JP3037897B2 - Ear ratio measurement method for thin metal plates - Google Patents

Ear ratio measurement method for thin metal plates

Info

Publication number
JP3037897B2
JP3037897B2 JP8176255A JP17625596A JP3037897B2 JP 3037897 B2 JP3037897 B2 JP 3037897B2 JP 8176255 A JP8176255 A JP 8176255A JP 17625596 A JP17625596 A JP 17625596A JP 3037897 B2 JP3037897 B2 JP 3037897B2
Authority
JP
Japan
Prior art keywords
ear ratio
propagation
propagation time
plate
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8176255A
Other languages
Japanese (ja)
Other versions
JPH1019855A (en
Inventor
岳夫 小川
克也 高岡
紀生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8176255A priority Critical patent/JP3037897B2/en
Publication of JPH1019855A publication Critical patent/JPH1019855A/en
Application granted granted Critical
Publication of JP3037897B2 publication Critical patent/JP3037897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,アルミニウム等,
圧延によって製造される金属薄板の耳率を測定するため
の方法及び装置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to aluminum,
The present invention relates to a method and an apparatus for measuring an ear ratio of a sheet metal manufactured by rolling.

【0002】[0002]

【従来の技術】耳率とは,金属薄板を深絞り加工した際
に生ずる絞りの異方性を表す指標である。従来の上記耳
率測定方法について説明する。 (従来技術1)図11に示すように,円形に切り抜かれ
た金属薄板を所定の径のダイス及びポンチによりカップ
形状の深絞り加工を行う。その際,上記金属薄板の端部
は一定の高さにならず山谷が生じるが,これを「絞りカ
ップ耳」あるいは「耳」と呼ぶ。この耳の程度を定量化
したものが「耳率」であり,次のように算出される。金
属薄板の圧延方向を0゜として,時計回りあるいは反時
計回りに角度をとる。角度θ方向に生ずる耳の高さ(カ
ップ底からの高さ)をhθとすると,耳率E(%)は,
2. Description of the Related Art The ear ratio is an index indicating the anisotropy of drawing generated when a metal sheet is deep drawn. The conventional ear ratio measuring method will be described. (Prior Art 1) As shown in FIG. 11, a cup-shaped deep drawing process is performed on a circularly cut thin metal plate using a die and a punch having a predetermined diameter. At this time, the ends of the metal sheet do not have a fixed height but have peaks and valleys, which are called "squeeze cup ears" or "ears". The quantification of the degree of the ear is the "ear ratio", which is calculated as follows. The angle is set clockwise or counterclockwise with the rolling direction of the metal sheet set to 0 °. Assuming that the height of the ear (height from the cup bottom) generated in the angle θ direction is hθ, the ear ratio E (%) is

【数1】 で与えられる。一般にアルミ圧延板の場合,耳は0°,
90°,180°,270°方向が高くなる場合と,4
5°,135°,225°,315°方向が高くなる場
合の2種類があり,その場合の耳率は,前者がマイナ
ス,後者がプラス(それぞれマイナス耳,プラス耳と呼
ぶ)となる。以上説明した従来技術1は破壊試験による
方法であるが,以下に示す3例は全て非破壊で耳率を測
定する方法である。
(Equation 1) Given by Generally, in the case of a rolled aluminum plate, the ear is 0 °,
When the 90 °, 180 °, and 270 ° directions are higher,
There are two types of cases where the directions of 5 °, 135 °, 225 °, and 315 ° increase, and in this case, the ear ratio is negative for the former and positive for the latter (called the negative ear and the positive ear, respectively). The prior art 1 described above is a method based on a destructive test, but the following three examples are all non-destructive methods for measuring ear rate.

【0003】(従来技術2)これは,特開平7−318
540号公報に提案されている耳率測定方法である。以
下にその基本原理と実施方法について簡単に説明する。
上記のような耳が生ずるのは,圧延板が幾つかの「集合
組織」から構成されているためである。この集合組織と
は,多結晶体である金属組織において,結晶方位が特定
の方向に偏っているかどうかを示す指標である。金属板
を塑性変形させた場合,変形が等方的に進むわけではな
く,結晶方位で決まる変形のしやすい方向に進む。集合
組織がある場合,結晶方位が特定方向に揃っているた
め,滑り方向に偏りが生ずることになり,塑性変形が異
方的に進み,その結果として耳が生ずることになる。集
合組織の種類とその程度が異なれば,滑り方向と滑りや
すさが異なるため,圧延板に含まれる集合組織の種類や
比率の変化が耳率の変化となって現れる。また,圧延材
のように集合組織のある材料は,結晶がランダムに配向
した等方的な結晶粒群と,集合組織で決まる特定の配向
を持つ単結晶粒群との混合体であると考えられる。その
うち,等方的な結晶粒群の材料中では,超音波の伝播速
度はその伝播方向によらず一定である。一方,特定の配
向を持つ単結晶粒群の材料中では,超音波の伝播速度は
その伝播方向によって変化する音速異方性を示す。そこ
で,集合組織の種類や比率の変化を,上記音速異方性に
よる材料中の音速変化を用いて検出することによって耳
率を測定しようとするのがこの従来技術2である。材料
中の音速の測定には,図12に示すような集束型超音波
探触子を用いる。図の様に送信用,受信用の探触子対を
3対使用し,それぞれ圧延板面内の圧延方向,45°方
向,圧延直角方向に伝播する超音波の伝播速度を検出す
る。送信用探触子21a,21b,21cから送信され
たパルス状超音波は,被測定板22中に,表面法線に対
して斜めに入射されて発散し,上記被測定板22の表裏
面間で多重反射しながら伝播する。反射を繰り返した超
音波は上記被測定板22から出射し,受信用探触子23
a,23b,23cで受信される。受信された多重反射
波の中から所定の屈折角の反射波を抽出し,その伝播時
間を測定する。上記集束型超音波探触子は,送信用,受
信用共,焦点を被測定板22の表面に一致させているた
め,送受信点が特定され,上記伝播時間から音速を計算
する際に必要な伝播距離が特定できる。こうして求めら
れた上記3方向の伝播速度から所定の評価値を求め,該
評価値を,予め耳率が既知の標準試料によって作成した
評価値と耳率の対応テーブルに当てはめることによって
耳率を求める。
(Prior art 2) This is disclosed in Japanese Unexamined Patent Publication No. 7-318.
540 discloses an ear ratio measurement method. The basic principle and implementation method will be briefly described below.
The ears described above occur because the rolled plate is composed of several "textures". The texture is an index indicating whether or not the crystal orientation is biased in a specific direction in a polycrystalline metal structure. When a metal plate is plastically deformed, the deformation does not proceed isotropically, but proceeds in a direction that is easily determined by the crystal orientation. When there is a texture, since the crystal orientation is aligned in a specific direction, a bias occurs in the sliding direction, and plastic deformation proceeds anisotropically, resulting in an ear. If the type and the degree of the texture are different, the slip direction and the slipperiness are different, so that a change in the type or ratio of the texture contained in the rolled sheet appears as a change in ear ratio. Materials with texture, such as rolled materials, are considered to be a mixture of isotropic crystal grains with randomly oriented crystals and single crystal grains with a specific orientation determined by texture. Can be Among them, in the material of the isotropic crystal group, the propagation speed of the ultrasonic wave is constant regardless of the propagation direction. On the other hand, in a material of a single crystal grain group having a specific orientation, the propagation speed of the ultrasonic wave shows a sound velocity anisotropy that changes depending on the propagation direction. Therefore, the prior art 2 attempts to measure the ear rate by detecting the change in the type and ratio of the texture using the sound speed change in the material due to the sound speed anisotropy. A focused ultrasonic probe as shown in FIG. 12 is used for measuring the speed of sound in a material. As shown in the figure, three pairs of transmitting and receiving probes are used to detect the propagation speed of the ultrasonic wave propagating in the rolling direction, 45 ° direction, and the direction perpendicular to the rolling direction in the plane of the rolled plate. The pulsed ultrasonic waves transmitted from the transmitting probes 21a, 21b, and 21c enter the plate 22 to be measured obliquely with respect to the surface normal, diverge, and are transmitted between the front and back surfaces of the plate 22 to be measured. The light propagates with multiple reflections. The ultrasonic wave that has been repeatedly reflected is emitted from the plate to be measured 22 and is received by the receiving probe 23.
a, 23b and 23c. A reflected wave having a predetermined refraction angle is extracted from the received multiple reflected waves, and its propagation time is measured. Since the focusing type ultrasonic probe has the same focal point for transmission and reception for the surface of the plate 22 to be measured, transmission / reception points are specified, and necessary for calculating the sound velocity from the propagation time. The propagation distance can be specified. A predetermined evaluation value is determined from the propagation speeds in the three directions thus determined, and the ear ratio is determined by applying the evaluation value to a correspondence table between the evaluation value and the ear ratio created by a standard sample having a known ear ratio in advance. .

【0004】(従来技術3)これは,特願平7−242
934号に提案されている耳率測定方法である。この方
法が上記従来技術2と異なる主な点は,板厚方向に伝播
する縦波及び横波を用いている点である。以下にその基
本原理と実施方法について簡単に説明する。この耳率測
定方法で使用する超音波送受信装置の配置図を図13に
示す。縦波を例にとると,図13(a)のように,薄板
表面に平行に磁場が印加されるように磁石2個を配置
し,同様に薄板表面と平行になるように送信用コイル及
び受信用コイルを配置する。送信用コイルに対して高周
波バースト波電流を通電すると,薄板表面にコイル電流
と平行で逆向きの渦電流が発生する。この渦電流と印加
磁場との相互作用により,金属原子に対して板厚方向に
ローレンツ力が働き,弾性振動の加振力となる。そして
送信用コイルのバースト波電流に同期して,板厚方向へ
縦波超音波が伝播する。板厚方向に伝播する縦波は,薄
板の表裏面で反射する多重反射波となるが,板表面に垂
直に往復するため,各反射波が重なり合い干渉現象が起
こる。送信用コイルのバースト波電流の周波数fを少し
ずつ変化させて薄板中の超音波の波長λを変化させる
と,半波長λ/2の整数倍が板厚tと等しくなった時に
強め合う干渉が起こり,超音波が強くなる共振が発生す
る。波長λ,縦波音速VL,周波数fの関係は, λ=VL/f であるから,板厚tが分かれば縦波音速VLを求めるこ
とができる。つまり,nを整数,共振波長をλc,共振
周波数をfcとして, t=n(λc/2)=nVL/(2fc) の関係から縦波音速VLを求めることができる。また,
超音波の受信(検出)は,発生と逆の原理によって,受
信用コイルによって行われる。横波については,磁石の
配置(図13(b)参照),及び振動方向の異なる2種
類の波が発生する点で上記縦波の場合と異なるが,その
他は同様である。圧延方向,及び圧延方向に対して直角
方向を振動方向とする横波の共振周波数をそれぞれ検出
する。耳率△eは,次式により算出する。 △e=a0+a1(fc1+fc2)/fc3+a2
(fc1−fc2)/(fc1+fc2) (ここに,fc1:圧延方向を振動方向とする横波の共
振周波数, fc2:圧延直角方向を振動方向とする横波の共振周波
数, fc3:板厚方向を振動方向とする縦波の共振周波数, a0,a1,a2:薄板の材質により定まる係数)
(Prior art 3) This is disclosed in Japanese Patent Application No. 7-242.
This is an ear ratio measurement method proposed in Japanese Patent No. 934. The main difference between this method and the prior art 2 is that longitudinal waves and transverse waves that propagate in the thickness direction are used. The basic principle and implementation method will be briefly described below. FIG. 13 shows an arrangement diagram of an ultrasonic transmission / reception device used in this ear ratio measurement method. Taking a longitudinal wave as an example, as shown in FIG. 13 (a), two magnets are arranged so that a magnetic field is applied in parallel to the thin plate surface, and a transmitting coil and a transmission coil are similarly set in parallel with the thin plate surface. Place the receiving coil. When a high frequency burst wave current is applied to the transmitting coil, an eddy current is generated on the surface of the thin plate in a direction opposite to the coil current. Due to the interaction between the eddy current and the applied magnetic field, Lorentz force acts on the metal atoms in the plate thickness direction, and becomes an exciting force of elastic vibration. The longitudinal ultrasonic wave propagates in the thickness direction in synchronization with the burst wave current of the transmitting coil. The longitudinal wave propagating in the plate thickness direction is a multiple reflected wave reflected on the front and back surfaces of the thin plate. However, since the longitudinal wave reciprocates perpendicularly to the plate surface, the reflected waves overlap and an interference phenomenon occurs. When the wavelength λ of the ultrasonic wave in the thin plate is changed by gradually changing the frequency f of the burst wave current of the transmitting coil, interference that strengthens when an integral multiple of half the wavelength λ / 2 becomes equal to the plate thickness t is obtained. As a result, resonance occurs in which the ultrasonic waves become strong. Since the relationship between the wavelength λ, the longitudinal wave velocity VL, and the frequency f is λ = VL / f, the longitudinal wave velocity VL can be obtained if the thickness t is known. That is, assuming that n is an integer, the resonance wavelength is λc, and the resonance frequency is fc, the longitudinal wave velocity VL can be obtained from the relationship t = n (λc / 2) = nVL / (2fc). Also,
The reception (detection) of the ultrasonic wave is performed by the receiving coil based on the principle opposite to the generation. The transverse wave differs from the longitudinal wave in that the arrangement of the magnets (see FIG. 13B) and the generation of two types of waves having different vibration directions are the same as the longitudinal wave, but the other is the same. The resonance frequencies of the rolling direction and the transverse wave whose vibration direction is perpendicular to the rolling direction are detected. The ear ratio △ e is calculated by the following equation. Δe = a0 + a1 (fc1 + fc2) / fc3 + a2
(Fc1-fc2) / (fc1 + fc2) (where, fc1: resonance frequency of a transverse wave whose vibration direction is the rolling direction, fc2: resonance frequency of a transverse wave whose vibration direction is the direction perpendicular to the rolling direction, fc3: vibration direction of the sheet thickness direction) Resonance frequency of longitudinal wave, a0, a1, a2: coefficient determined by material of thin plate)

【0005】(従来技術4)これは,特開平4−138
310号公報に提案されている金属薄板の深絞り性評価
装置である。この装置は,金属薄板の深絞り加工での特
性を,超音波を利用してr値によって評価しようとする
ものである。以下にその基本原理と実施方法について簡
単に説明する。音速測定には,超音波板波を利用する。
図14に示すような電磁超音波の送信用プローブ31と
受信用プローブ32を用いて,超音波板波を発生,検出
する。両プローブは,外部磁場発生用の電磁石33及び
金属薄板35の表面に平行に配置されたコイル34から
構成され,両者は所定の距離離れた位置に配置される。
送信用プローブ31のコイル34にパルス電流を流す
と,金属薄板35の表面に渦電流が励起され,電磁石3
3によって金属薄板35の表面に平行に印加された磁場
と該渦電流によって上記金属薄板35に磁歪が生じ,こ
れを加振力にして板波が発生する。受信用プローブ32
直下まで伝播した板波は,送信時と逆の原理により受信
用プローブ32で検出される。送信から受信に至る時間
から板波の伝播時間が算出される。r値を測定するた
め,上記送受信用プローブを,圧延方向,圧延方向に対
して45°方向,90°方向の3方向に配置し,それぞ
れの伝播方向での板波の伝播時間T0,T45,T90
を測定し,次式から平均音速Tを算出する。 T=(T0+2×T45+T90)/4 このTを,予め求めた換算表によりr値に変換する。
(Prior Art 4) This is disclosed in Japanese Patent Laid-Open No. 4-138
No. 310 is an apparatus for evaluating the deep drawability of a thin metal plate proposed in JP-A-310. This apparatus is intended to evaluate the characteristics of a metal sheet in deep drawing by using r-values using ultrasonic waves. The basic principle and implementation method will be briefly described below. An ultrasonic plate wave is used for sound velocity measurement.
An ultrasonic plate wave is generated and detected by using a transmitting probe 31 and a receiving probe 32 for electromagnetic ultrasonic waves as shown in FIG. Both probes are composed of an electromagnet 33 for generating an external magnetic field and a coil 34 arranged in parallel with the surface of the thin metal plate 35, and both are arranged at positions separated by a predetermined distance.
When a pulse current is applied to the coil 34 of the transmitting probe 31, an eddy current is excited on the surface of the thin metal plate 35, and the electromagnet 3
The magnetostriction is generated in the metal thin plate 35 by the magnetic field applied to the surface of the metal thin plate 35 and the eddy current by the eddy current 3, and this is used as an exciting force to generate a plate wave. Receiving probe 32
The plate wave that has propagated immediately below is detected by the receiving probe 32 according to a principle reverse to that at the time of transmission. The propagation time of the plate wave is calculated from the time from transmission to reception. In order to measure the r value, the transmitting and receiving probes are arranged in three directions of 45 ° and 90 ° with respect to the rolling direction and the rolling direction, and the propagation times T0, T45, T90
Is measured, and the average sound speed T is calculated from the following equation. T = (T0 + 2 × T45 + T90) / 4 This T is converted into an r value by a conversion table obtained in advance.

【0006】[0006]

【発明が解決しようとする課題】ところが,上記従来技
術には,以下に示すような幾つかの問題点があった。 (従来技術1) 破壊検査であるため,測定に時間がかかり,インライ
ン化できない。 ダイスやポンチと被験材との間の潤滑条件等の違いに
より,同一サンプルであっても測定値が変動する。 (従来技術2) 薄板(板厚1mm以下程度)では,斜角入射の多重反
射波を送受信するのが難しい。例えば,反射回数の異な
る多重反射波が重なり合い,それぞれの分離が不可能な
場合がある。 超音波の伝播経路が,限られた直線上の領域(集束超
音波の入射点と出射点を結び,被験材の表裏面での反射
点を通るジグザグの直線範囲)となるため,局所的な組
織変化の影響を受けやすい。必要とする耳率は,ある程
度の大きさを持った領域内の平均的な値であり,この測
定方法によって得られる耳率とは異なる可能性がある。 (従来技術3) 板厚変動の影響を受けやすい。例えば,観測領域内の
板厚ムラにより,明瞭な共振が発生せず,極端な場合に
は複数の共振ピークが観測される場合がある。また,板
厚ムラの影響を除去するために小さなコイルを用いる
と,集合組織のムラにより,材料の特性を表す耳率を表
現できなくなる。 発振周波数を高精度に変化させることができるバース
ト発振器が必要である。 (従来技術4) r値と耳率とは単純な関係ではなく,r値から耳率を
算出することは難しい。また,圧延方向,圧延方向に対
して45°方向,90°方向の3方向の板波音速平均値
と耳率との間に相関関係はない。 音速測定を圧延方向,圧延方向に対して45°方向,
90°方向の3方向だけで測定する場合,試験材に対す
る測定プローブの設置角度にズレがあると,測定値が変
動しやすい。(上記,については後述する実施の形
態で検証する) 本発明は上記事情に鑑みてなされたものであり,その目
的とするところは,高価な測定装置を用いることなく,
非破壊で,板厚ムラや測定装置の設置誤差等の影響を受
けにくく,常に安定した高精度の測定結果を得ることが
可能な金属薄板の耳率測定方法及び装置を提供すること
である。
However, the above prior art has several problems as described below. (Prior art 1) Since it is a destructive inspection, it takes a long time to measure and cannot be inlined. Due to differences in the lubrication conditions, etc. between the die or punch and the test material, the measured values vary even for the same sample. (Prior art 2) It is difficult to transmit and receive multiple reflected waves at oblique incidence with a thin plate (plate thickness of about 1 mm or less). For example, multiple reflected waves having different numbers of reflections may overlap, making it impossible to separate them. Since the propagation path of the ultrasonic wave is a limited linear area (a zigzag linear range that connects the incident point and the output point of the focused ultrasonic wave and passes through the reflection points on the front and back surfaces of the test material), the local Vulnerable to organizational changes. The required ear ratio is an average value in a region having a certain size, and may differ from the ear ratio obtained by this measurement method. (Prior art 3) It is easy to be affected by the thickness variation. For example, due to uneven thickness in the observation region, no clear resonance occurs, and in extreme cases, a plurality of resonance peaks may be observed. Further, if a small coil is used to remove the influence of the thickness unevenness, the ear ratio indicating the characteristics of the material cannot be expressed due to the unevenness of the texture. A burst oscillator that can change the oscillation frequency with high accuracy is required. (Prior Art 4) The r value and the ear ratio are not a simple relationship, and it is difficult to calculate the ear ratio from the r value. Further, there is no correlation between the rolling direction, the average value of the plate wave sound velocity in the three directions of 45 ° and 90 ° with respect to the rolling direction, and the ear ratio. The sound speed measurement was performed in the rolling direction, 45 ° direction to the rolling direction,
When measuring only in three directions of 90 °, if there is a deviation in the installation angle of the measurement probe with respect to the test material, the measured value tends to fluctuate. (The above will be verified in the embodiments described later.) The present invention has been made in view of the above circumstances, and its purpose is to use an expensive measuring device without using an expensive measuring device.
An object of the present invention is to provide a method and an apparatus for measuring the ear ratio of a thin metal sheet which are non-destructive, are less susceptible to sheet thickness unevenness and installation errors of a measuring device, and can always obtain stable and accurate measurement results.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に第1の発明は,超音波が金属薄板の面内を,圧延方向
を0゜として,0゜,90゜,及びθ(ただし,0゜<
θ<90゜)の方向に所定の距離だけ伝播した時の伝播
時間をそれぞれ測定し,上記各測定方向の伝播時間の変
化分から,板面内の音速の変化分を表す所定の特徴量を
演算し,予め標準試料を用いて求められた特徴量と耳率
との関係に上記演算された特徴量を当てはめて上記金属
薄板の耳率を求める金属薄板の耳率測定方法において,
上記伝播時間の測定に,S0モードの超音波板波のみを
用いると共に,上記θについてプラス方向,及びマイナ
ス方向の伝播時間を測定してなることを特徴とする金属
薄板の耳率測定方法として構成されている。このよう
に,板厚変化による速度変化の小さいS0モードの超音
波板波を用いることによって,より板厚ムラの影響を小
さくすることができ,更に上記θについてプラス方向,
及びマイナス方向の伝播時間を測定することにより,測
定器の設置誤差の影響を低減することができる。その
際,上記特徴量(Z)は, Z=K{n(T A +T B )−(T +1 +T -1 )− … −(T +n +T -n )} (ここに, K:定数 n:上記±θ方向の伝播時間測定組数 A ,T B :それぞれ上記0゜,90゜の方向の伝播時
+ ,T - :それぞれ上記+θ,−θ方向の伝播時間) となる。
According to a first aspect of the present invention, an ultrasonic wave is applied to a surface of a sheet metal in a rolling direction.
As 0 °, 0 °, 90 °, and θ (where 0 ° <
Propagation when propagating a predetermined distance in the direction of θ <90 °)
The propagation time is measured in each of the above measurement directions.
From the component, a predetermined feature representing the change in sound speed in the plate surface is calculated.
Calculated features and ear ratios obtained in advance using standard samples
By applying the above calculated features to the relationship with
Finding the ear ratio of a thin plate
To measure the above propagation time, only the S0 mode ultrasonic plate wave
And the plus direction for the above θ, and the minor
Metal characterized by measuring the propagation time in the
It is configured as a method for measuring ear ratio of a thin plate. like this
In addition, S0 mode super sound with small speed change due to thickness change
By using corrugated sheet waves, the effect of thickness unevenness is reduced.
And in the plus direction for the above θ,
And by measuring the propagation time in the negative direction.
It is possible to reduce the influence of the installation error of the measuring instrument. That
Time, the feature quantity (Z) is, Z = K {n (T A + T B) - (T +1 + T -1) - ... - (T + n + T -n)} ( here, K: constant n : The number of pairs of propagation time measurement T A and T B in the above ± θ direction: At the time of propagation in the directions of 0 ° and 90 °, respectively.
During T +, T -: each of the above + theta, a -θ direction of propagation time).

【0008】更に,上記θを+45゜,及び−45°と
し,上記特徴量(Z)を, Z=K{(TA +TB )−(T+45 +T-45 )} (ここに, K:定数 TA ,TB :それぞれ上記0゜,90゜の方向の伝播時
間 T+45 ,T-45 :それぞれ上記+45゜,−45゜方向
の伝播時間) とすることによって,音速異方性の変化をより感度よく
検出することができる。また,上記第1の発明におい
て,上記伝播時間の変化分に含まれる温度変化による変
化分が上記特徴量の演算において相殺されるように,上
記各方向の伝播時間の測定順序,及び測定時間間隔を設
定することもできる。この時,上記各方向の伝播時間の
測定順序を,(1)0°又は90°方法(2)−45°
又は45°方向(3)−45°又は45°の残り方向
(4)0°又は90°の残り方向,或いは,(1)−4
5°又は45°方向(2)0°又は90°方法(3)0
°又は90°の残り方向(4)−45°又は45°の残
り方向とし,上記各方向の伝播時間の測定時間間隔を等
間隔とすることで,上記特徴量(Z)の演算において上
記伝播時間の変化分に含まれる温度変化による変化分が
相殺される。また,上記目的を達成するために第2の発
明は,超音波が金属薄板の面内を,圧延方向を0゜とし
て,0゜,90゜,及びθ(ただし,0゜<θ<90
゜)の方向に所定の距離だけ伝播した時の伝播時間をそ
れぞれ測定し,上記各測定方向の伝播時間の変化分か
ら,板面内の音速の変化分を表す所定の特徴量を演算
し,予め標準試料を用いて求められた特徴量と耳率との
関係に上記演算された特徴量を当てはめて上記金属薄板
の耳率を求める金属薄板の耳率測定方法において,上記
伝播時間の測定に,S0モードの超音波板波のみを用い
ると共に,上記伝播時間の測定方法が,上記各伝播方向
に伝播する超音波板波の波形を検出し,該波形と,予め
基準試料を用いて検出した基準波形とを用いて相互相関
演算を行い,該演算結果を関数近似して,最大相関値を
与える遅延時間を求め,該遅延時間を上記伝播時間とし
て用いるものであることを特徴とする金属薄板の耳率測
定方法として構成されている。これにより,上記伝播時
間を,高価な測定装置を用いるこ となく測定できる。
た,上記第2の発明において,上記特徴量(Z)を, Z=K{n(T A +T B )−2T 1 − … −2T n (ここに, K:定数 n:上記θ方向の伝播時間測定数 A ,T B :それぞれ上記0゜,90゜の方向の伝播時
n :n番目のθ方向の伝播時間) により求めるようにすれば,耳率とは関係のないランダ
ム組織に起因する伝播時間分を相殺した特徴量を得るこ
とができる。 また,上記第2の発明において,上記θに
ついてプラス方向,及びマイナス方向の伝播時間を測定
するようにすれば,測定器の設置誤差の影響を低減する
ことができる。
Furthermore, the θ and +45 °, and -45 °, the feature quantity (Z), Z = K { (T A + T B) - (T +45 + T -45)} ( here, K : Constants T A , T B : Propagation times in the directions of 0 ° and 90 °, respectively, T +45 , T -45 : Propagation times in the directions of + 45 °, -45 degrees, respectively. Can be detected with higher sensitivity. Further, in the first aspect, the measurement order of the propagation time in each direction may be such that a change due to a temperature change included in the change in the propagation time is canceled in the calculation of the characteristic amount. , And the measurement time interval can also be set. At this time, the measurement order of the propagation time in each direction is set to (1) 0 ° or 90 ° method (2) -45 °
Or 45 ° direction (3) -45 ° or 45 ° remaining direction (4) 0 ° or 90 ° remaining direction, or (1) -4
5 ° or 45 ° direction (2) 0 ° or 90 ° method (3) 0
(4) The remaining direction of (4) is set to −45 ° or the remaining direction of 45 °, and the measurement time interval of the propagation time in each of the directions is set to be equal. The change due to the temperature change included in the change in time is offset. In order to achieve the above objective,
Ming said that the ultrasonic wave is in the plane of the sheet metal and the rolling direction is 0 °.
, 90 °, and θ (where 0 ° <θ <90
The propagation time when the light has propagated a predetermined distance in the direction
Each measurement is performed, and is the change in the propagation time in each of the above measurement directions?
Calculates a predetermined feature representing the change in sound speed in the plate
And the ear ratio calculated using the standard sample in advance.
Applying the calculated feature value to the relationship, the metal sheet
In the method for measuring the ear ratio of a thin metal sheet,
Using only the S0 mode ultrasonic plate wave to measure the propagation time
And the method of measuring the propagation time
Of the ultrasonic plate wave propagating in the
Cross-correlation with reference waveform detected using reference sample
Performs an operation, approximates the result of the operation as a function, and calculates the maximum correlation value.
Find the delay time to be given, and use the delay time as the above propagation time.
Ear ratio measurement of thin metal sheets characterized by being used
It is configured as a fixed method. As a result,
Between it can be measured without having Mochiiruko an expensive measuring device. Ma
And, in the second invention, the feature amount (Z), Z = K { n (T A + T B) -2T 1 - ... -2T n} ( here, K: constant n: the θ direction Propagation time measurement numbers T A , T B : Propagation in the directions of 0 ° and 90 ° respectively
During T n: if so determined by the propagation time of n-th θ direction), unrelated to the ear rate Randa
To obtain the feature quantity that offsets the propagation time caused by the
Can be. In the second invention, the angle θ is
Measure the propagation time in the plus and minus directions
Measures to reduce the effects of measuring instrument installation errors.
be able to.

【0009】[0009]

【発明の実施の形態】以下添付図面を参照して,本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は本発明を具
体化した一例であって,本発明の技術的範囲を限定する
性格のものではない。ここに,図1は本発明の実施の形
態に係る金属薄板の耳率測定装置の概略構成を示すブロ
ック図,図2は本発明の実施の形態に係る金属薄板の耳
率測定装置の送受信プローブの平面図,及び正面図,図
3は上記送信プローブによる超音波板波発生原理を示す
模式図,図4は板波のモードを示す図,図5は板波の変
位分布を示す図,図6は板波の周波数×板厚と音速の関
係を示す図,図7は相互相関演算と関数近似による伝播
時間の算出方法を示す図,図8は音速異方性の測定結果
の例を示す図,図9は耳率の評価結果を示す図,図10
は上記図9において,評価値として4方向の平均遅延時
間を採用した結果を示す図である。本実施の形態に係る
金属薄板の耳率測定装置は,図1に示す如く構成されて
いる。まず,図2及び図3を用いて,送信プローブ1及
び受信プローブ2を用いた超音波板波の送受信方法とそ
の装置構成について説明する。図2は,送信プローブ1
及び受信プローブ2の平面図及び正面図を模式的に示し
たものである。送信プローブ1は,磁石14とメアンダ
コイル15とから構成される。メアンダコイル15は,
図2に示すように被験材13と平行に複数の折り返しに
よって平面的に配置される。また,このメアンダコイル
15と被験材13は,後述するメアンダピッチLの半分
よりも小さな距離をおいて配置される。上記メアンダコ
イル15の上方には磁石14が,その磁場方向が被験材
13の表面に垂直になるように配置される。この時,上
記磁場方向は上向き,下向きのどちらであってもよい。
受信プローブ2は,上記送信プローブ1と全く同様に構
成される。また,上記送信プローブ1と受信プローブ2
は,両者のメアンダコイル15が平行で,且つ両メアン
ダコイルが両者の中心を結ぶ直線と直角になるように配
置される。更に送信プローブ1は,送信側チャンネル切
り替え器7及び電力増幅器6(図2では図示省略)を介
してバースト波発振器5に,受信プローブ2は,受信側
チャンネル切り替え器8及び高周波増幅器9(図2では
図示省略)を介して波形検出器10に,それぞれ接続さ
れる。上記送信プローブ1の正面拡大図である図3を用
いて超音波板波の送受信方法を説明する。送信プローブ
1のメアンダコイル15に,バースト波発振器よりバー
スト波電流が印加されると,図3に示すように,メアン
ダコイル15の各辺では,コイルの折り返しによって交
互に逆方向に電流が流れ,被験材13表面には上記コイ
ル電流と逆向きの渦電流が励起される。この渦電流と磁
場によって被験材13の各位置に図のようなローレンツ
力が働き,超音波板波を発生させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to facilitate understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. Here, FIG. 1 is a block diagram showing a schematic configuration of a thin metal ear ratio measuring device according to an embodiment of the present invention, and FIG. 2 is a transmission / reception probe of the thin metal ear ratio measuring device according to the embodiment of the present invention. FIG. 3 is a schematic diagram showing the principle of generation of an ultrasonic plate wave by the transmission probe, FIG. 4 is a diagram showing the mode of the plate wave, and FIG. 5 is a diagram showing the displacement distribution of the plate wave. 6 is a diagram showing the relationship between the frequency x thickness of the plate wave and the sound velocity, FIG. 7 is a diagram showing a method of calculating the propagation time by cross-correlation calculation and function approximation, and FIG. 8 is an example of a measurement result of the sound velocity anisotropy. Fig. 9 and Fig. 9 show the evaluation results of the ear ratio, Fig. 10
FIG. 10 is a diagram showing a result of adopting an average delay time in four directions as an evaluation value in FIG. The ear ratio measuring apparatus for a thin metal plate according to the present embodiment is configured as shown in FIG. First, an ultrasonic plate wave transmission / reception method using the transmission probe 1 and the reception probe 2 and a device configuration thereof will be described with reference to FIGS. Figure 2 shows the transmission probe 1
FIG. 2 schematically shows a plan view and a front view of the receiving probe 2. The transmission probe 1 includes a magnet 14 and a meander coil 15. The meander coil 15 is
As shown in FIG. 2, it is arranged in a plane by a plurality of folds in parallel with the test material 13. Further, the meander coil 15 and the test material 13 are arranged at a distance smaller than a half of a meander pitch L described later. A magnet 14 is arranged above the meander coil 15 so that the direction of the magnetic field is perpendicular to the surface of the test material 13. At this time, the direction of the magnetic field may be either upward or downward.
The receiving probe 2 has exactly the same configuration as the transmitting probe 1 described above. The transmission probe 1 and the reception probe 2
Are arranged such that both meander coils 15 are parallel and both meander coils are perpendicular to a straight line connecting the centers of the two. Further, the transmission probe 1 is connected to a burst wave oscillator 5 via a transmission-side channel switch 7 and a power amplifier 6 (not shown in FIG. 2), and the reception probe 2 is connected to a reception-side channel switch 8 and a high-frequency amplifier 9 (FIG. 2). (Not shown) are connected to the waveform detector 10 respectively. A method of transmitting and receiving an ultrasonic plate wave will be described with reference to FIG. 3, which is an enlarged front view of the transmission probe 1. When a burst wave current is applied from the burst wave oscillator to the meander coil 15 of the transmission probe 1, as shown in FIG. 3, the current alternately flows in the opposite direction due to the folding of the coil on each side of the meander coil 15, An eddy current in the opposite direction to the coil current is excited on the surface of the test material 13. The Lorentz force as shown in the figure acts on each position of the test material 13 by the eddy current and the magnetic field, and an ultrasonic plate wave is generated.

【0010】ここで,板波について簡単に説明する。板
波とは,板中の波動のうち,波動ラム波のことであり,
進行方向及び板面に平行な縦波成分と進行方向及び板面
に垂直な横波成分が一体となり波動を形成する。実際の
粒子の振動は縦波成分と横波成分の和で,一般に楕円運
動を行う。板波は対称波(対称S群)と斜対称波(斜対
称A群)に分類される(図4参照)。上記対称,斜対称
波は,更に板中の振動の節によってS0,S1,S2,
A0,A1,A2などのモードに分類できる(図5参
照)。また板波の音速は,板波の周波数fと板厚dの積
fdの関数となる。fdと音速の関係を各モード毎にグ
ラフ化したのが図6である。このグラフから,S0モー
ドは他のモードに比べてfd変化による速度変化が小さ
いことが分かる。特にfd<1(MHz・mm)では,
fd変化によらず一定と見なせる。そのため,S0モー
ドの板波を用いることによって板厚変化(ムラ)に影響
を受けない音速測定が可能となる。本実施の形態による
送受信プローブでは,被験材13上の各位置で図3に示
すようなローレンツ力が働く。この時,板厚d,バース
ト波の周波数f,メアンダピッチL,fdで決まるS0
モードの音速Vとすると, V=fL を満たすf,Lを設定することで,メアンダピッチLを
波長λとするS0モード板波が発生する。また,上記メ
アンダコイル15の折り返し数nを大きくすると,コイ
ルの各辺で発生した板波が干渉し,S0モードのみが強
く発生することになり,感度が向上する。こうして送信
プローブ1直下で発生したS0モード板波は,受信プロ
ーブ2直下まで伝播し,発生と逆の原理によって受信側
メアンダコイル15に電流を誘起する。この誘起電流を
超音波信号として検出する。以上説明した送信プローブ
1及び受信プローブ2が4対,図1に示すように被験材
13上に配置される。各送受信プローブ対は,送信プロ
ーブ1と受信プローブ2が同一距離となるように,更に
各送信プローブ1と受信プローブ2を結ぶ直線が同一点
で交差するように配置される。各送受信プローブ対は,
圧延方向を0°として,0゜,90゜,及び±45°方
向に配置される。
Here, the plate wave will be briefly described. A plate wave is a wave Lamb wave among the waves in a plate.
A longitudinal wave component parallel to the traveling direction and the plate surface and a transverse wave component perpendicular to the traveling direction and the plate surface are combined to form a wave. The actual vibration of a particle is the sum of a longitudinal wave component and a transverse wave component, and generally performs elliptical motion. Plate waves are classified into symmetric waves (symmetric S group) and oblique symmetric waves (oblique symmetric A group) (see FIG. 4). The above symmetrical and obliquely symmetrical waves are further divided by S0, S1, S2,
Modes such as A0, A1, and A2 can be classified (see FIG. 5). The sound velocity of the plate wave is a function of the product fd of the plate wave frequency f and the plate thickness d. FIG. 6 is a graph showing the relationship between fd and sound speed for each mode. From this graph, it can be seen that the speed change due to the fd change is smaller in the S0 mode than in the other modes. In particular, when fd <1 (MHz · mm),
It can be regarded as constant regardless of fd change. Therefore, by using the plate wave in the S0 mode, it is possible to measure the sound velocity without being affected by a change in plate thickness (unevenness). In the transmitting / receiving probe according to the present embodiment, a Lorentz force as shown in FIG. At this time, S0 determined by the plate thickness d, the frequency f of the burst wave, the meander pitch L, fd
Assuming that the sound velocity of the mode is V, an S0 mode plate wave having a meander pitch L of wavelength λ is generated by setting f and L that satisfy V = fL. When the number of turns n of the meander coil 15 is increased, the plate waves generated on each side of the coil interfere with each other, and only the S0 mode is strongly generated, thereby improving the sensitivity. Thus, the S0 mode plate wave generated immediately below the transmission probe 1 propagates directly below the reception probe 2 and induces a current in the reception side meander coil 15 based on a principle opposite to the generation. This induced current is detected as an ultrasonic signal. Four pairs of the transmission probe 1 and the reception probe 2 described above are arranged on the test material 13 as shown in FIG. Each transmission / reception probe pair is arranged such that the transmission probe 1 and the reception probe 2 are at the same distance, and furthermore, a straight line connecting each transmission probe 1 and the reception probe 2 intersects at the same point. Each transmitting and receiving probe pair
Assuming that the rolling direction is 0 °, they are arranged in 0 °, 90 °, and ± 45 ° directions.

【0011】続いて,図1を用いて,本実施の形態に係
る耳率測定装置の処理手順を説明する。まず,超音波板
波の音速測定方向(伝播方向)を決定し,チャンネル切
り替え信号発生器3から信号が出力される。この信号に
より送信側チャンネル切り替え器7,及び受信側チャン
ネル切り替え器8が作動し,対象となる送受信プローブ
対が選択される。同時に上記信号によって耳率算出器1
1に測定方向が指示され,またトリガ信号発生器4から
トリガ信号が出力される。上記トリガ信号を受けたバー
スト波発振器5は,所定の周波数のバースト波電流を出
力し,電力増幅器6で増幅される。上記増幅されたバー
スト波電流は,送信側チャンネル切り替え器7で選択さ
れた送信プローブ1に印加され,上述した原理によって
被験材13にS0モード板波を送信する。被験材13を
伝播した板波は,受信側チャンネル切り替え器8で選択
された受信プローブ2でバースト電流として検出され,
高周波増幅器9で増幅された後,波形検出器10に出力
される。波形検出器10では,トリガ信号発生器4から
のトリガ信号を基準時間として検出波形をA/D変換に
よってサンプリングし,予め記憶してある基準波形との
相互相関演算を実行し,その最大値を与える遅延時間T
を算出する。(以上の手順で使用した各装置が伝播時間
測定手段にあたる) ここで,上記基準波形とは,例えば次のようにして検出
した波形である。まず,被験材と同一板厚の基準板を用
意する。どれか1つの送受信プローブ対を選択し,その
板波伝播方向が基準板の圧延方向と一致するように基準
板を設置する。この状態で取り込まれた板波波形を,こ
の送受信プローブの基準波形とする。この作業を全ての
送受信プローブ対に対して行い,各送受信プローブ対の
基準波形として4波形を記憶する。こうして記憶された
各送受信プローブ対の基準波形を,上記相互相関演算時
に使用する。
Next, a processing procedure of the ear ratio measuring apparatus according to the present embodiment will be described with reference to FIG. First, the sound velocity measurement direction (propagation direction) of the ultrasonic plate wave is determined, and a signal is output from the channel switching signal generator 3. With this signal, the transmission-side channel switch 7 and the reception-side channel switch 8 are operated, and a target transmission / reception probe pair is selected. At the same time, the ear ratio calculator 1
1, the measurement direction is indicated, and a trigger signal is output from the trigger signal generator 4. The burst wave oscillator 5 receiving the trigger signal outputs a burst wave current of a predetermined frequency and is amplified by the power amplifier 6. The amplified burst wave current is applied to the transmission probe 1 selected by the transmission-side channel switch 7 and transmits the S0 mode plate wave to the test material 13 according to the principle described above. The plate wave that has propagated through the test material 13 is detected as a burst current by the reception probe 2 selected by the reception-side channel switcher 8.
After being amplified by the high-frequency amplifier 9, it is output to the waveform detector 10. The waveform detector 10 samples the detected waveform by A / D conversion using the trigger signal from the trigger signal generator 4 as a reference time, executes a cross-correlation calculation with a previously stored reference waveform, and determines the maximum value. Delay time T to be given
Is calculated. (Each device used in the above procedure corresponds to a propagation time measuring means.) Here, the reference waveform is, for example, a waveform detected as follows. First, a reference plate having the same thickness as the test material is prepared. One of the transmission / reception probe pairs is selected, and the reference plate is installed such that the plate wave propagation direction matches the rolling direction of the reference plate. The plate wave waveform captured in this state is used as a reference waveform of the transmission / reception probe. This operation is performed for all the transmitting and receiving probe pairs, and four waveforms are stored as reference waveforms of each transmitting and receiving probe pair. The stored reference waveforms of the transmission and reception probe pairs are used at the time of the cross-correlation calculation.

【0012】こうして,上記相互相関演算によって,サ
ンプリング時間△t毎の相関値が得られるが,上記△t
毎の相関値からそのまま上記遅延時間Tを求めると,そ
れは△tの分解能しか得られないことになる。しかし,
実際の耳率変化に対応する遅延時間変化(音速変化)は
僅かである。例えば,0.3mm厚のアルミ冷延板の場
合,耳率1%の変化に対応する遅延時間の変化は,伝播
距離55mmとして,10〜20nsec程度である。
50MHzのA/D変換を行う場合の上記分解能は20
nsecであるため,この場合1%単位の耳率しか得ら
れないことになる。そこで,測定分解能を上げるため
に,板波周波数を高周波にすると共に,信号検出装置の
精度を上げることが考えられる。電磁超音波法による板
波周波数の高周波化には,励起信号の高周波化と送信コ
イルの小型化(メアンダピッチを狭くする)が必要とな
る。しかしこの場合,装置費用が高価になり,またコイ
ル製作が困難になる等の問題が生ずる。また,高周波に
見合った高速なA/D変換装置が必要となり,ここでも
装置費用が高価になってしまう。そこで,図7に示すよ
うに,基準波形と測定波形の相互相関演算を行い,最大
値を与える遅延時間を関数近似によって求めることで,
低価格の装置で実現可能な比較的低周波の板波を用い
て,伝播時間の変化を高精度でしかも安定して測定する
ことが可能である。
In this manner, the correlation value for each sampling time Δt is obtained by the cross-correlation calculation.
If the above-mentioned delay time T is directly obtained from each correlation value, only the resolution of Δt can be obtained. However,
The delay time change (sound speed change) corresponding to the actual ear rate change is slight. For example, in the case of an aluminum cold-rolled sheet having a thickness of 0.3 mm, a change in delay time corresponding to a change in ear ratio of 1% is about 10 to 20 nsec when the propagation distance is 55 mm.
The above resolution when performing A / D conversion of 50 MHz is 20
Since it is nsec, in this case, only the ear rate of 1% unit can be obtained. Therefore, in order to increase the measurement resolution, it is conceivable to increase the plate wave frequency and increase the accuracy of the signal detection device. To increase the plate wave frequency by the electromagnetic ultrasonic method, it is necessary to increase the frequency of the excitation signal and downsize the transmission coil (to reduce the meander pitch). However, in this case, problems such as an increase in equipment cost and difficulty in manufacturing a coil occur. In addition, a high-speed A / D converter corresponding to a high frequency is required, and the device cost is also high here. Therefore, as shown in FIG. 7, a cross-correlation operation between the reference waveform and the measured waveform is performed, and a delay time at which the maximum value is obtained is obtained by function approximation.
Using a relatively low-frequency plate wave that can be realized with a low-cost device, it is possible to measure the change in the propagation time with high accuracy and stably.

【0013】以上説明した処理を,チャンネル設定を変
更することによって上記4方向全ての伝播方向について
行う。耳率算出器11(特徴量演算手段及び耳率算出手
段にあたる)では,各チャンネル,つまり各伝播方向の
遅延時間Tn(n=1〜4)を用い,次式によって評価
値Zを計算する。 Z=K{(TA +TB )−(T+45 +T-45 )} ‥‥‥‥ (1) (ここに, K:定数 TA ,TB :それぞれ上記0゜,90゜の方向の伝播時
間 T+45 ,T-45 :それぞれ上記+45゜,−45゜方向
の伝播時間) 伝播時間そのものには,耳率変化とは関係のない等方性
のランダム組織による伝播時間が含まれているため,伝
播時間の絶対値そのものは耳率とは相関関係はない。し
たがって上記(1)式によって,ランダム組織に起因す
る伝播時間分を相殺している。更に,±45°方向の遅
延時間を加算することによって,送受信プローブの設置
誤差による遅延時間の誤差を打ち消しているが,これら
についての詳細は後述する。上記評価値Zを,予め耳率
が既知の標準試料によって作成した評価値Zと耳率の対
応テーブルに当てはめることによって耳率推定値を求
め,表示器12にて表示する。
The above-described processing is performed for all of the above four propagation directions by changing the channel setting. The ear ratio calculator 11 (corresponding to a feature amount calculating unit and an ear ratio calculating unit) calculates an evaluation value Z by the following equation using each channel, that is, the delay time Tn (n = 1 to 4) in each propagation direction. Z = K {(T A + T B) - (T +45 + T -45)} ‥‥‥‥ (1) ( here, K: constant T A, T B: each of the above 0 °, 90 ° direction Propagation time T +45 , T -45 : Propagation time in the above + 45 ° and -45 ° directions, respectively) The propagation time itself includes the propagation time due to isotropic random tissue unrelated to the change in ear ratio. Therefore, the absolute value of the propagation time itself has no correlation with the ear rate. Therefore, the above equation (1) cancels the propagation time caused by the random tissue. Further, by adding the delay times in the ± 45 ° direction, errors in the delay time due to installation errors of the transmission / reception probes are canceled out. Details of these will be described later. The estimated value Z is applied to a correspondence table between the evaluated value Z and the ear ratio created from a standard sample whose ear ratio is known in advance to obtain an estimated ear ratio, which is displayed on the display 12.

【0014】次に,実際に上記耳率測定装置を使用した
測定例について説明する。試験材13として,板厚0,
28〜0.32mmのアルミ冷延板を用いる。メアンダ
ピッチ4mm,送受信プローブの間隔55mmとし,圧
延方向を基準として10°ピッチで伝播方向を順次変え
ながら遅延時間を測定した結果が図8である。耳率の異
なる3種類の被験材について測定している。この測定で
は,相互相関演算を行う際の基準波形として,各被験材
の圧延方向の測定波形を用いている。したがって圧延方
向を伝播方向としたときの遅延時間が全て0(nse
c)となっている。3つのグラフを比較すると,同一伝
播方向における各被験材間の遅延時間の差を見ると,伝
播方向が45°付近で最も差が大きくなっており,耳率
変化に伴う遅延時間の変化がこの45°付近の遅延時間
に顕著に現れているのが分かる。したがって,圧延方向
を基準として45°方向の遅延時間を用いることによっ
て,最も感度よく音速異方性の変化を検出できる。な
お,上記遅延時間を求めるにあたって,基準波形として
3種類の被験材に同一の波形を用いると,図8のグラフ
の形状は変わらないものの,数nsec程度の範囲で各
グラフが上下にシフトする。これは,図8は圧延方向を
基準とした板波伝播時間の相対的変化を示しているが,
伝播時間の絶対値(或いは平均値)は各被験材毎に異な
っていることを示している。後述するように,耳率測定
に必要なのは伝播時間の相対的変化であり,伝播時間の
絶対値或いは平均値は耳率とは相関関係はない。また,
上記と同じ,メアンダピッチ4mm,送受信プローブの
間隔55mmの条件で,複数の被験材で4方向の伝播方
向における遅延時間を測定し,上記(1)式を用いて評
価値Zを求めた結果が図9である。横軸には上記従来技
術1の方法によって求めた耳率をとっている。明確な相
関関係が見られ,この関係をテーブルにすることで,評
価値Zから耳率を推定することができる。なお,図9に
おける各値のバラツキは,上記従来技術1による耳率測
定の誤差が原因と考えられる。同一サンプルで複数回測
定した結果,評価値Zの繰り返し誤差は±4nsec程
度,耳率の誤差が±1.5%程度であり,上記各値のバ
ラツキは,上記従来技術1による耳率測定の誤差が原因
と考えるのが妥当である。
Next, a description will be given of a measurement example using the ear ratio measuring apparatus. As the test material 13,
A cold rolled aluminum plate of 28 to 0.32 mm is used. FIG. 8 shows the results obtained by measuring the delay time while sequentially changing the propagation direction at a pitch of 10 ° with respect to the rolling direction, with the meander pitch being 4 mm and the interval between the transmitting and receiving probes being 55 mm. The measurement was performed on three types of test materials having different ear ratios. In this measurement, a measurement waveform in the rolling direction of each test material is used as a reference waveform when performing a cross-correlation calculation. Therefore, when the rolling direction is set to the propagation direction, the delay times are all 0 (nse
c). Comparing the three graphs, looking at the difference in delay time between each test material in the same propagation direction, the difference is the largest when the propagation direction is around 45 °. It can be seen that it appears remarkably in the delay time around 45 °. Therefore, by using the delay time in the 45 ° direction with respect to the rolling direction, the change in the sound velocity anisotropy can be detected with the highest sensitivity. When the same waveform is used for three kinds of test materials as the reference waveform in obtaining the delay time, each graph shifts up and down within a range of several nsec, although the shape of the graph in FIG. 8 does not change. FIG. 8 shows the relative change of the plate wave propagation time with respect to the rolling direction.
This indicates that the absolute value (or average value) of the propagation time is different for each test material. As will be described later, the ear ratio measurement requires a relative change in the propagation time, and the absolute value or average value of the propagation time has no correlation with the ear ratio. Also,
Under the same conditions as above, with a meander pitch of 4 mm and a transmission / reception probe interval of 55 mm, the delay time in four propagation directions was measured for a plurality of test materials, and the evaluation value Z was obtained using the above equation (1). FIG. The abscissa represents the ear ratio obtained by the method of the above-mentioned prior art 1. A clear correlation is seen, and the ear ratio can be estimated from the evaluation value Z by making this table a table. The variation in each value in FIG. 9 is considered to be caused by an error in the ear ratio measurement according to the related art 1 described above. As a result of measuring the same sample a plurality of times, the repetition error of the evaluation value Z was about ± 4 nsec, and the ear rate error was about ± 1.5%. It is reasonable to assume that errors are the cause.

【0015】次に,送受信プローブの設置誤差(設置角
度のズレ)の影響を考える。図9の結果から,耳率1%
の変化が,評価値Zでは25nsec程度の変化として
検出される。図8から送受信プローブの設置角度のズレ
1°による遅延時間の測定値変化量を見てみると,圧延
方向(0°),板幅方向(90°)では,その点が極値
点となっているためほぼ0であり,45°方向付近では
1.5nsec程度である。仮に送受信プローブの設置
角度が圧延方向から5°ずれていたとすると,伝播方向
45°での遅延時間変化は7.5nsecとなり,これ
を図9を用いて単純に耳率換算すると,およそ0.3%
になる。しかし,±45°を測定することにより,送受
信プローブの設置角度ズレによる遅延時間の変化を互い
に打ち消しあい,上記評価値Zは殆ど変化しない。例え
ば,図8の耳率+4.7(%)のグラフにおいて,45
°方向の遅延時間は約42nsecとなるが,送受信プ
ローブの設置角度が圧延方向から−5°ずれていたとす
ると,実際の50°方向の遅延時間を測定するため,+
45°方向の遅延時間は約36nsecと測定してしま
う。しかし,上記グラフは圧延方向に対して対称である
ため,この場合−45°方向の遅延時間は実際の−40
°方向の遅延時間,つまり約47nsecと測定するた
め,結果的に上記評価値Zは殆ど変化しない。したがっ
て,±45°を測定することにより,送受信プローブの
設置誤差がある場合の耳率測定精度を向上することがで
きる。また,図9で用いた被験材に対して,従来技術4
で提案されている3方向伝播時間の音速平均と耳率の関
係を調べると,図10のようになる。このように音速平
均と耳率とは単純な相関関係にないことがわかる。
Next, the effect of the installation error of the transmission / reception probe (deviation of the installation angle) will be considered. From the results in Fig. 9, the ear ratio is 1%.
Is detected as a change of about 25 nsec in the evaluation value Z. Looking at the amount of change in the measured value of the delay time due to the 1 ° displacement of the installation angle of the transmitting and receiving probe from FIG. 8, the point is an extreme point in the rolling direction (0 °) and the sheet width direction (90 °). Therefore, it is almost 0, and about 1.5 nsec near the 45 ° direction. Assuming that the installation angle of the transmitting / receiving probe is shifted from the rolling direction by 5 °, the delay time change in the propagation direction of 45 ° is 7.5 nsec, which is simply converted to the ear ratio using FIG. %
become. However, by measuring ± 45 °, the changes in the delay time due to the installation angle shift of the transmission / reception probe cancel each other, and the evaluation value Z hardly changes. For example, in the graph of ear ratio + 4.7 (%) in FIG.
The delay time in the ° direction is about 42 nsec, but if the installation angle of the transmitting and receiving probe is shifted by -5 ° from the rolling direction, the actual delay time in the 50 ° direction is measured.
The delay time in the 45 ° direction is measured as about 36 nsec. However, since the above graph is symmetric with respect to the rolling direction, in this case, the delay time in the −45 ° direction is equal to the actual −40 °.
Since the delay time in the ° direction is measured, that is, about 47 nsec, the evaluation value Z hardly changes as a result. Therefore, by measuring ± 45 °, it is possible to improve the ear ratio measurement accuracy when there is an installation error of the transmission / reception probe. In addition, the test material used in FIG.
FIG. 10 shows the relationship between the average sound velocity of the three-way propagation time and the ear ratio proposed in (1). Thus, it can be seen that there is no simple correlation between the average sound speed and the ear rate.

【0016】以上説明した耳率測定装置において,更
に,被験材の温度変化による耳率測定精度の劣化を防止
するための方法について説明する。例として,冷間圧延
直後のアルミ板での耳率測定を考える。冷間圧延直後の
アルミ板の温度は100〜200°C程度まで上昇して
おり,それが時間と共に室温まで低下していく。材料中
の音速は温度の関数でもあるため,材料温度の低下と共
に音速も変化する。本実施の形態のように送受信プロー
ブを順次切り換えて各方向の板波伝播時間(遅延時間)
を測定する場合,上記のような急激な材料温度変化時に
測定を行うと,測定される各遅延時間には耳率による変
化分と材料温度による変化分が含まれることになり,こ
れが耳率測定精度の劣化を引き起こす原因となる。以下
に,温度変化が耳率測定精度に与える影響の度合いを示
す。例えば,アルミ棒中音速の場合では,195°C→
−1°Cの温度変化で,音速は4974m/s→507
1m/s,つまり−2.4%程度変化する(超音波探傷
法,日刊工業新聞社)。また,50°C→室温(約30
°C)に対する音速変化の実測値は0.2%程度であっ
た。通常のアルミ冷延板が示す圧延面内の音速異方性が
0.6%程度,耳率差1%に相当する音速変化量が0.
1%程度であることを考えると,実際にあり得る温度変
化が,耳率測定値に無視できない程度の影響を与えるこ
とが予想される。
In the above-described ear ratio measuring apparatus, a method for preventing deterioration of the ear ratio measurement accuracy due to a change in the temperature of the test material will be described. As an example, consider ear ratio measurement on an aluminum plate immediately after cold rolling. Immediately after cold rolling, the temperature of the aluminum plate has risen to about 100 to 200 ° C., which falls to room temperature over time. Since the speed of sound in a material is also a function of temperature, the speed of sound changes as the material temperature decreases. As in the present embodiment, the transmission and reception probes are sequentially switched, and the plate wave propagation time (delay time) in each direction.
If the measurement is performed when the material temperature changes abruptly as described above, each measured delay time includes the change due to the ear rate and the change due to the material temperature, and this is the ear rate measurement. This may cause deterioration of accuracy. The following shows the degree to which the temperature change affects the ear ratio measurement accuracy. For example, in the case of medium speed of aluminum rod, 195 ° C →
With a temperature change of -1 ° C, the sound speed is 4974m / s → 507
It changes by about 1 m / s, that is, about -2.4% (ultrasonic testing, Nikkan Kogyo Shimbun). In addition, 50 ° C → room temperature (about 30
° C) was about 0.2%. The sound velocity anisotropy in the rolling plane of a normal aluminum cold rolled sheet is about 0.6%, and the change in sound velocity corresponding to a difference in ear ratio of 1% is 0.
Considering that it is about 1%, it is expected that an actually possible temperature change will have a non-negligible effect on the ear ratio measurement value.

【0017】そこで,以上のような被験材の温度変化に
よる耳率測定精度の劣化を防止するため,各方向の板波
伝播時間の測定順序,及びその測定時間間隔を以下のよ
うにする。 (1)各方向の板波伝播時間の測定順序を, 0°又は90°方向 −45°又は45°方向 −45°又は45°方向の残り方向 0°又は90°方向の残り方向 あるいは, −45°又は45°方向 0°又は90°方向 0°又は90°方向の残り方向 −45°又は45°方向の残り方向 とする。 (2)上記各方向の測定時間間隔を等間隔とする。以上
の方法による効果を説明する。簡単のため,材料温度の
低下速度を一定と考え,温度変化による音速変化も一定
と考えると,上記のように等間隔で測定される遅延時間
に含まれる変化分のうち,温度変化によるものは,上記
番目の測定を0sec,番目をδsec,番目を
2δsec,番目を3δsecとおくことができる。
そこで,上記(1)式を用いて特徴量Zを求める際,温
度変化による変化分は, (0+3δ)−(δ+2δ)=0 となり,温度変化による遅延時間の変化分は相殺され
る。したがって,各方向の板波伝播時間の測定順序,及
びその測定時間間隔を上記のようにすることで,被験材
の温度変化による耳率測定精度の劣化を防止することが
できる。
Therefore, in order to prevent deterioration of the ear ratio measurement accuracy due to the temperature change of the test material as described above, the measurement order of the plate wave propagation time in each direction and the measurement time intervals are as follows. (1) The measurement order of the plate wave propagation time in each direction is 0 ° or 90 ° direction -45 ° or 45 ° direction -45 ° or remaining direction of 45 ° direction 0 ° or 90 ° direction of remaining direction or 45 ° or 45 ° direction 0 ° or 90 ° direction 0 ° or 90 ° remaining direction −45 ° or 45 ° remaining direction. (2) The measurement time intervals in each of the above directions are made equal. The effect of the above method will be described. For the sake of simplicity, the rate of decrease in the material temperature is assumed to be constant, and the change in sound speed due to temperature change is also assumed to be constant. , The second measurement can be set to 0 sec, the second to δsec, the second to 2δsec, and the third to 3δsec.
Therefore, when the feature amount Z is obtained by using the above equation (1), the change due to the temperature change is (0 + 3δ) − (δ + 2δ) = 0, and the change in the delay time due to the temperature change is cancelled. Therefore, by setting the measurement order of the plate wave propagation time in each direction and the measurement time interval as described above, it is possible to prevent deterioration of the ear rate measurement accuracy due to a temperature change of the test material.

【0018】以上説明したように,本実施の形態に係る
金属薄板の耳率測定装置では,板波伝播時間の変化を測
定することにより,非破壊で耳率を測定することができ
る。使用する板波は,S0モードに限定しているため,
波形分離は不要であり,また発生装置が単純化できる。
また,板波によって被験材の広い領域を伝播経路として
いるため,局所的な組織変化による影響の少ない,平均
的な耳率を得ることができる。また,板波音速は,実際
の金属薄板の板厚変動である10μm程度ではほぼ一定
と考えてよく,板厚変動の影響をほとんど受けない耳率
測定が可能である。また,板波伝播方向として,圧延方
向,板幅方向以外に,耳率変化に伴う伝播時間の変化が
最も顕著に現れる45°方向を測定し,更に±両方向を
測定することによって,送受信プローブの設置誤差の影
響を低減し,感度よく耳率測定を行うことが可能とな
る。更に,評価値Zを求める上記(1)式では,耳率と
関係のないランダム組織に起因する伝播時間分を相殺
し,耳率測定に必要な伝播時間の相対的変化によって耳
率を測定することができる。
As described above, the ear-rate measuring apparatus for a thin metal plate according to the present embodiment can measure the ear-rate in a non-destructive manner by measuring the change in the plate wave propagation time. Since the plate wave used is limited to the S0 mode,
No waveform separation is required, and the generator can be simplified.
In addition, since a wide area of the test material is used as a propagation path by the plate wave, an average ear rate less affected by local tissue changes can be obtained. In addition, the sound velocity of the plate wave can be considered to be substantially constant at about 10 μm, which is the actual thickness fluctuation of the metal sheet, and the ear rate measurement which is hardly affected by the thickness fluctuation can be performed. In addition, in addition to the rolling direction and the sheet width direction, the 45 ° direction where the change in the propagation time accompanying the change in ear ratio is most remarkable is measured as the direction of propagation of the plate wave, and the ± direction is measured. The influence of the installation error is reduced, and the ear ratio can be measured with high sensitivity. Further, in the above equation (1) for calculating the evaluation value Z, the ear rate is measured based on the relative change of the propagation time required for the ear rate measurement by canceling the propagation time due to the random tissue not related to the ear rate. be able to.

【0019】[0019]

【実施例】上記実施の形態では,各測定方向に対して一
対の送受信プローブを設置し,チャンネル切り替えによ
って各送受信プローブを切り替えて測定しているが,一
対の送受信プローブのみを用い,チャンネル切り替え器
によって上記送受信プローブの設置角度を変更できるよ
うにしてもよい。また,送受信プローブの磁石とメアン
ダコイルの構成は,被験材がアルミ板のように非磁性体
の場合,磁石とメアンダコイルによって被験材をはさむ
配置であってもよい。
[Embodiment] In the above embodiment, a pair of transmission / reception probes are installed in each measurement direction, and each transmission / reception probe is switched by channel switching for measurement. The installation angle of the transmission / reception probe may be changed. When the test material is a non-magnetic material such as an aluminum plate, the configuration of the magnet and the meander coil of the transmission / reception probe may be such that the test material is sandwiched between the magnet and the meander coil.

【0020】[0020]

【発明の効果】以上説明したように,本発明によって,
高価な測定装置を用いることなく,非破壊で,板厚ムラ
や測定装置の設置誤差等の影響を受けにくく,常に安定
した高精度の測定結果を得ることが可能な金属薄板の耳
率測定方法及び装置を提供することができる。
As described above, according to the present invention,
Non-destructive method that does not use expensive measuring equipment, is less susceptible to thickness unevenness and installation errors of measuring equipment, and can always obtain stable and accurate measurement results. And an apparatus can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る金属薄板の耳率測
定装置の概略構成を示すブロック図。
FIG. 1 is a block diagram showing a schematic configuration of a metal sheet ear ratio measuring apparatus according to an embodiment of the present invention.

【図2】 本発明の実施の形態に係る金属薄板の耳率測
定装置の送受信プローブの平面図,及び正面図。
FIGS. 2A and 2B are a plan view and a front view of a transmission / reception probe of the metal thin plate ear ratio measuring apparatus according to the embodiment of the present invention. FIGS.

【図3】 上記送信プローブによる超音波板波発生原理
を示す模式図。
FIG. 3 is a schematic diagram showing the principle of generating an ultrasonic plate wave by the transmission probe.

【図4】 板波のモードを示す図。FIG. 4 is a diagram showing modes of a plate wave.

【図5】 板波の変位分布を示す図。FIG. 5 is a diagram showing a displacement distribution of a plate wave.

【図6】 板波の周波数×板厚と音速の関係を示す図。FIG. 6 is a diagram showing the relationship between the frequency of a plate wave × the plate thickness and the speed of sound.

【図7】 相互相関演算と関数近似による伝播時間の算
出方法を示す図。
FIG. 7 is a diagram showing a method of calculating a propagation time by cross-correlation calculation and function approximation.

【図8】 音速異方性の測定結果の例を示す図。FIG. 8 is a diagram showing an example of a measurement result of sound velocity anisotropy.

【図9】 耳率の評価結果を示す図。FIG. 9 is a view showing evaluation results of ear ratio.

【図10】 上記図9において,評価値として4方向の
平均遅延時間を採用した結果を示す図。
FIG. 10 is a diagram showing a result of employing the average delay time in four directions as an evaluation value in FIG. 9;

【図11】 従来技術1に係る耳率測定装置を示す図。FIG. 11 is a diagram showing an ear ratio measuring device according to the related art 1.

【図12】 従来技術2に係る耳率測定装置を示す図。FIG. 12 is a diagram showing an ear ratio measuring device according to Conventional Technique 2.

【図13】 従来技術3に係る耳率測定装置を示す図。FIG. 13 is a diagram showing an ear ratio measuring device according to a conventional technique 3;

【図14】 従来技術4に係る耳率測定装置を示す図。FIG. 14 is a diagram showing an ear ratio measuring device according to Conventional Technique 4.

【符号の説明】[Explanation of symbols]

1…送信プローブ 2…受信プローブ 3…チャンネル切り替え信号発生器 4…トリガ信号発生器 5…バースト波発振器 6…電力増幅器 7…送信側チャンネル切り替え器 8…受信側チャンネル切り替え器 9…高周波増幅器 10…波形検出器 11…耳率算出器 12…表示器 13…被験材 14…磁石 15…メアンダコイル DESCRIPTION OF SYMBOLS 1 ... Transmission probe 2 ... Reception probe 3 ... Channel switching signal generator 4 ... Trigger signal generator 5 ... Burst wave oscillator 6 ... Power amplifier 7 ... Transmission-side channel switching device 8 ... Reception-side channel switching device 9 ... High-frequency amplifier 10 ... Waveform detector 11 Ear ratio calculator 12 Display 13 Test material 14 Magnet 15 Meander coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 紀生 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所 高砂製作所内 (56)参考文献 特開 平7−318540(JP,A) 特開 平1−301162(JP,A) 特開 平7−328727(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 29/00 - 29/28 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Norio Suzuki 2-3-1 Shinhama, Arai-machi, Takasago-shi, Hyogo Kobe Steel, Ltd. Inside Takasago Works (56) References JP-A-7-318540 (JP, A) JP-A-1-301162 (JP, A) JP-A-7-328727 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 29/00-29/28

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超音波が金属薄板の面内を,圧延方向を
0゜として,0゜,90゜,及びθ(ただし,0゜<θ
<90゜)の方向に所定の距離だけ伝播した時の伝播時
間をそれぞれ測定し,上記各測定方向の伝播時間の変化
分から,板面内の音速の変化分を表す所定の特徴量を演
算し,予め標準試料を用いて求められた特徴量と耳率と
の関係に上記演算された特徴量を当てはめて上記金属薄
板の耳率を求める金属薄板の耳率測定方法において, 上記伝播時間の測定に,S0モードの超音波板波のみを
用いると共に, 上記θについてプラス方向,及びマイナス方向の伝播時
間を測定してなることを特徴とする金属薄板の耳率測定
方法。
(1) An ultrasonic wave is applied in a plane of a sheet metal in a rolling direction.
As 0 °, 0 °, 90 °, and θ (where 0 ° <θ
At the time of propagation at a predetermined distance in the direction of <90 °)
And the change in propagation time in each of the above measurement directions
From the minutes, a predetermined feature representing the change in the speed of sound in the plate is performed.
And the ear ratio and the feature quantity obtained using the standard sample in advance.
By applying the calculated feature value to the relationship
In the method for measuring the ear ratio of a thin metal plate, which determines the ear ratio of a plate, only the S0 mode ultrasonic plate wave is used to measure the above propagation time.
When used, the above θ is propagated in the plus and minus directions
Ear ratio measurement of thin metal sheets characterized by measuring the gap
Method.
【請求項2】 上記特徴量(Z)が, Z=K{n(T A +T B )−(T +1 +T -1 )− … −(T +n +T -n )} (ここに, K:定数 n:上記±θ方向の伝播時間測定組数 A ,T B :それぞれ上記0゜,90゜の方向の伝播時
+ ,T - :それぞれ上記+θ,−θ方向の伝播時間) である請求項1記載の金属薄板の耳率測定方法。
Wherein said characteristic quantity (Z) is, Z = K {n (T A + T B) - (T +1 + T -1) - ... - (T + n + T -n)} ( here, K : Constant n: Propagation time T A , T B in the above ± θ direction: Propagation in the directions of 0 ° and 90 °, respectively.
2. The ear ratio measuring method for a metal sheet according to claim 1 , wherein the intervals T + and T are the propagation times in the + θ and −θ directions, respectively .
【請求項3】 上記θが45゜で, 上記特徴量(Z)が, Z=K{(T A +T B )−(T +45 +T -45 )} (ここに, K:定数 A ,T B :それぞれ上記0゜,90゜の方向の伝播時
+45 ,T -45 :それぞれ上記+45゜,−45゜方向
の伝播時間) である請求項1又は2記載の金属薄板の耳率測定方法。
Wherein said θ is 45 °, the feature quantity (Z) is, Z = K {(T A + T B) - (T +45 + T -45)} ( here, K: constant T A, T B : When propagating in the directions of 0 ° and 90 °, respectively.
Between T +45 , T -45 : + 45 ° and -45 ° directions above
Claim 1 or 2 ears ratio measurement method for a sheet metal according to a propagation time).
【請求項4】 上記伝播時間の変化分に含まれる温度変
化による変化分が上記特徴量の演算において相殺される
ように,上記各方向の伝播時間の測定順序,及び測定時
間間隔を設定してなる請求項1〜3のいずれかに記載の
金属薄板の耳率測定方法。
4. A temperature change included in the change in the propagation time.
The change due to the quantization is canceled out in the calculation of the feature amount.
The measurement order of the propagation time in each direction is
The method according to any one of claims 1 to 3, wherein an interval is set.
Ear ratio measurement method for thin metal plates.
【請求項5】 上記伝播時間の変化分に含まれる温度変
化による変化分が上記 特徴量の演算において相殺される
ように, 上記各方向の伝播時間の測定順序を, (1)0°又は90°方法(2)−45°又は45°方
向(3)−45°又は45°の残り方向(4)0°又は
90°の残り方向, 或いは, (1)−45°又は45°方向(2)0°又は90°方
法(3)0°又は90°の残り方向(4)−45°又は
45°の残り方向とし, 上記各方向の伝播時間の測定時間間隔を等間隔とする請
求項4記載の金属薄板の耳率測定方法。
5. The method according to claim 1, wherein the temperature change included in the change in the propagation time.
The change due to the quantization is canceled out in the calculation of the feature amount.
As described above, the measurement order of the propagation time in each direction is defined as follows: (1) 0 ° or 90 ° method (2) -45 ° or 45 ° method
Direction (3) -45 ° or 45 ° remaining direction (4) 0 ° or
90 ° remaining direction, or (1) -45 ° or 45 ° direction (2) 0 ° or 90 ° direction
Modulo (3) 0 ° or 90 ° remaining direction (4) -45 ° or
The remaining direction shall be 45 °, and the measurement time intervals of the propagation time in each direction shall be equal.
The method for measuring ear ratio of a metal sheet according to claim 4.
【請求項6】 超音波が金属薄板の面内を,圧延方向を
0゜として,0゜,90゜,及びθ(ただし,0゜<θ
<90゜)の方向に所定の距離だけ伝播した時の伝播時
間をそれぞれ測定し,上記各測定方向の伝播時間の変化
分から,板面内の音速の変化分を表す所定の特徴量を演
算し,予め標準試料を用いて求められた特徴量と耳率と
の関係に上記演算された特徴量を当てはめて上記金属薄
板の耳率を求める金属薄板の耳率測定方法において, 上記伝播時間の測定に,S0モードの超音波板波のみを
用いると共に, 上記伝播時間の測定方法が, 上記各伝播方向に伝播する超音波板波の波形を検出し, 該波形と,予め基準試料を用いて検出した基準波形とを
用いて相互相関演算を行い, 該演算結果を関数近似して,最大相関値を与える遅延時
間を求め, 該遅延時間を上記伝播時間として用いるものであること
を特徴とする金属薄板の耳率測定方法。
6. An ultrasonic wave is applied in the rolling direction in the plane of the sheet metal.
As 0 °, 0 °, 90 °, and θ (where 0 ° <θ
At the time of propagation at a predetermined distance in the direction of <90 °)
And the change in propagation time in each of the above measurement directions
From the minutes, a predetermined feature representing the change in the speed of sound in the plate is performed.
And the ear ratio and the feature quantity obtained using the standard sample in advance.
By applying the calculated feature value to the relationship
In the method for measuring the ear ratio of a thin metal plate, which determines the ear ratio of a plate, only the S0 mode ultrasonic plate wave is used to measure the above propagation time.
In addition to the above , the method for measuring the propagation time detects the waveform of the ultrasonic plate wave propagating in each of the propagation directions, and compares the waveform with a reference waveform previously detected using a reference sample.
Performs a cross-correlation operation using the function and approximates the result of the operation as a function to provide the maximum correlation value.
The delay time and use the delay time as the above propagation time
A method for measuring the ear ratio of a thin metal plate, comprising:
【請求項7】 上記特徴量(Z)が, Z=K{n(T A +T B )−2T 1 − … −2T n (ここに, K:定数 n:上記θ方向の伝播時間測定数 A ,T B :それぞれ上記0゜,90゜の方向の伝播時
n :n番目のθ方向の伝播時間) により求められる請求項6記載の金属薄板の耳率測定方
法。
7. The characteristic quantity (Z) is, Z = K {n (T A + T B) -2T 1 - ... -2T n} ( here, K: constant n: number of measuring the θ direction of propagation time T A , T B : Propagation in the directions of 0 ° and 90 ° respectively
7. The method for measuring the ear ratio of a thin metal plate according to claim 6, wherein the interval T n is the n-th propagation time in the θ direction.
Law.
【請求項8】 上記θについてプラス方向,及びマイナ
ス方向の伝播時間を測定してなる請求項6記載の金属薄
板の耳率測定方法。
8. The method according to claim 1, wherein said θ is a plus direction and a minor direction.
7. The thin metal sheet according to claim 6, wherein the propagation time in the metallization direction is measured.
How to measure the ear ratio of a board.
JP8176255A 1996-07-05 1996-07-05 Ear ratio measurement method for thin metal plates Expired - Lifetime JP3037897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8176255A JP3037897B2 (en) 1996-07-05 1996-07-05 Ear ratio measurement method for thin metal plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8176255A JP3037897B2 (en) 1996-07-05 1996-07-05 Ear ratio measurement method for thin metal plates

Publications (2)

Publication Number Publication Date
JPH1019855A JPH1019855A (en) 1998-01-23
JP3037897B2 true JP3037897B2 (en) 2000-05-08

Family

ID=16010375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8176255A Expired - Lifetime JP3037897B2 (en) 1996-07-05 1996-07-05 Ear ratio measurement method for thin metal plates

Country Status (1)

Country Link
JP (1) JP3037897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363137B2 (en) * 2009-02-13 2013-12-11 オリンパス株式会社 Ultrasonic probe, ultrasonic treatment apparatus, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH1019855A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
US4218924A (en) Ultrasonic ellipsometer
Moreau et al. On-line measurement of texture, thickness and plastic strain ratio using laser-ultrasound resonance spectroscopy
KR101447392B1 (en) Apparatus and method for measuring metal structure and material
US20220214313A1 (en) Sizing of remnant thickness in pipes and plates using cut-off properties by widening excitation bands of frequency and wavelength
JPS6156450B2 (en)
JP4795925B2 (en) Ultrasonic thickness measurement method and apparatus
JP2006242770A (en) Electromagnetic ultrasonic flaw detection/measurement method and device
JP3037897B2 (en) Ear ratio measurement method for thin metal plates
JP4534309B2 (en) Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate
JP4553459B2 (en) Structure diagnosis method and structure diagnosis apparatus
JP2009025093A (en) Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave
WO2020161927A1 (en) Flow rate measurement device
JP2697508B2 (en) Ultrasonic thickness measurement method of furnace wall
JP2792286B2 (en) Method for measuring elastic constant of specimen
JPH11125622A (en) Sh wave electromagnetic ultrasonic transducer and measuring method
Dean-Ben et al. Phase and group velocity measurement of ultrasonic guided wavetrains in plates by pulsed TV holography
JP3802479B2 (en) Sheet wave flaw detection method for steel sheet, steel sheet manufacturing method for carrying out this flaw detection method, and steel sheet manufactured by this manufacturing method
JPS6145773B2 (en)
JP4617540B2 (en) Ultrasonic characteristic measuring method, acoustic anisotropy measuring method, and acoustic anisotropy measuring apparatus
JP2001343366A (en) Crystal grain measuring method and device for metal sheet
JPH06347449A (en) Crystal grain size evaluation method for metallic sheet
JP2007309794A (en) Apparatus and method for measuring plate thickness
JP2626361B2 (en) Ultrasonic phase velocity curve determination method and apparatus
JPH1164309A (en) Method and apparatus for measuring material characteristic of roll material
RU2231055C1 (en) Device for ultrasonic monitoring of strength characteristics of material of moving rolled sheets

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 14

EXPY Cancellation because of completion of term