measure the thickness and stress of the material at a low cost in a short time.

(1)電磁超音波測定装置の構成
以下、図面を参照して、この発明の一実施の形態について説明する。図1は、この発明の一実施の形態にかかる電磁超音波測定装置の要部を示すブロック図である。電磁超音波測定装置10は、電磁超音波共鳴法を用いて測定を行う。この電磁超音波共鳴法は、板厚方向に十分な波数を持つバースト波を励起し、超音波位相を刻々と変化させることで励起バースト波と反射波の共鳴状態を誘起させる。ここで使用する超音波としては、横波でも縦波でもよいが、まず、横波を使用する場合について説明する。
(1) Configuration of Electromagnetic Ultrasonic Measuring Device Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a main part of an electromagnetic ultrasonic measurement apparatus according to an embodiment of the present invention. The electromagnetic ultrasonic measurement device 10 performs measurement using an electromagnetic ultrasonic resonance method. In this electromagnetic ultrasonic resonance method, a burst wave having a sufficient wave number in the thickness direction is excited, and the resonance state of the excited burst wave and the reflected wave is induced by changing the ultrasonic phase every moment. The ultrasonic wave used here may be a transverse wave or a longitudinal wave. First, a case where a transverse wave is used will be described.

図1を参照して、電磁超音波測定装置10は、測定装置本体11と、測定装置本体11に接続された横波用電磁超音波センサ20とを含む。測定装置本体11は、電磁超音波センサ20に接続されたダイプレクサ12と、ダイプレクサ12で受信した電磁超音波センサ20からの信号を増幅する受信用の増幅器13と、増幅器13で増幅された信号のスペクトルを演算するスペクトル演算処理部14と、スペクトル演算処理部14での演算結果をデジタル信号に変換するA/D変換器15と、測定した板厚、および後に説明する、応力を演算する板厚および応力演算処理部16と、ディスプレイのような表示部19とを含む。   Referring to FIG. 1, an electromagnetic ultrasonic measurement device 10 includes a measurement device main body 11 and a transverse wave electromagnetic ultrasonic sensor 20 connected to the measurement device main body 11. The measuring apparatus body 11 includes a diplexer 12 connected to the electromagnetic ultrasonic sensor 20, a receiving amplifier 13 that amplifies a signal from the electromagnetic ultrasonic sensor 20 received by the diplexer 12, and a signal amplified by the amplifier 13. A spectrum calculation processing unit 14 that calculates a spectrum, an A / D converter 15 that converts a calculation result in the spectrum calculation processing unit 14 into a digital signal, a measured plate thickness, and a plate thickness that calculates stress, which will be described later And a stress calculation processing unit 16 and a display unit 19 such as a display.

測定装置本体11は、さらに、測定用の信号を発生する信号発生器17と、信号発生器17で発生された信号を増幅する増幅器18とを含み、増幅器18で増幅された測定信号がダイプレクサ12を介して電磁超音波センサ20に送られる。なお、板厚および応力演算処理部16はCPUで構成されている。また、ダイプレクサ12は、超音波の送受信信号を分離する装置である。横波用電磁超音波センサ20は、コイルと磁石で構成されている。   The measurement apparatus body 11 further includes a signal generator 17 that generates a measurement signal and an amplifier 18 that amplifies the signal generated by the signal generator 17, and the measurement signal amplified by the amplifier 18 is the diplexer 12. To the electromagnetic ultrasonic sensor 20. The plate thickness and stress calculation processing unit 16 is composed of a CPU. The diplexer 12 is a device that separates ultrasonic transmission / reception signals. The transverse ultrasonic electromagnetic sensor 20 is composed of a coil and a magnet.

次に横波用電磁超音波センサ20の構成について説明する。電磁超音波センサ20はコイルと磁石とで構成されており、それらの組合わせ方により種々のモードの超音波を発生させることが可能である。図2(A)は、一般によく知られた横波垂直伝播型の横波検出センサの模式図である。軟鋼などの磁性材料に対しても容易に横波を送受信させることができる。   Next, the configuration of the transverse electromagnetic ultrasonic sensor 20 will be described. The electromagnetic ultrasonic sensor 20 is composed of a coil and a magnet, and can generate ultrasonic waves of various modes depending on how they are combined. FIG. 2A is a schematic view of a generally known transverse wave vertical propagation type transverse wave detection sensor. Transverse waves can be easily transmitted / received to / from a magnetic material such as mild steel.

一方、縦波に関しては、非磁性体であれば問題なく検出可能であるが、磁性材料に対しては、従来、十分な強度の信号を得ることは困難であるといわれてきた。しかしながら、発明者は、種々の検討により、図2(B)および(C)に示すような、送信用(図2(C))、受信用(図2(B))の縦波センサに分けた二探触子法を用いることにより、軟鋼のような磁性体における十分な受信信号を確認した。各検出センサの磁石とコイルの特性の一例を表1に示す。   On the other hand, longitudinal waves can be detected without problems if they are non-magnetic, but it has been conventionally said that it is difficult to obtain a sufficiently strong signal for magnetic materials. However, the inventor has divided into longitudinal wave sensors for transmission (FIG. 2C) and reception (FIG. 2B) as shown in FIGS. 2B and 2C by various studies. By using the two-probe method, a sufficient received signal in a magnetic material such as mild steel was confirmed. Table 1 shows an example of the magnet and coil characteristics of each detection sensor.

Figure 2009025093
Figure 2009025093

図2(B)および(C)を参照して、送信用縦波センサは、N極の磁石と、N極の磁石の周囲に巻き付けられたコイルと、コイルの外部でN極の磁石を挟むように設けられた一対のS極の磁石を含む。また、受信用縦波センサは、N極の磁石と、N極の磁石の周囲に巻き付けられたコイルとを含む。なお、このN極とS極とは逆にしてもよい。   Referring to FIGS. 2B and 2C, the transmission longitudinal wave sensor sandwiches the N-pole magnet, the coil wound around the N-pole magnet, and the N-pole magnet outside the coil. A pair of south pole magnets provided as described above. The longitudinal wave sensor for reception includes an N-pole magnet and a coil wound around the N-pole magnet. The N pole and S pole may be reversed.

次に、超音波として縦波を使用した場合の、磁性体について測定可能な電磁超音波測定装置について説明する。図3は、超音波として縦波を使用した場合の電磁超音波測定装置10aの構成を示すブロック図であり、横波を使用した場合の図1に対応する。横波を用いた場合と、縦波を用いた場合とで異なるのは電磁超音波センサだけであり、受信部の受信用増幅器13から表示部19までの構成、および、送信部の信号発生器17および増幅器18の構成は図1に示した構成と同じであるため、同一部分に同一参照番号を付して、その説明は省略する。図3に示すように、縦波を用いた場合は、電磁超音波センサとして、送信用センサ21と受信用センサ22とが分離され、送信用センサ21は、増幅器18に接続され、受信用センサ22は受信用増幅器13に接続されている。したがって、縦波を用いた場合は、ダイプレクサは不要である。   Next, an electromagnetic ultrasonic measurement apparatus capable of measuring a magnetic material when longitudinal waves are used as ultrasonic waves will be described. FIG. 3 is a block diagram showing a configuration of the electromagnetic ultrasonic measurement device 10a when a longitudinal wave is used as an ultrasonic wave, and corresponds to FIG. 1 when a transverse wave is used. Only the electromagnetic ultrasonic sensor is different between the case where the transverse wave is used and the case where the longitudinal wave is used. The configuration from the receiving amplifier 13 of the receiving unit to the display unit 19 and the signal generator 17 of the transmitting unit are different. Since the configuration of the amplifier 18 is the same as that shown in FIG. 1, the same reference numerals are given to the same portions, and the description thereof is omitted. As shown in FIG. 3, when a longitudinal wave is used, the transmission sensor 21 and the reception sensor 22 are separated as electromagnetic ultrasonic sensors, and the transmission sensor 21 is connected to the amplifier 18 to receive the reception sensor. 22 is connected to the receiving amplifier 13. Therefore, when a longitudinal wave is used, a diplexer is not necessary.

(2)板厚の測定
次に、板厚の測定方法について説明する。横波を用いた場合も縦波を用いた場合も基本的に同じであるが、ここでは、まず、横波を用いた場合について説明する。図4は図2(A)に示した横波検出センサを用いて、鋼製の板30を測定する状態を示す図である。図4においては、板30の上に電磁超音波センサ20が置かれた状態を示している。ここで、N,Sで示した磁石部分(図中斜線で示した部分)で超音波が発生する。
(2) Measurement of board thickness Next, the measuring method of board thickness is demonstrated. The case where a transverse wave is used and the case where a longitudinal wave is used are basically the same, but here, a case where a transverse wave is used will be described first. FIG. 4 is a diagram showing a state in which the steel plate 30 is measured using the transverse wave detection sensor shown in FIG. FIG. 4 shows a state where the electromagnetic ultrasonic sensor 20 is placed on the plate 30. Here, ultrasonic waves are generated at magnet portions indicated by N and S (portions indicated by hatching in the figure).

具体的な板厚測定方法については、後に説明するが、一般に、電磁超音波共鳴法においては、次式(1)が成り立つ。   A specific plate thickness measurement method will be described later. Generally, in the electromagnetic ultrasonic resonance method, the following equation (1) is established.

=(n×V)/(2×d)……(1)
ここで、fは周波数、Vは音速、dは板厚、n(≧1)は共鳴次数である。共鳴スペクトルのピーク値はスペクトルデータを最小二乗法により近似して算出し、これを共鳴周波数とする。
f n = (n × V) / (2 × d) (1)
Here, f is the frequency, V is the speed of sound, d is the plate thickness, and n (≧ 1) is the resonance order. The peak value of the resonance spectrum is calculated by approximating the spectrum data by the least square method, and this is used as the resonance frequency.

横波を用いた場合は、上記のように横波音速Vを3230m/sとして測定した。この場合の結果の一例を図5に示す。図5は、板厚d=20mmの板30を測定した場合の周波数と振幅との関係を示す図である。   When the shear wave was used, the shear wave velocity V was measured as 3230 m / s as described above. An example of the result in this case is shown in FIG. FIG. 5 is a diagram showing the relationship between frequency and amplitude when a plate 30 having a plate thickness d = 20 mm is measured.

測定材料が一定の板厚を有する場合は、板厚に相当する周波数ごとに共鳴スペクトル41が立っている。このように音速を仮定すれば、板厚は測定可能である。   When the measurement material has a certain plate thickness, a resonance spectrum 41 stands for each frequency corresponding to the plate thickness. Assuming the speed of sound in this way, the plate thickness can be measured.

なお、縦波を用いた場合も基本的に同様である。縦波としては、たとえば、音速として5900m/sと仮定すればよい。   The same applies to the case where longitudinal waves are used. As the longitudinal wave, for example, the sound speed may be assumed to be 5900 m / s.

(3)応力測定
次に応力測定の方法について説明する。ここでは、音弾性法を用いて応力の測定を行う。音弾性法とは、超音波の音速が応力に依存して変化する効果を利用し、音速から応力を評価する方法である。一般に、材料の直交異方性の軸と主応力方向が一致する平面応力状態では、以下の式(2)および(3)が成立する。
(3) Stress measurement Next, a stress measurement method will be described. Here, the stress is measured using the acoustoelastic method. The acoustoelastic method is a method for evaluating the stress from the sound speed by utilizing the effect that the sound speed of the ultrasonic wave changes depending on the stress. In general, the following formulas (2) and (3) are established in a plane stress state in which the principal anisotropy axis of the material coincides with the principal stress direction.

B=(V−V)/((V+V)/2)=B+C(σ―σ)…(2)
R=V/((V+V)/2)=R+C(σ+σ)…(3)
ここで、VおよびVは相互に直交する方向の横波の音速であり、Vは縦波の音速であり、Bは音響複屈折であり、Rは縦波音速と二方向に偏向した横波平均音速との比であり、Bは組織異方性であり、Rは無応力時の音速比であり、C,Cは音弾性定数である。
B = (V 1 −V 2 ) / ((V 1 + V 2 ) / 2) = B 0 + C A1 −σ 2 ) (2)
R = V L / ((V 1 + V 2 ) / 2) = R 0 + C R1 + σ 2 ) (3)
Here, V 1 and V 2 are the speeds of transverse waves in directions orthogonal to each other, VL is the speed of sound of longitudinal waves, B is acoustic birefringence, and R is deflected in two directions with longitudinal wave speeds of sound. It is a ratio to the transverse wave average sound speed, B 0 is a tissue anisotropy, R 0 is a sound speed ratio when no stress is applied, and C A and CR are acoustoelastic constants.

発明者は、図2に示した、横波検出センサ、または、開発した縦波検出センサを用い、音弾性特性の基礎検討として弾性域内での引張試験を行った。単軸引張試験に用いた試験片を図6に示す。試験片の圧延方向の長さは550mmで、幅は108mmであった。材質はSS400で、引張方向は材料の圧延方向とした。なお、単軸引張であるため、式(2)および(3)のσ=0とした。電磁超音波センサ20は試験片中央に配置し、横波検出センサでは、偏向方向が圧延方向と平行な音速V、および垂直な音速Vの2方向を測定した。縦波の場合では、試験片の表裏に縦波検出センサを配置して二探触子法で行った。各音速測定は、無負荷の状態から約30MPaごとに弾性域の範囲で行った。共鳴法の測定条件は、バースト波数を250サイクル、測定周波数を2.0〜4.0MHz、サンプリング数を600とした。 The inventor conducted a tensile test in the elastic region as a basic study of acoustoelastic characteristics using the transverse wave detection sensor or the developed longitudinal wave detection sensor shown in FIG. The test piece used for the uniaxial tensile test is shown in FIG. The length of the test piece in the rolling direction was 550 mm and the width was 108 mm. The material was SS400, and the tensile direction was the rolling direction of the material. In addition, since it is uniaxial tension, it was set as (sigma) 2 = 0 of Formula (2) and (3). The electromagnetic ultrasonic sensor 20 was disposed at the center of the test piece, and the transverse wave detection sensor measured two directions of a sound velocity V 1 whose deflection direction was parallel to the rolling direction and a vertical sound velocity V 2 . In the case of the longitudinal wave, a longitudinal wave detection sensor was arranged on the front and back of the test piece, and the two probe method was used. Each sound velocity measurement was performed in the range of the elastic region about every 30 MPa from an unloaded state. The measurement conditions of the resonance method were a burst wave number of 250 cycles, a measurement frequency of 2.0 to 4.0 MHz, and a sampling number of 600.

(4)引張試験片における応力測定実験結果
引張試験により得られた二方向に偏向した横波の音速測定結果を図7に示す。式(1)において板厚を6.00mmとして算出した。圧延方向に偏向した横波音速V(図中□で表す)は、応力の増加に伴い減少し、反対にV(図中○で表す)は応力の増加に伴い増えている。一方、縦波音速V(図中◇で表す)は、応力に伴い増加傾向にある。各音速値から算出した音響複屈折Bおよび音速比Rを図8に示す。また、これらの回帰曲線より得られた音弾性定数および各初期値を表2に示す。音響複屈折Bおよび音速比Rはともに応力に対して直線的に変化し、傾きは音速比のほうがやや大きくなっていた。音弾性法から求めた測定応力値と公称応力値との比較を図9に示す。図中□は横波を示し、■は縦波を示す。図9に示すように、音弾性法による測定結果は、公称応力とよく合っており、横波だけでなく、縦波においても十分な精度で測定可能であることがわかった。したがって、上記した横波検出センサ、または縦波検出センサを用いることで複屈折法、または、音速比法により各主応力σ、σの差および和を求めることができる。すなわち、複屈折法と音速比法の組合わせにより、鉄鋼材料においても各主応力σ、σを求めることができる。
(4) Results of Stress Measurement Experiments on Tensile Specimens FIG. 7 shows the sound velocity measurement results of transverse waves deflected in two directions obtained by a tensile test. In formula (1), the plate thickness was calculated as 6.00 mm. The shear wave velocity V 1 deflected in the rolling direction (represented by □ in the figure) decreases as the stress increases, and V 2 (represented by ○ in the figure) increases as the stress increases. On the other hand, the longitudinal wave velocity V L (represented by ◇ in the figure) tends to increase with stress. FIG. 8 shows the acoustic birefringence B and the sound speed ratio R calculated from the sound speed values. Table 2 shows acoustoelastic constants and initial values obtained from these regression curves. Both the acoustic birefringence B and the sound speed ratio R changed linearly with respect to the stress, and the inclination of the sound speed ratio was slightly larger. FIG. 9 shows a comparison between the measured stress value obtained from the acoustoelastic method and the nominal stress value. In the figure, □ indicates a transverse wave, and ■ indicates a longitudinal wave. As shown in FIG. 9, the measurement result by the acoustoelastic method is well matched with the nominal stress, and it was found that the measurement can be performed with sufficient accuracy not only in the transverse wave but also in the longitudinal wave. Therefore, the difference and sum of the principal stresses σ 1 and σ 2 can be obtained by the birefringence method or the sound velocity ratio method by using the above-described transverse wave detection sensor or longitudinal wave detection sensor. That is, the principal stresses σ 1 and σ 2 can be obtained even in a steel material by a combination of the birefringence method and the sound velocity ratio method.

Figure 2009025093
Figure 2009025093

(5)板厚と応力の同時測定の検討
これまでの検討結果から、電磁超音波共鳴法を用いて板厚および応力(各主応力)が個別に測定できることがわかった。これらの各測定は、音速または板厚が既知の場合での結果であり、実構造物に適用する際には、両方の測定が必要になる。
(5) Examination of simultaneous measurement of plate thickness and stress From the results of the examination so far, it was found that the plate thickness and stress (each principal stress) can be measured individually using the electromagnetic ultrasonic resonance method. Each of these measurements is a result when the speed of sound or the plate thickness is known, and both measurements are required when applied to an actual structure.

一般の圧電探触子による板厚測定では、キャリブレーションピースを用いて音速を設定し、適切な校正後、板厚測定を行っている。鋼の横波音速を3230m/sとしたときの電磁超音波共鳴法による板厚測定誤差を図10に示す。   In plate thickness measurement using a general piezoelectric probe, the sound speed is set using a calibration piece, and the plate thickness is measured after appropriate calibration. FIG. 10 shows the plate thickness measurement error by the electromagnetic ultrasonic resonance method when the shear wave velocity of steel is 3230 m / s.

図10は横軸に実際の板厚を、縦軸に各データのサンプリング数を変えて測定した板厚をプロットした図である。各点についての拡大図を矢印で示した部分に表示している。拡大図において、○,●は、サンプリング数が100の場合のデータを示し、△,▲,▽,▼はそれぞれ、サンプリング数が200,300の場合のデータを示す。なお、白色と黒色は二方向に偏向した各横波のデータを示す。図10を参照して、たとえば、板厚が20mm未満であれば、全測定点が±0.1mm以内に含まれているが、板厚が20mm以上になると、サンプリング数が多くないと、測定点のほとんどが±0.1mm内に存在しなくなることがわかる。すなわち、板厚が大きくなれば、サンプリング数を多くしないと正確な値が求まらない。   FIG. 10 is a diagram plotting the actual plate thickness on the horizontal axis and the plate thickness measured by changing the number of sampling of each data on the vertical axis. An enlarged view of each point is displayed in the portion indicated by the arrow. In the enlarged view, ◯ and ● indicate data when the sampling number is 100, and Δ, ▲, ▽, and ▼ indicate data when the sampling number is 200 and 300, respectively. White and black indicate data of each transverse wave deflected in two directions. Referring to FIG. 10, for example, if the plate thickness is less than 20 mm, all measurement points are included within ± 0.1 mm, but if the plate thickness is 20 mm or more, the number of samplings is not large. It can be seen that most of the points do not exist within ± 0.1 mm. That is, if the plate thickness is increased, an accurate value cannot be obtained unless the number of samplings is increased.

なお、バースト波数は各板厚に対して十分な波数とした。板厚が大きくなると、上記した式(1)において、dが大きくなるため、fが小さくなる。その結果、共鳴スペクトルの数が増えるため、薄板と同じサンプリング数では各共鳴スペクトル当たりのデータ数が少なくなり、最小二乗法によってピークを検出する際の誤差が大きくなる。したがって、厚板の場合は、上記したように、測定周波数範囲に対して十分なサンプリング数が必要となる。今回の結果では、35mm程度までの厚板に対しては、1MHzの周波数範囲にサンプリング数が200あれば、0.1mm未満の精度を確保することができることがわかった。以上のことから、板厚測定に関しては、高精度な音速は必要とせず、板厚に応じた十分なサンプリング数で測定すれば、横波音速3230m/sで十分な板厚測定精度が得られることを確認できた。 The burst wave number was sufficient for each plate thickness. As the plate thickness increases, d increases in the above-described equation (1), and thus f n decreases. As a result, since the number of resonance spectra increases, the number of data per resonance spectrum decreases with the same number of samplings as the thin plate, and the error in detecting a peak by the least square method increases. Therefore, in the case of a thick plate, as described above, a sufficient number of samplings are required for the measurement frequency range. As a result of this time, it was found that for a thick plate of up to about 35 mm, an accuracy of less than 0.1 mm can be ensured if the sampling number is 200 in the frequency range of 1 MHz. From the above, regarding plate thickness measurement, high-accuracy sound speed is not required, and sufficient thickness measurement accuracy can be obtained at a transverse wave sound velocity of 3230 m / s if measurement is performed with a sufficient number of samplings corresponding to the plate thickness. Was confirmed.

次に、応力測定における板厚の影響を検討する。応力による各音速値の変化は、図7に示したように、0〜240MPaの範囲で5m/s程度である。横波Vにおいても、5/3230=0.15%程度であり、これは、一般の超音波による板厚測定の誤差範囲にすぎない。板厚測定誤差による音速値の変化を確認するために、板厚を実際の値から0.1mm変えたときの応力による音速値の変化を図11、および図12に示す。図11は横波の場合であり、図12は縦波の場合である。 Next, the effect of plate thickness on stress measurement will be examined. As shown in FIG. 7, the change of each sound velocity value due to the stress is about 5 m / s in the range of 0 to 240 MPa. Also in transverse V 2, it is about 5/3230 = 0.15%, which is only the error range of the plate thickness measurement by general ultrasound. In order to confirm the change in the sound speed value due to the plate thickness measurement error, the change in the sound speed value due to the stress when the plate thickness is changed by 0.1 mm from the actual value is shown in FIGS. FIG. 11 shows a case of a transverse wave, and FIG. 12 shows a case of a longitudinal wave.

図11(A)は相互に90度異なる偏向方向における、板厚を変化させた場合の、応力と横波の音速との関係を示す図であり、図11(B)は図11(A)を基に作成した、応力と音響複屈折との関係を示す図である。図11(A)において、□はVに対応し、○はVに対応する。また、図11(A)において、板厚6mmの場合を黒で示している。図11(A)を参照して、板厚が変化すると、各音速の絶対値は変化するものの、横波のそれぞれの偏向方向における傾きは一定であり、かつ、横波の偏向方向における音速差は変化していない。すなわち、図11(B)に示すように、板厚に関係なく各応力における音響複屈折Bが得られることがわかる。したがって、予め測定材料ごとに音弾性特性を把握しておけば、板厚測定の影響を受けずに応力測定は可能であると考えられる。 FIG. 11A is a diagram showing the relationship between the stress and the sound velocity of the transverse wave when the plate thickness is changed in the deflection directions different from each other by 90 degrees, and FIG. 11B shows the relationship between FIG. It is a figure which shows the relationship between stress and acoustic birefringence created based on this. In FIG. 11A, □ corresponds to V 1 and ◯ corresponds to V 2 . In FIG. 11A, the case of a plate thickness of 6 mm is shown in black. Referring to FIG. 11A, when the plate thickness changes, the absolute value of each sound velocity changes, but the slope of the transverse wave in each deflection direction is constant, and the difference in sound velocity in the transverse wave deflection direction changes. Not done. That is, as shown in FIG. 11B, it can be seen that the acoustic birefringence B at each stress is obtained regardless of the plate thickness. Therefore, if the acoustoelastic characteristics are grasped in advance for each measurement material, it is considered that the stress measurement is possible without being affected by the plate thickness measurement.

一方、図12(A)は縦波を用いて板厚を変化させた場合の、応力と音速との関係とを示す図であり、図12(B)は、図12(A)に基づいて作成した、応力と縦波音速と二方向に偏向した横波平均音速との比Rとの関係を示す図である。   On the other hand, FIG. 12 (A) is a diagram showing the relationship between stress and sound velocity when the plate thickness is changed using longitudinal waves, and FIG. 12 (B) is based on FIG. 12 (A). It is a figure which shows the created relationship between the ratio R of the stress, the longitudinal wave sound velocity, and the transverse wave average sound velocity deflected in two directions.

図12を参照して、この場合も、上記と同様に、予め測定材料ごとに音弾性特性を把握しておけば、板厚測定の影響を受けずに音速比法を用いて、応力測定が可能である。   Referring to FIG. 12, in this case as well, if the acoustoelastic characteristics are grasped for each measurement material in advance, stress measurement can be performed using the sound velocity ratio method without being affected by the thickness measurement. Is possible.

以上から、発明者は、電磁超音波測定装置を用いて板厚測定と応力測定とを同時に行うことができるということを思いついた。以下にその手順について説明する。   From the above, the inventor has come up with the idea that plate thickness measurement and stress measurement can be performed simultaneously using an electromagnetic ultrasonic measurement device. The procedure will be described below.

(6)板厚測定と応力測定とを同時に行う方法
図13は、この実施の形態に係る、電磁超音波測定装置10を用いて、板厚および応力測定を行う動作を説明する図であり、具体的には、板厚および応力演算処理部16の行う動作を示すフローチャートである。図13を参照して、まず、信号発生器17で高周波信号を発生させ、それを増幅器18で増幅して、横波の場合はダイプレクサ12を介して電磁超音波センサ20へ、縦波の場合は直接送信用センサを用いて、高周波電流を流し、測定対象板の表面で超音波を発生させ、そこから板30に向けて超音波を伝搬させる。このとき、横波であれば音速を、たとえば、3230m/sと、縦波であれば、たとえば、5900m/s仮定する(ステップS11、以下、ステップを省略する)。
(6) Method for Simultaneously Performing Plate Thickness Measurement and Stress Measurement FIG. 13 is a diagram for explaining the operation of performing plate thickness and stress measurement using the electromagnetic ultrasonic measurement device 10 according to this embodiment. Specifically, it is a flowchart showing an operation performed by the plate thickness and stress calculation processing unit 16. Referring to FIG. 13, first, a signal generator 17 generates a high-frequency signal, which is amplified by an amplifier 18, and in the case of a transverse wave, to the electromagnetic ultrasonic sensor 20 via the diplexer 12, and in the case of a longitudinal wave. Using a direct transmission sensor, a high-frequency current is passed, ultrasonic waves are generated on the surface of the measurement target plate, and ultrasonic waves are propagated toward the plate 30 from there. At this time, the sound speed is assumed to be 3230 m / s, for example, if it is a transverse wave, and 5900 m / s, for example, if it is a longitudinal wave (step S11, hereinafter, steps are omitted).

次に、電磁超音波センサ20(または、受信用センサ)で板30からの反射波を受信し、受信した反射波を増幅器13で増幅し、増幅された反射波をスペクトル演算処理部14で演算して共鳴スペクトルの波形を算出し(S12)、それをA/D変換器15で変換して、板厚および応力演算処理部16で、まず、板厚を算出する(S13)。   Next, a reflected wave from the plate 30 is received by the electromagnetic ultrasonic sensor 20 (or reception sensor), the received reflected wave is amplified by the amplifier 13, and the amplified reflected wave is calculated by the spectrum calculation processing unit 14. Then, the resonance spectrum waveform is calculated (S12), converted by the A / D converter 15, and the plate thickness and stress calculation processing unit 16 first calculates the plate thickness (S13).

ここでの共鳴条件としては、測定周波数の範囲を1〜5MHzとし、バースト波数を250サイクルとした。また、板厚値は、共鳴法に基づく上記式(1)を変形した次式で求める。   As resonance conditions here, the measurement frequency range was 1 to 5 MHz, and the burst wave number was 250 cycles. The plate thickness value is obtained by the following equation obtained by modifying the above equation (1) based on the resonance method.

d=(n×V)/(2×f)
ここで、各変数は上記のとおりである。
d = (n × V) / (2 × f)
Here, each variable is as described above.

また、このとき、上記したように、板厚に応じた十分なサンプリングを行えば、0.1mm未満の精度で板厚が求まる。   At this time, as described above, if sufficient sampling is performed according to the plate thickness, the plate thickness can be obtained with an accuracy of less than 0.1 mm.

次に、式(1)に、算出された板厚と共鳴周波数を入力して、横波、または、縦波の音速を高精度に算出する(S14)。算出された横波音速と式(2)とに基づいて音響複屈折Bを求める。縦波を使用するときには、同様に、音速比Rを求める。音響複屈折B、および、音速比Rが求まれば、図11(B)および図12(B)において矢印で示すように、主応力の差と主応力の和が得られ、部材に生じる各主応力を求めることができる(S15)。その後、求めた板厚および応力を表示部19に表示する(S16)。したがって、板厚および応力演算処理部16は、板厚測定手段、音速検出手段、応力測定手段として機能する。   Next, the calculated plate thickness and resonance frequency are inputted into the equation (1), and the sound velocity of the transverse wave or the longitudinal wave is calculated with high accuracy (S14). The acoustic birefringence B is obtained on the basis of the calculated transverse wave sound velocity and the equation (2). Similarly, when the longitudinal wave is used, the sound speed ratio R is obtained. When the acoustic birefringence B and the sound velocity ratio R are obtained, as shown by arrows in FIGS. 11B and 12B, the difference between the main stresses and the sum of the main stresses can be obtained. The main stress can be obtained (S15). Thereafter, the obtained plate thickness and stress are displayed on the display unit 19 (S16). Therefore, the plate thickness and stress calculation processing unit 16 functions as a plate thickness measuring unit, a sound speed detecting unit, and a stress measuring unit.

以上のように、この実施の形態によれば、一つの電磁超音波測定装置を用いて板厚とその板にかかる応力とを測定可能である。その結果、安価なコストで、しかも、短時間で板厚と応力とを測定可能な装置を提供できる。   As described above, according to this embodiment, it is possible to measure the plate thickness and the stress applied to the plate using a single electromagnetic ultrasonic measurement device. As a result, it is possible to provide an apparatus that can measure the thickness and stress at a low cost and in a short time.

また、ここでは、電磁超音波を用いたため、一般の圧電素子型超音波センサと異なり、接触媒質は必要とせず、効率的かつ容易に高精度な板厚および応力の測定が可能になる。   In addition, since electromagnetic ultrasonic waves are used here, unlike a general piezoelectric element type ultrasonic sensor, a contact medium is not required, and it is possible to efficiently and easily measure a plate thickness and stress with high accuracy.

次に、縦波用受信センサを用いて縦波を検出したデータについて説明する。図14は、縦波検出用のセンサによって得られたデータを示す図であり、図5に示した横波で得られたデータに対応する。(A)は、20mmの板厚を有するアルミニウムにおける検出例であり、(B)、(C)は5.6mmの板厚を有する鋼における検出例である。(B)における図中の点線は、V=5947m/sとして式(1)から算出した5.6mm板厚に相当する縦波スペクトルの周波数を示す。また(C)ではV=3256m/sとして式(1)から算出した5.6mm板厚に相当する横波スペクトルの周波数を示す。   Next, data obtained by detecting a longitudinal wave using a longitudinal wave receiving sensor will be described. FIG. 14 is a diagram showing data obtained by the longitudinal wave detection sensor, and corresponds to the data obtained by the transverse wave shown in FIG. (A) is a detection example in aluminum having a plate thickness of 20 mm, and (B) and (C) are detection examples in steel having a plate thickness of 5.6 mm. The dotted line in the figure in (B) shows the frequency of the longitudinal wave spectrum corresponding to the plate thickness of 5.6 mm calculated from the equation (1) with V = 5947 m / s. (C) shows the frequency of the transverse wave spectrum corresponding to the plate thickness of 5.6 mm calculated from the equation (1) with V = 3256 m / s.

アルミニウム板においては、図2(C)に示したセンサを送受信兼用として測定した場合であり、鋼においては、図2(C)を送信用、図2(B)を受信用として試験片の表裏に各センサを配置して測定した場合の例である。   In the case of an aluminum plate, the sensor shown in FIG. 2C is measured for both transmission and reception. In the case of steel, the front and back sides of the test piece are shown in FIG. 2C for transmission and FIG. 2B for reception. It is an example at the time of arranging and measuring each sensor.

(A)を参照して、アルミニウムであれば、容易に縦波スペクトルが得られているのがわかる。   Referring to (A), it can be seen that a longitudinal wave spectrum is easily obtained with aluminum.

また、鋼の場合においても、(B),(C)に示すように、横波スペクトルが存在しているものの縦波スペクトルは明瞭に得られている。したがって、この実施の形態においては、鋼のような磁性体においても、縦波が検出できていることがわかる。   Also in the case of steel, as shown in (B) and (C), the longitudinal wave spectrum is clearly obtained although the transverse wave spectrum exists. Therefore, in this embodiment, it can be seen that longitudinal waves can be detected even in a magnetic material such as steel.

すなわち、この実施の形態においては、縦波用のセンサとして送信用と受信用とに分けたセンサを開発したため、鋼のような磁性材料に対しても板厚と各主応力とを同時に測定可能となった。   In other words, in this embodiment, a sensor for transmission and reception was developed as a longitudinal wave sensor, so the plate thickness and each principal stress can be measured simultaneously even for magnetic materials such as steel. It became.

なお、上記実施の形態においては、板厚を測定した後で応力を測定する場合について説明したが、これに限らず、板厚を測定しながら、応力を測定するようにしてもよい。   In the above-described embodiment, the case where the stress is measured after measuring the plate thickness is described. However, the present invention is not limited to this, and the stress may be measured while measuring the plate thickness.

また、上記実施の形態においては、縦波を用いた場合として、磁性材料を用いた場合について説明したが、これに限らず、非磁性体であれば、縦波を検出する場合も、1つの電磁超音波センサを用いて可能である。   In the above embodiment, the case where a magnetic material is used has been described as the case where a longitudinal wave is used. However, the present invention is not limited to this. This is possible using an electromagnetic ultrasonic sensor.

また、上記実施の形態においては、電磁超音波共鳴法を用いて板厚の測定を行ったが、これに限らず、単一の探触子で送受信を行うものであれば、シングアラウンド法、パルスオーバーラップ法等の任意の方法を用いて行ってもよい。   Further, in the above embodiment, the thickness of the plate was measured using the electromagnetic ultrasonic resonance method. However, the present invention is not limited to this, and if a single probe is used for transmission and reception, the single-around method, An arbitrary method such as a pulse overlap method may be used.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示された実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明の一実施の形態にかかる横波を用いた電磁超音波測定装置の要部を示すブロック図である。It is a block diagram which shows the principal part of the electromagnetic ultrasonic measuring apparatus using the transverse wave concerning one embodiment of this invention. 電磁超音波センサの平面図である。It is a top view of an electromagnetic ultrasonic sensor. 縦波を用いた電磁超音波測定装置の要部を示すブロック図である。It is a block diagram which shows the principal part of the electromagnetic ultrasonic measurement apparatus using a longitudinal wave. 電磁超音波センサを用いて、鋼製の板を測定する状態を示す図である。It is a figure which shows the state which measures a steel board using an electromagnetic ultrasonic sensor. 健全な板を測定した場合の共鳴スペクトルを示す図である。It is a figure which shows the resonance spectrum at the time of measuring a healthy board. 引張試験片を示す平面図である。It is a top view which shows a tensile test piece. 引張試験により得られた二方向に偏向した横波の音速測定結果を示す図である。It is a figure which shows the sound velocity measurement result of the transverse wave deflected in two directions obtained by the tensile test. 音響複屈折Bおよび音速比Rを示す図である。It is a figure which shows the acoustic birefringence B and the sound speed ratio R. 音弾性法から求めた測定応力値と公称応力値との比較を示す図である。It is a figure which shows the comparison with the measured stress value calculated | required from the acoustoelastic method, and a nominal stress value. 電磁超音波共鳴法による板厚測定誤差を示す図である。It is a figure which shows the plate | board thickness measurement error by an electromagnetic ultrasonic resonance method. 板厚を変化させた場合の、応力と横波の音速との関係、および、応力と音響複屈折との関係を示す図である。It is a figure which shows the relationship between a stress and the sound velocity of a transverse wave, and the relationship between a stress and acoustic birefringence when changing plate | board thickness. 縦波を用いて板厚を変化させた場合の、応力と音速との関係、および、応力と縦波音速と二方向に偏向した横波平均音速との比Rとの関係を示す図である。It is a figure which shows the relationship between stress and the speed of sound at the time of changing plate | board thickness using a longitudinal wave, and ratio R of the transverse wave average sound speed deflected to a stress, a longitudinal wave sound speed, and two directions. 電磁超音波測定装置を用いて板厚および応力測定を行う動作を説明するフローチャートである。It is a flowchart explaining the operation | movement which performs plate | board thickness and stress measurement using an electromagnetic ultrasonic measurement apparatus. 縦波検出用のセンサによって得られたデータを示す図である。It is a figure which shows the data obtained by the sensor for longitudinal wave detection.

符号の説明Explanation of symbols

10 電磁超音波測定装置、11 測定装置本体、12 ダイプレクサ、13 増幅器、14 スペクトル演算処理部、15 A/D変換器、16 板厚および応力演算処理部、17 信号発生器、18 増幅器、19 表示部、20 電磁超音波センサ、21 送信用センサ、22 受信用センサ、30 板。   DESCRIPTION OF SYMBOLS 10 Electromagnetic ultrasonic measurement apparatus, 11 Measurement apparatus main body, 12 Diplexer, 13 Amplifier, 14 Spectrum calculation processing part, 15 A / D converter, 16 Plate thickness and stress calculation processing part, 17 Signal generator, 18 Amplifier, 19 Display Part, 20 electromagnetic ultrasonic sensor, 21 transmitting sensor, 22 receiving sensor, 30 plate.

Claims (9)

材料の板厚と前記材料にかかる応力とを、電磁超音波を用いて同時に測定することを特徴とする、電磁超音波測定装置。 An electromagnetic ultrasonic measurement apparatus that simultaneously measures a plate thickness of a material and stress applied to the material using electromagnetic ultrasonic waves. 前記電磁超音波の速度値を仮定して板厚を測定する板厚測定手段と、
前記板厚測定手段で得られた板厚値を用いて前記材料内の音速を求める音速検出手段と、
前記音速検出手段の求めた音速から、前記材料にかかる応力を測定する応力測定手段とを含む、請求項1に記載の電磁超音波測定装置。
Plate thickness measuring means for measuring the plate thickness assuming the velocity value of the electromagnetic ultrasonic wave,
A sound velocity detecting means for obtaining a sound velocity in the material using a plate thickness value obtained by the plate thickness measuring means;
The electromagnetic ultrasonic measurement apparatus according to claim 1, further comprising: a stress measurement unit that measures a stress applied to the material from a sound speed obtained by the sound speed detection unit.
前記電磁超音波は横波または縦波を含み、
前記音速検出手段は、前記電磁超音波の横波または縦波を検出するセンサを含む、請求項2に記載の電磁超音波測定装置。
The electromagnetic ultrasonic wave includes a transverse wave or a longitudinal wave,
The electromagnetic ultrasonic measurement device according to claim 2, wherein the sound velocity detection unit includes a sensor that detects a transverse wave or a longitudinal wave of the electromagnetic ultrasonic wave.
前記縦波を検出する縦波検出センサは、相互に分離された送信用センサと受信用センサとを含む、請求項3に記載の電磁超音波測定装置。 The electromagnetic ultrasonic measurement apparatus according to claim 3, wherein the longitudinal wave detection sensor that detects the longitudinal wave includes a transmission sensor and a reception sensor that are separated from each other. 前記送信用センサは、第1極性を有する磁石と、前記第1極性を有する磁石の周囲に巻き付けられたコイルと、前記コイルの外部で前記第1極性の磁石を挟むように設けられた一対の第2極性の磁石とを含む、請求項4に記載の電磁超音波測定装置。 The transmitting sensor includes a pair of magnets having a first polarity, a coil wound around the magnet having the first polarity, and a first polarity magnet sandwiched outside the coil. The electromagnetic ultrasonic measurement device according to claim 4, comprising a second polarity magnet. 前記受信用センサは、前記第1極性を有する磁石と、前記第1極性を有する磁石の周囲に巻き付けられたコイルとを含む、請求項5に記載の電磁超音波測定装置。 The electromagnetic ultrasonic measurement apparatus according to claim 5, wherein the reception sensor includes a magnet having the first polarity and a coil wound around the magnet having the first polarity. 材料の板厚と材料にかかる応力とを、電磁超音波を用いて同時に測定することを特徴とする、電磁超音波を用いた板厚および応力の測定方法。 A method for measuring a plate thickness and stress using electromagnetic ultrasonic waves, wherein the plate thickness of the material and stress applied to the material are simultaneously measured using electromagnetic ultrasonic waves. 電磁超音波の速度値を仮定して材料の板厚を測定するステップと、
板厚測定で得られた板厚値を用いて材料内の音速を求めるステップと、
求めた音速から、材料にかかる応力を測定するステップとを含む、請求項7に記載の電磁超音波を用いた板厚および応力の測定方法。
Measuring the thickness of the material assuming a velocity value of electromagnetic ultrasonic waves;
Obtaining the sound velocity in the material using the plate thickness value obtained by the plate thickness measurement;
The method of measuring a plate thickness and stress using electromagnetic ultrasonic waves according to claim 7, comprising the step of measuring a stress applied to the material from the obtained sound speed.
電磁超音波は横波または縦波を含み、
電磁超音波の横波または縦波をそれぞれ検出するステップを含む、請求項7または8に記載の電磁超音波を用いた板厚および応力の測定方法。
Electromagnetic ultrasound includes transverse or longitudinal waves,
The plate thickness and stress measurement method using electromagnetic ultrasonic waves according to claim 7 or 8, comprising a step of detecting transverse waves or longitudinal waves of the electromagnetic ultrasonic waves.
JP2007187143A 2007-07-18 2007-07-18 Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave Pending JP2009025093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187143A JP2009025093A (en) 2007-07-18 2007-07-18 Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187143A JP2009025093A (en) 2007-07-18 2007-07-18 Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave

Publications (1)

Publication Number Publication Date
JP2009025093A true JP2009025093A (en) 2009-02-05

Family

ID=40397039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187143A Pending JP2009025093A (en) 2007-07-18 2007-07-18 Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave

Country Status (1)

Country Link
JP (1) JP2009025093A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249574A (en) * 2009-04-13 2010-11-04 Ricoh Elemex Corp Ultrasonic liquid level indicator
JP2011196953A (en) * 2010-03-23 2011-10-06 Nippon Steel Corp Residual stress calculating device, residual stress measuring device, method of calculating residual stress, method of measuring residual stress and program
GB2529484A (en) * 2014-08-22 2016-02-24 Univ Sheffield Deriving contact stress or contact loadusing ultrasound data
CN111486804A (en) * 2020-06-15 2020-08-04 东莞职业技术学院 Signal processing method and measuring method for precision part thickness measurement
CN113720922A (en) * 2021-08-12 2021-11-30 浙江省电力锅炉压力容器检验所有限公司 Ultrasonic detection method and system for bending stress of post porcelain insulator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497447A (en) * 1978-01-18 1979-08-01 Nippon Steel Corp Thickness measuring method of conductive material
JPS54115636A (en) * 1978-02-28 1979-09-08 Nippon Steel Corp Measuring of thickness of unconsolidated portion of continuous casted segment
JPS62191758A (en) * 1986-02-18 1987-08-22 Sumitomo Metal Ind Ltd Flaw detector
JPH02223834A (en) * 1989-02-23 1990-09-06 Sumitomo Metal Ind Ltd Probe for stress measurement
JPH05288733A (en) * 1992-04-14 1993-11-02 Nippon Steel Corp Electromagnetic ultrasonic transducer
JPH06138098A (en) * 1992-10-29 1994-05-20 Nippon Steel Corp Electromagnetic ultrasonic transducer
JPH0792038A (en) * 1993-09-28 1995-04-07 Hitachi Ltd Method and device for evaluating stress
JPH0961145A (en) * 1995-08-28 1997-03-07 Tokimec Inc Method and apparatus for measurement of thickness or sound velocity
JPH09280969A (en) * 1996-04-12 1997-10-31 Osaka Gas Co Ltd Method and apparatus for measurement of bending stress of pipe
JPH10253605A (en) * 1997-03-10 1998-09-25 Mitsubishi Heavy Ind Ltd Multi-type ultrasonic probe
JP2001343365A (en) * 2000-06-02 2001-12-14 Nkk Corp Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
JP2005106792A (en) * 2003-09-27 2005-04-21 Katsuhiro Kawashima Sonic distribution measuring method inside material
JP2007309794A (en) * 2006-05-18 2007-11-29 Nichizou Tec:Kk Apparatus and method for measuring plate thickness

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497447A (en) * 1978-01-18 1979-08-01 Nippon Steel Corp Thickness measuring method of conductive material
JPS54115636A (en) * 1978-02-28 1979-09-08 Nippon Steel Corp Measuring of thickness of unconsolidated portion of continuous casted segment
JPS62191758A (en) * 1986-02-18 1987-08-22 Sumitomo Metal Ind Ltd Flaw detector
JPH02223834A (en) * 1989-02-23 1990-09-06 Sumitomo Metal Ind Ltd Probe for stress measurement
JPH05288733A (en) * 1992-04-14 1993-11-02 Nippon Steel Corp Electromagnetic ultrasonic transducer
JPH06138098A (en) * 1992-10-29 1994-05-20 Nippon Steel Corp Electromagnetic ultrasonic transducer
JPH0792038A (en) * 1993-09-28 1995-04-07 Hitachi Ltd Method and device for evaluating stress
JPH0961145A (en) * 1995-08-28 1997-03-07 Tokimec Inc Method and apparatus for measurement of thickness or sound velocity
JPH09280969A (en) * 1996-04-12 1997-10-31 Osaka Gas Co Ltd Method and apparatus for measurement of bending stress of pipe
JPH10253605A (en) * 1997-03-10 1998-09-25 Mitsubishi Heavy Ind Ltd Multi-type ultrasonic probe
JP2001343365A (en) * 2000-06-02 2001-12-14 Nkk Corp Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
JP2005106792A (en) * 2003-09-27 2005-04-21 Katsuhiro Kawashima Sonic distribution measuring method inside material
JP2007309794A (en) * 2006-05-18 2007-11-29 Nichizou Tec:Kk Apparatus and method for measuring plate thickness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249574A (en) * 2009-04-13 2010-11-04 Ricoh Elemex Corp Ultrasonic liquid level indicator
JP2011196953A (en) * 2010-03-23 2011-10-06 Nippon Steel Corp Residual stress calculating device, residual stress measuring device, method of calculating residual stress, method of measuring residual stress and program
GB2529484A (en) * 2014-08-22 2016-02-24 Univ Sheffield Deriving contact stress or contact loadusing ultrasound data
CN111486804A (en) * 2020-06-15 2020-08-04 东莞职业技术学院 Signal processing method and measuring method for precision part thickness measurement
CN113720922A (en) * 2021-08-12 2021-11-30 浙江省电力锅炉压力容器检验所有限公司 Ultrasonic detection method and system for bending stress of post porcelain insulator
CN113720922B (en) * 2021-08-12 2024-02-27 浙江省电力锅炉压力容器检验所有限公司 Ultrasonic detection method and system for bending stress of pillar porcelain insulator

Similar Documents

Publication Publication Date Title
Dixon et al. High accuracy non-contact ultrasonic thickness gauging of aluminium sheet using electromagnetic acoustic transducers
JP4938050B2 (en) Ultrasonic diagnostic evaluation system
JP6362533B2 (en) Residual stress evaluation method and residual stress evaluation apparatus
JP5251911B2 (en) Residual stress calculation device, residual stress measurement device, residual stress calculation method, residual stress measurement method, and program
JP6248183B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
JP2009025093A (en) Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave
KR20050102516A (en) Magnetostrictive transducer for generating and sensing elastic ultrasonic waves, and apparatus for structural diagnosis using it
US4497209A (en) Nondestructive testing of stress in a ferromagnetic structural material utilizing magnetically induced velocity change measurements
Xiao et al. Measurement methods of ultrasonic transducer sensitivity
CN111637962B (en) Shear wave attenuation coefficient measuring method and system
JP2006242770A (en) Electromagnetic ultrasonic flaw detection/measurement method and device
CN112244813B (en) Low-field nuclear magnetic resonance elasticity measurement method and system
JP6529853B2 (en) Residual stress evaluation method
JP5059344B2 (en) Plate thickness measuring apparatus and measuring method
EP3835780A1 (en) Electromagnetic ultrasonic double-wave transducer
US7617738B2 (en) Method and apparatus for measuring flow rate of fluid
Zhang et al. A new nondestructive technique for measuring pressure in vessels by surface waves
EP2527826B1 (en) Testing method using guided wave
Loveday et al. Experimental development of electromagnetic acoustic transducers for measuring ultraguided waves
JP7222365B2 (en) SUBJECT THICKNESS MEASURING DEVICE AND THICKNESS MEASURING METHOD
JP5240218B2 (en) Crystal grain size measuring apparatus, method and program
JP2017075850A (en) Ultrasonic inspection method and device
JP3037897B2 (en) Ear ratio measurement method for thin metal plates
JP5630790B2 (en) Method for estimating the rate of thinning
JPH02248824A (en) Apparatus for measuring residual stress

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022