JPS6031010A - Apparatus for measuring thickness of solidified cast piece - Google Patents

Apparatus for measuring thickness of solidified cast piece

Info

Publication number
JPS6031010A
JPS6031010A JP58138924A JP13892483A JPS6031010A JP S6031010 A JPS6031010 A JP S6031010A JP 58138924 A JP58138924 A JP 58138924A JP 13892483 A JP13892483 A JP 13892483A JP S6031010 A JPS6031010 A JP S6031010A
Authority
JP
Japan
Prior art keywords
circuit
slab
thickness
ultrasonic wave
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58138924A
Other languages
Japanese (ja)
Other versions
JPH0236163B2 (en
Inventor
Mitsuo Yoneda
光生 米田
Taketoshi Moriyama
森山 武俊
Satoru Tachikawa
悟 立川
Tetsuo Miyoshi
哲夫 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP58138924A priority Critical patent/JPS6031010A/en
Publication of JPS6031010A publication Critical patent/JPS6031010A/en
Publication of JPH0236163B2 publication Critical patent/JPH0236163B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Continuous Casting (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the thickness of a solidified cast piece highly accurately, by performing statistical processing of a received electromagnetic ultrasonic wave signal, and removing the signal having abnormal waveforms. CONSTITUTION:Based on the transmission pulse of an electromagnetic ultrasonic wave from a pulse generating circuit 8 and the received signal of the electromagnetic ultrasonic wave through a gate circuit 11, the transmitting time of the ultrasonic wave through a steel piece 7 is measured by a transmitting-time measuring circuit 12. The repeated measured values are stored in a memory part of the transmitting-time operating circuit 22. Whether the stored contents are effective or not is determined by the judged result from an abnormal waveform removing circuit 23 based on the comparison of the result of the statistical processing of the amplitude and the wavelength of the received signal from the gate circuit 11 and a preset value. The average value of the effective stored contents is applied to a solidified thickness operating circuit 15. The abnormal waveform signal generated by randum noises and the like is removed by the statistical processing. Thus the thickness of the solidified cast piece is measured highly accurately.

Description

【発明の詳細な説明】 本発明は、電磁超音波を用いて連続鋳造における鋳片の
凝固厚みを測定する装置(以下、シェル扉側“という)
に関するものである。
[Detailed Description of the Invention] The present invention is a device (hereinafter referred to as "shell door side") that measures the solidification thickness of a slab during continuous casting using electromagnetic ultrasonic waves.
It is related to.

従来この種の装置として第1図に示すものがあった。図
において(1)は電磁超音波発生器、(2)は電磁超音
波受信器、(7)は鋳片、(8)はパルス発生回路。
A conventional device of this type is shown in FIG. In the figure, (1) is an electromagnetic ultrasonic generator, (2) is an electromagnetic ultrasonic receiver, (7) is a slab, and (8) is a pulse generation circuit.

(9)は励磁電源、 (IIは増幅器、(」υはゲート
回路、α乃は透過時間測定回路、(IIは表面温度計j
θイ)は鋳片全厚み測定器、(【ωは凝固厚み演算回路
、(1匂は出力回路である。一方、第2図はこのシェル
厚計における′i磁超音波発生、および受信の原理を示
す1ン1である。この図において(3)は電磁超音波発
生コイル、(4)は電磁超音波検出コイル、(5)は磁
界を発生させるための励イ1蜂コイル、(6)は磁気回
路を形成するための磁心である。ここで検出コイル(4
)の出力(21)は増幅器Hに接続されている。
(9) is the excitation power supply, (II is the amplifier, ('υ is the gate circuit, α is the transmission time measurement circuit, (II is the surface thermometer)
θa) is the slab total thickness measuring device, ([ω is the solidification thickness calculation circuit, (1) is the output circuit. On the other hand, Fig. 1-1 shows the principle. In this figure, (3) is an electromagnetic ultrasonic generation coil, (4) is an electromagnetic ultrasonic detection coil, (5) is an excitation coil for generating a magnetic field, and (6) is an electromagnetic ultrasonic detection coil. ) is a magnetic core for forming a magnetic circuit.Here, a detection coil (4) is a magnetic core for forming a magnetic circuit.
) is connected to amplifier H.

次に動作について説明する。パルス発生回路(8)によ
ってパルス信号を通電された発生コイル(3)はコイル
のまわりに矢印a?)のようにパルス磁界を発生し、こ
のパルス磁界はレンツの法則によシ厚みDの鋳片(7)
の表面に起電力を誘起し、うず電流ttnを発生させる
。このうず電流Qlはさらにフレミングの左手の法則に
より矢印(17)のパルス磁界との相互作用によるパル
ス電磁力を発生させこれが鋳片(7)の表面に超音波振
動を起させる。以上が電磁超音波発生の原理である。
Next, the operation will be explained. The generator coil (3) to which the pulse signal is energized by the pulse generator circuit (8) has an arrow a? around the coil. ), and this pulsed magnetic field is generated according to Lenz's law.
An electromotive force is induced on the surface of the eddy current ttn. This eddy current Ql further generates a pulsed electromagnetic force due to interaction with the pulsed magnetic field indicated by the arrow (17) according to Fleming's left-hand rule, which causes ultrasonic vibrations on the surface of the slab (7). The above is the principle of electromagnetic ultrasound generation.

次に鋳片(7)の表面で発生した電磁超音波は鋳片(7
)の中音矢印alO向きに進行し、他面に達すると鋳片
(7)の表面に振=byc発生させる。この振動と励磁
電源(9)によって励磁された励磁コイル(5)が作る
磁界との相互作用によLSI片(7)の表面に起電力が
発生する。これはフレミングの右手の法則によるもので
ある。この起電力は鉤片(7)の表面にうず電流(至)
を発生し、このうず電流の作る磁界がレンツの法則によ
シ、検出コイル(4)に起電力を誘起し。
Next, the electromagnetic ultrasonic waves generated on the surface of the slab (7)
) advances in the direction of the middle arrow alO, and when it reaches the other surface, vibration = byc is generated on the surface of the slab (7). An electromotive force is generated on the surface of the LSI piece (7) due to the interaction between this vibration and the magnetic field created by the excitation coil (5) excited by the excitation power source (9). This is due to Fleming's right-hand rule. This electromotive force causes an eddy current (to) on the surface of the hook (7).
The magnetic field created by this eddy current induces an electromotive force in the detection coil (4) according to Lenz's law.

この起電力信号が受信信号として増幅器員によって、増
幅されゲート回路a0によって時間軸上の必要な部分が
取シ用され、透過時間測定回路Iに送られる。このゲー
ト回路Uυでは通常パルス発生回路のパルス出力タイミ
ング信号を基準にして時間ゲートが作成される。
This electromotive force signal is amplified as a received signal by an amplifier, a necessary portion on the time axis is removed by a gate circuit a0, and is sent to a transmission time measuring circuit I. In this gate circuit Uυ, a time gate is normally created based on the pulse output timing signal of the pulse generating circuit.

次に透過時間測定回路l12では、ゲート回路αDから
入力された受信信号とパルス出力タイミング信号の時間
差から超音波が鋳片(7)の−面からその裏面の他面ま
でに伝(6するに要する時間tをめ。
Next, in the transmission time measurement circuit 112, the ultrasonic wave is transmitted from the - side of the slab (7) to the other side of the back side (6) based on the time difference between the reception signal input from the gate circuit αD and the pulse output timing signal. Please estimate the time t required.

その結東が凝固厚み演算回路αつに送られる。The resulting signal is sent to the solidification thickness calculation circuit α.

さて、今、鋳片内に未凝固部が残っているとし。Now, suppose that there is an unsolidified part left in the slab.

ずでに凝固している部分の厚さをd−d1+r12とす
れば未ぷf同郡の厚さはD−dのはずであるから凝固部
を超音波が伝搬する速度をV 、未凝固部を超音波が伝
搬する速gc、をVtとすれば鉄片全体を超音波が透過
する透過時間tは D−d t=□モ□ ■svt であられされる。一般に■は鋼種によって鋳片の凝固温
度と2表面温度計0■によって測定された表面温度から
平均又は加重平均等によってめた凝固部の平均温度によ
シ超音波伝搬速度の温度依存特注から算出され、又■6
は未凝固部が過冷却状態にあると考えられることからこ
の状態での超音波伝搬速度を実験によってめられた値が
使用される。
If the thickness of the already solidified part is d-d1+r12, then the thickness of the unsolidified part should be D-d, so the speed at which the ultrasonic wave propagates through the solidified part is V, and the unsolidified part is If gc is the propagation speed of the ultrasonic wave, and Vt is the propagation speed of the ultrasonic wave, then the transmission time t for the ultrasonic wave to pass through the entire iron piece is given by D-dt=□mo□■svt. In general, ■ is calculated from the temperature dependence of the ultrasonic propagation velocity according to the average temperature of the solidified part, which is determined by the average or weighted average from the solidification temperature of the slab and the surface temperature measured by two surface thermometers, depending on the steel type. It was, and ■6
Since the unsolidified portion is considered to be in a supercooled state, the value determined experimentally for the ultrasonic propagation velocity in this state is used.

従って、凝固厚み演算回路Q句の入力として前記透過時
間を以外に全厚み測定器a(イ)からの厚み情報りと1
表面温度計α濠からの表面温度情報と鋼種によって決ま
る鋳片の凝固温度値と、未凝固部の超音波伝搬速度Vt
が得られれば前記の関係式から凝固厚みdが算出できる
わけである。算出された凝固厚みdは出力回路(I6)
によQ表示又は記録される。
Therefore, in addition to the transmission time, the thickness information from the total thickness measuring device a (a) and 1 are input to the solidification thickness calculation circuit Q clause.
The surface temperature information from the surface thermometer α moat, the solidification temperature value of the slab determined by the steel type, and the ultrasonic propagation velocity Vt in the unsolidified part
If this is obtained, the solidified thickness d can be calculated from the above relational expression. The calculated solidification thickness d is output to the output circuit (I6)
Q is displayed or recorded.

従来の鋳片凝固厚み測定装置は以上のように構成されて
いるので、外来ノイズ等の偶発ノイズが電磁超音波受信
器の検出コイル側に混入された場合に、これを除外する
ことができず、そのまま受信信号として処理し、誤まっ
た判定(誤測定)をしてしまう欠点があった。
Since the conventional slab solidification thickness measuring device is configured as described above, it is not possible to exclude accidental noise such as external noise from entering the detection coil side of the electromagnetic ultrasonic receiver. However, it has the disadvantage that it is processed as a received signal as it is, resulting in erroneous judgments (erroneous measurements).

この発明は、このような欠点を解消するためになされた
もので、前記のノイズ等によって発生する異常波形信号
を除外し、さらに統計的処理を付加することによシ、き
わめて測定精度の高い鋳片凝固厚み測定装置を提供する
ものである。
This invention was made to eliminate these drawbacks, and by excluding abnormal waveform signals caused by the above-mentioned noise, etc., and by adding statistical processing, it is possible to obtain castings with extremely high measurement accuracy. The present invention provides a piece solidification thickness measuring device.

第3図は、この発明の一実施例を示す図である。FIG. 3 is a diagram showing an embodiment of the present invention.

第3図において、(1)は電磁超音波発生器、(2)は
電磁超音波受信器、(7)は鋳片、(8)はパルス発生
回路。
In FIG. 3, (1) is an electromagnetic ultrasonic generator, (2) is an electromagnetic ultrasonic receiver, (7) is a slab, and (8) is a pulse generation circuit.

(9)は励磁ぬ電源、(l〔は増幅器、al)はゲート
回路、Hは透過時間測定回路、(2邊は透過時間演算回
路、(2東は異常波形除去回路、(1■は表面温度計、
a◇は鋳片全厚み測定器、aつは凝固厚み演算回路、θ
0は出力回路である。
(9) is an unexcited power supply, (l [is an amplifier, al) is a gate circuit, H is a transmission time measurement circuit, (2 side is a transmission time calculation circuit, (2 East is an abnormal waveform removal circuit, (1) is a surface thermometer,
a◇ is the total slab thickness measuring device, a is the solidification thickness calculation circuit, θ
0 is an output circuit.

第4図は、異常波形除去回路はうおよび透過時間測定回
路働の回路構成を示す図である。第4図において、04
)は4変換回路、(ハ)は波形記憶回路。
FIG. 4 is a diagram showing the circuit configuration of the abnormal waveform removal circuit and the transmission time measurement circuit. In Figure 4, 04
) is a 4-conversion circuit, and (c) is a waveform storage circuit.

00は最大振幅点検出回路、0ηは最大値記憶回路。00 is the maximum amplitude point detection circuit, and 0η is the maximum value storage circuit.

(財)はタイミング制御回路、CIは零りロス点検出回
路、働は波長算出回路# C11)は極値点検出回路、
0りは極値記憶回路、(至)は振幅比率演算回路、(ロ
)は波長条件判定回路、(ハ)は振幅条件判定回路、 
C(61および(41)は定数設定回路、(3Dは波形
情報記憶回路。
(Incorporated) is a timing control circuit, CI is a zero loss point detection circuit, and function is a wavelength calculation circuit #C11) is an extreme point detection circuit.
0 is an extreme value storage circuit, (to) is an amplitude ratio calculation circuit, (b) is a wavelength condition judgment circuit, (c) is an amplitude condition judgment circuit,
C (61 and (41) are constant setting circuits, (3D is a waveform information storage circuit.

C3Iは波長平均値算出回路、■は振幅平均値算出回路
、(1〔は比較判定回路、 (42)は送信タイミング
信号、 (43)は受信信号、 (44)は透過時間信
号。
C3I is a wavelength average value calculation circuit, ■ is an amplitude average value calculation circuit, (1 [ is a comparison judgment circuit, (42) is a transmission timing signal, (43) is a reception signal, and (44) is a transmission time signal.

(45)はデータ有効信号、 (46)は透過時間記憶
回路、 (47)は有効データ判定回路、 (4B)は
平均値算出回路、 (49)は平均透過時間信号である
(45) is a data valid signal, (46) is a transmission time storage circuit, (47) is a valid data determination circuit, (4B) is an average value calculation circuit, and (49) is an average transmission time signal.

次に第3図および第4図に示す本発明の一実施例につい
てその動作を説明する。パルス発生回路(8)によシミ
磁紹音波発生器(1)への送信信号と同期した送信タイ
ミング信号(42)が出力され、透過時間測定回路a′
IJおよび異常波形除去回路(財)に入力される。一方
励磁電源(9)により励磁され、受信可能となった電磁
超音波受信器(2)からの受信信号(43)は増幅器a
@により増幅され、ゲート回Mil11によシ必要な信
号のみ時間弁別され、前記透過時間測定回路0擾および
異常波形除去回路体3)に入力される。
Next, the operation of an embodiment of the present invention shown in FIGS. 3 and 4 will be described. The pulse generation circuit (8) outputs a transmission timing signal (42) synchronized with the transmission signal to the stain magnetic wave generator (1), and the transmission time measurement circuit a'
Input to IJ and abnormal waveform removal circuit. On the other hand, the received signal (43) from the electromagnetic ultrasonic receiver (2), which is excited by the excitation power source (9) and becomes receivable, is sent to the amplifier a.
The signal is amplified by @, time-discriminated by the gate circuit Mil11, and inputted to the transmission time measurement circuit 0 and the abnormal waveform removal circuit 3).

透過時間測定回11.f、(lでは、前記の送信タイミ
ング信号(42)と受信信号(45)との時間差から、
透過時間tTk求め、これを透過時間信号(44)とし
て透過時間演算回路c!−へ送シ、透過時間記憶回路(
46)に記憶させる。
Transmission time measurement 11. f, (l, from the time difference between the transmission timing signal (42) and the reception signal (45),
The transmission time tTk is determined, and this is used as the transmission time signal (44) in the transmission time calculation circuit c! - Transfer to the transmission time memory circuit (
46).

さて、異常波形除去回路Q3では前記の受信信号(43
)が、まず”4変換回路e24に入力され、タイミング
制御回路(ハ)の指示するタイミングでサンプリングさ
れ、ディジタル値に変換されて波形記憶回路(ハ)に時
系列で記憶される。なおタイミング制御回路(aは、前
記送信タイミング信号(42)と連動し。
Now, in the abnormal waveform removal circuit Q3, the received signal (43
) is first input to the 4 conversion circuit e24, sampled at the timing instructed by the timing control circuit (c), converted to a digital value, and stored in the waveform storage circuit (c) in time series. The circuit (a is interlocked with the transmission timing signal (42).

受信信号(43)の全波形が充分記憶されるようタイミ
ング制御を行なっている。
Timing control is performed so that the entire waveform of the received signal (43) is sufficiently stored.

第5図は以上のようにして波形記憶回路(ハ)に収めら
れた受信信号(46)の−例を示したものである。
FIG. 5 shows an example of the received signal (46) stored in the waveform storage circuit (c) as described above.

なお第5図ではアナログ波形として示しであるが。Note that in FIG. 5, the waveform is shown as an analog waveform.

実際には時系列に並んだディジタル値として記憶されて
いる。受信信号(43)の記憶が終了すると次にタイミ
ング制御回路(至)の指示により、データが順に読み出
され、最大振幅点検出回路(ハ)により。
In reality, it is stored as digital values arranged in chronological order. When the storage of the received signal (43) is completed, the data is sequentially read out according to instructions from the timing control circuit (to), and is then read out by the maximum amplitude point detection circuit (c).

最大振幅を与える時刻tMが検出され、同時に、最大振
幅値記憶回路によシ、この時の振幅値vMが記憶される
。なお、波形記憶回路(ハ)は時系列にデータを記憶す
るようになっておシ、またデータのサンプリングも、タ
イミング制御回路(2)によシ予め定められた既知のタ
イミングで行なわれているため、波形記憶回路(ハ)に
記憶されているデータの位置を知ることによシ、前記の
時刻tMは容易にめられる。
A time tM giving the maximum amplitude is detected, and at the same time, the amplitude value vM at this time is stored in the maximum amplitude value storage circuit. Note that the waveform storage circuit (c) stores data in chronological order, and data sampling is also performed at known timings predetermined by the timing control circuit (2). Therefore, the above-mentioned time tM can be easily determined by knowing the position of the data stored in the waveform storage circuit (c).

次に1時刻tMが最大振幅値記回路弼により検出される
と、この情報はタイミング制御回路(ハ)に入力する。
Next, when one time tM is detected by the maximum amplitude value recording circuit 2, this information is input to the timing control circuit (c).

タイミング制御回路(ハ)は1時刻〜X対応する波形記
憶回路(イ)上の位置から、順に時間をさかのぼる方向
および時間を下る方向にデータを読み出し1時刻tM前
後の予め設定された範囲における零クロス時刻t2 〜
12 および極大値、極小=22 値を示す時刻tP−1P が、それぞれ零クロス22 点検出回路0Iおよび極値点検出回路Oυによシ検出さ
れる。波長算出回路(至)では上記零クロス時刻より・
たとえば1″′″121〜゛z−2とし1波長を算出す
る。もちろん、波長λをめるに当っては2例えばλ=(
λ −λ 十λ −λ )/2のよう1 −2 2 −
1 にλをtz s tZ # tz jtz の関数とし
て。
The timing control circuit (c) sequentially reads data from the position on the waveform storage circuit (a) corresponding to time 1 to Cross time t2 ~
12, local maximum value, local minimum value = 22, respectively, are detected by the zero cross 22 point detection circuit 0I and the extreme value point detection circuit Oυ. In the wavelength calculation circuit (to), from the above zero cross time,
For example, one wavelength is calculated from 1''''121 to z-2. Of course, when calculating the wavelength λ, we need 2, for example, λ=(
λ −λ 10λ −λ )/2 as 1 −2 2 −
1 as a function of tz s tZ # tz jtz .

−2−112 他の統計的演算手法を導入してもよい。-2-112 Other statistical calculation techniques may also be introduced.

極値記憶回路0りは前記極値点検出回路0υによシ検出
されたそれぞれの極値点t −1Pにおける−22 振幅値V、、−2〜7p2の値を記憶し、振幅比率演算
回路0■は前記の最大値記憶回路(5)に記憶されてい
る振幅値7と・こ0vP−2〜V、とによシ・たとえ(
1−−2〜2)をめる。もちるん、この振幅比率は・V
M・vP−2〜v2よ長る゛トリ”トリ″としてめるな
ど、他の演算処理を行なってもよい。
The extreme value storage circuit 0 stores the values of -22 amplitude values V, -2 to 7p2 at each extreme point t-1P detected by the extreme value point detection circuit 0υ, and is used as an amplitude ratio calculation circuit. 0■ is the amplitude value 7 stored in the maximum value storage circuit (5) mentioned above.
1--2~2). Mochirun, this amplitude ratio is ・V
Other arithmetic processing may be performed, such as forming a "tri" longer than M.vP-2 to v2.

波長条件判定回路(ロ)は、波長算出回路−によシ算出
された波長λが、定数設定回路(至)により予め設定さ
れた範囲に入っているかを判定し、この条件を満足しな
いデータを除去する。同様にして。
The wavelength condition determination circuit (b) determines whether the wavelength λ calculated by the wavelength calculation circuit is within the range preset by the constant setting circuit (to), and detects data that does not satisfy this condition. Remove. Do the same.

振幅条件判定回路(至)は、振幅比率演算回路(至)に
よ請求めた振幅比率k 2〜に2が定数設定回路(ト)
によシ予め設定された条件を満足しているかによってデ
ータの取捨判定を行なう。従って、定数設定回路(7)
による設定条件を満足したデータのみが波長条件判定回
路(ロ)および振幅条件判定回路6つ全通過し、波形情
報記憶回路07)に収められる。
The amplitude condition judgment circuit (to) is a constant setting circuit (to) where 2 is the amplitude ratio k2 to which is requested by the amplitude ratio calculation circuit (to).
Data is determined to be discarded or discarded depending on whether preset conditions are satisfied. Therefore, constant setting circuit (7)
Only data that satisfies the setting conditions described above passes through all six wavelength condition determination circuits (b) and six amplitude condition determination circuits, and is stored in the waveform information storage circuit 07).

ここまでの経過をN回の受信について行なえば。If the process up to this point is repeated for N times of reception.

波形情報記憶回路0θ内にはN回分の波長データのうち
前記判定条件を満足したに個(ただに≦N)の波長デー
タλ1(1=1〜K)と振幅比率データとになる。
In the waveform information storage circuit 0θ, among the N wavelength data, there are only (≦N) wavelength data λ1 (1=1 to K) and amplitude ratio data that satisfy the above-mentioned determination condition.

N回の受信が終了した時点でタイミング制御回路Q植の
指示により波形情報記憶回路0η内に記憶されたに個の
データが順に読み出され、波長平均値算出回IIV1(
財)および振幅平均値算出回路Gつにより。
When the N times of reception are completed, the data stored in the waveform information storage circuit 0η are sequentially read out according to the instructions from the timing control circuit Q, and the wavelength average value calculation time IIV1 (
) and amplitude average value calculation circuit G.

それぞれ0平均値2・kP−2〜kP27%算出さ1・
比較判定回路(40へ送られる。
0 average value 2・kP-2~kP27% calculated 1・
Comparison and judgment circuit (sent to 40).

タイミング制御回路(ハ)は、波長平均値算出回路(至
)および振幅平均値算出回路G!1が、それぞれの平均
値を比較判定回路−へ送った後に、再び波長情報記憶回
路c3カのデータを読み出し、さらに比較列kpとの比
較を行ない、予め定数設定回路(41)により設定され
た偏差値以内に入ったデータに対してのみデータ有効信
号(45)を出力する。
The timing control circuit (c) includes a wavelength average value calculation circuit (to) and an amplitude average value calculation circuit G! 1 sends each average value to the comparison/judgment circuit (41), reads out the data in the wavelength information storage circuit (c3) again, and further compares it with the comparison column (kp) to determine the value set in advance by the constant setting circuit (41). A data valid signal (45) is output only for data that falls within the deviation value.

ここで、前記の透過時間記憶回路(46)に記憶された
ゞ回0透過時間2−タ゛・、(”′″1〜N)Oうち、
前記データ有効信号(45)に対応した透過時間(47
)を通過し、平均値算出回路(48)により透過時間演
算回路が算出され、平均透過時間信号(49)として凝
固厚み演算回路(t51へ送られる。
Here, among the times 0 transmission time 2-T, ("'"1~N)O stored in the transmission time storage circuit (46),
The transmission time (47) corresponding to the data valid signal (45)
), the average value calculation circuit (48) calculates the transmission time calculation circuit, and sends it as an average transmission time signal (49) to the coagulation thickness calculation circuit (t51).

凝固厚み演算回路00では、透過時間演算回路02によ
る平均透過時間1−1.と1表面温度計(ハ)による温
度Tと、鋳片全厚み測定器a4による全厚みDとから、
従来の算出方法と同様にして凝固厚みをめ、出力回路(
10によ)外部へ出力される。
In the solidification thickness calculation circuit 00, the average transmission time 1-1. From the temperature T measured by the surface thermometer (c) and the total thickness D measured by the slab total thickness measuring device A4,
Calculate the solidification thickness in the same way as the conventional calculation method, and calculate the output circuit (
10) is output to the outside.

本実施例では、定数設定回路(至)の設定値が、予め予
想される波長および振幅比率に対して例えば±10%と
なるように設定し、さらに定数設定口に対して、同様に
1例えば±3チと設定することによシ、有用なデータを
損なうことなく、モータや電磁1::1閉器の突入電流
等による急峻な立上りをもつ短波長波形をきわめて効果
的に除去し待た。
In this embodiment, the setting value of the constant setting circuit (to) is set to be, for example, ±10% with respect to the wavelength and amplitude ratio expected in advance, and the setting value of the constant setting circuit (to) is set to be, for example, ±10%. By setting it to ±3, short wavelength waveforms with steep rises caused by inrush currents of motors and electromagnetic 1::1 circuits can be very effectively removed without losing useful data.

なお1以上はディジタル化されたデータを扱うディジタ
ル回路により説明を行なったが、この回路の一部または
全部をアナログ回路によって置き換えたり、あるいはコ
ンピュータを用いてソフトウェアに置き換えたシするこ
とはもちろん可能であり、またそれによって本発明の趣
旨は何はども損われるものではない。また1本実施例で
は、極値点および零クロス点をそれぞれt p −j 
P #22 1 −1 の8点として説明したが1本発明は−222 これに限らず、特に極値点および零クロス点の数を限定
するものではなく、この発明の主旨を逸脱しない範囲に
おいて種々の変形がある。
In addition, although the explanation above has been made using a digital circuit that handles digitized data, it is of course possible to replace part or all of this circuit with an analog circuit, or replace it with software using a computer. However, this does not in any way detract from the spirit of the present invention. In addition, in this embodiment, the extreme value point and zero cross point are respectively t p −j
P #22 1 -1 was explained as 8 points, but the present invention is not limited to -222, and does not particularly limit the number of extreme points and zero cross points, and within the scope of the gist of the present invention. There are various variations.

また2本発明による異常波形除去回路および透過時間演
算回路はシェル厚計のみならず、超音波等の伝播を利用
した他の送受信装置2例えば肉厚計、温度計等にも応用
可能である。
Furthermore, the abnormal waveform removal circuit and the transmission time calculation circuit according to the present invention can be applied not only to shell thickness gauges but also to other transmitter/receiver devices 2 that utilize the propagation of ultrasonic waves, such as wall thickness gauges and thermometers.

以上のように、この発明によれば、外米ノイズ等の偶発
ノイズが電磁超音波受信器の検出コイル側に混入される
こと等によって発生する異常波形信号を除外し、さらに
統計的処理を付加することによシ、きわめて測定精度の
高い鋳片凝固厚み測定を行なうことが可能である。
As described above, according to the present invention, abnormal waveform signals generated due to accidental noise such as foreign noise being mixed into the detection coil side of an electromagnetic ultrasonic receiver are excluded, and further statistical processing is added. By doing so, it is possible to measure the solidified slab thickness with extremely high measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の鋳片凝固厚み測定装置の構成を示すブロ
ック図、第2図は電磁超音波発生および受信の原理を示
す図、第3図は本発明装置の一実施例の構成を示す図、
第4図は本発明装置の異常波形除去回路および透過時間
演算回路の回路構成を示すブロック図、第5図は本発明
装置によって得られる受信信号の一例を示す図である。 図中j+1)は電磁超音波発生器、(2)は電磁超音波
受信器、(3)は電磁超音波発生コイル、(4)は電磁
超音波検出コイル、(5)は励磁コイル、(6)は磁心
、(7)は鋳片、(8)はパルス発生回路、(9)は励
磁電源、α〔は増幅器、aυはゲート回路、03は透過
時間測定回路、0階は表面温度計、■は鋳片全厚み測定
器、 aSは凝固厚み演算回路、 onは出力回路、α
ηはパルス磁界、α榎および翰は渦電流、a鴨は超音波
の伝播方向、COOは電磁超音波検出コイル(4)の出
力、(社)は透過時間演算回路、(ハ)は異常波形除去
回路、Q→はス変換回路、(ハ)は波形記憶回路、@は
最大振幅点検出回路、@は最大値記憶回路、0樟はタイ
ミング制御回路、@は零クロス点検出回路、(至)は波
長算出回路、OI)は極値点検出回路、0擾′は極値記
憶回路、(ハ)は振幅比率演算回路、(財)は波長条件
判定回路、(ハ)は振幅条件判定回路、(7)および(
41)は定数設定回路、 t3nは波形情報記憶回路、
(至)は波長平均値算出回路、 C31は振幅平均値算
出回路、00は比較判定回路、 (42)は送信タイミ
ング信号、 (43)は受信信号、 (44)は透過時
間信号、 (45)はデータ有効信号、 (46)は透
過時間記憶回路、 (47)は有効データ判定回路t 
(48)は平均値算出回路。 (49)は平均透過時間信号でちゃ。 なお1図中、同一あ暮いは相当部分には同一符号を付し
て示しである。 代理人 大岩増雄 特開昭GO−31010(6)
Figure 1 is a block diagram showing the configuration of a conventional slab solidification thickness measuring device, Figure 2 is a diagram showing the principle of electromagnetic ultrasonic generation and reception, and Figure 3 is a diagram showing the configuration of an embodiment of the device of the present invention. figure,
FIG. 4 is a block diagram showing the circuit configuration of the abnormal waveform removal circuit and the transmission time calculation circuit of the device of the present invention, and FIG. 5 is a diagram showing an example of a received signal obtained by the device of the present invention. In the figure, j+1) is an electromagnetic ultrasonic generator, (2) is an electromagnetic ultrasonic receiver, (3) is an electromagnetic ultrasonic generation coil, (4) is an electromagnetic ultrasonic detection coil, (5) is an excitation coil, and (6) is an electromagnetic ultrasonic wave generator. ) is the magnetic core, (7) is the slab, (8) is the pulse generation circuit, (9) is the excitation power supply, α[ is the amplifier, aυ is the gate circuit, 03 is the transmission time measurement circuit, 0th floor is the surface thermometer, ■ is the slab total thickness measuring device, aS is the solidification thickness calculation circuit, on is the output circuit, α
η is the pulse magnetic field, α and Kan are the eddy currents, a is the propagation direction of the ultrasonic wave, COO is the output of the electromagnetic ultrasonic detection coil (4), Co. is the transmission time calculation circuit, and (c) is the abnormal waveform Elimination circuit, Q→S conversion circuit, (C) waveform storage circuit, @ maximum amplitude point detection circuit, @ maximum value storage circuit, 0 樟 timing control circuit, @ zero cross point detection circuit, (to ) is the wavelength calculation circuit, OI) is the extreme value point detection circuit, 0' is the extreme value storage circuit, (C) is the amplitude ratio calculation circuit, (F) is the wavelength condition judgment circuit, (C) is the amplitude condition judgment circuit , (7) and (
41) is a constant setting circuit, t3n is a waveform information storage circuit,
(to) is a wavelength average value calculation circuit, C31 is an amplitude average value calculation circuit, 00 is a comparison judgment circuit, (42) is a transmission timing signal, (43) is a reception signal, (44) is a transmission time signal, (45) is a data valid signal, (46) is a transmission time storage circuit, (47) is a valid data judgment circuit t
(48) is an average value calculation circuit. (49) is the average transmission time signal. Note that in FIG. 1, the same parts are indicated by the same reference numerals. Agent Masuo Oiwa Tokukai Sho GO-31010 (6)

Claims (1)

【特許請求の範囲】 連続鋳造される鋳片の一面に設置され、かつ高周波パル
ス電流を通電されるコイルを備えて上記鋳片表面に超音
波を発生させる電磁超音波発生器と、上記鋳片の他面に
設置されて前記超音波を受信する検出コイルを備えた電
磁超音波受信器と。 上記の超音波発生器および受信器の超音波発生。 受信のタイミングから前記鋳片を超音波が前記−面から
他面まで伝搬するに要する時間tをめる時間測定回路と
、前記鋳片の全厚みDを測定する全厚み測定器と、前記
時間測定回路によって測定された時間t、前記全厚み測
定器によって測定された全厚みp、前記鋳片の厚みdの
凝固部を超音波が伝搬する速度■、および前記鋳片の厚
みD −dの未凝固部を超音波が伝搬する速度■6とか
ら凝固部厚みdを算出する演算回路とからなることを特
徴とする鋳片凝固厚み測定装置において、前記電磁超音
波受信器によって受信された受信信号に対して統計的処
理を施し、異常波形信号を除外することを目的とした異
常波形除去回路を前記電磁超音波受信器と前記時間測定
回路の間に設けたことを特徴とする鋳片凝固厚み測定装
置。
[Scope of Claims] An electromagnetic ultrasonic generator that is installed on one surface of a continuously cast slab and includes a coil to which a high-frequency pulse current is applied and generates ultrasonic waves on the surface of the slab; an electromagnetic ultrasonic receiver including a detection coil installed on the other surface to receive the ultrasonic wave; Ultrasonic generation of the above ultrasonic generator and receiver. a time measuring circuit that measures the time t required for the ultrasonic wave to propagate from the - side to the other side of the slab from the timing of reception; a total thickness measuring device that measures the total thickness D of the slab; and a total thickness measuring device that measures the total thickness D of the slab; The time t measured by the measurement circuit, the total thickness p measured by the total thickness measuring device, the speed at which the ultrasonic wave propagates through the solidified part of the slab with a thickness d, and the thickness D - d of the slab. In the slab solidification thickness measuring device, the apparatus comprises: a calculation circuit that calculates the solidified part thickness d from the speed at which the ultrasonic waves propagate in the unsolidified part; A slab solidification characterized in that an abnormal waveform removal circuit is provided between the electromagnetic ultrasonic receiver and the time measurement circuit for the purpose of performing statistical processing on the signal and excluding abnormal waveform signals. Thickness measuring device.
JP58138924A 1983-07-29 1983-07-29 Apparatus for measuring thickness of solidified cast piece Granted JPS6031010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138924A JPS6031010A (en) 1983-07-29 1983-07-29 Apparatus for measuring thickness of solidified cast piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138924A JPS6031010A (en) 1983-07-29 1983-07-29 Apparatus for measuring thickness of solidified cast piece

Publications (2)

Publication Number Publication Date
JPS6031010A true JPS6031010A (en) 1985-02-16
JPH0236163B2 JPH0236163B2 (en) 1990-08-15

Family

ID=15233312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138924A Granted JPS6031010A (en) 1983-07-29 1983-07-29 Apparatus for measuring thickness of solidified cast piece

Country Status (1)

Country Link
JP (1) JPS6031010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255909A (en) * 1988-08-22 1990-02-26 Nippon Steel Corp Arithmetic unit for solidification thickness of cast billet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557665A (en) * 1978-07-04 1980-01-19 Nippon Kokan Kk <Nkk> Thickness gauge of ultrasonic wave type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557665A (en) * 1978-07-04 1980-01-19 Nippon Kokan Kk <Nkk> Thickness gauge of ultrasonic wave type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255909A (en) * 1988-08-22 1990-02-26 Nippon Steel Corp Arithmetic unit for solidification thickness of cast billet

Also Published As

Publication number Publication date
JPH0236163B2 (en) 1990-08-15

Similar Documents

Publication Publication Date Title
JPS58167918A (en) Ultrasonic wave flow speed measuring device
JPS6031010A (en) Apparatus for measuring thickness of solidified cast piece
KR101330032B1 (en) Ultrasonic flow measurement system dft correlation method
JPS6031009A (en) Apparatus for measuring thickness of solidified cast piece
JPS6027361B2 (en) How to measure the thickness of conductive materials
Tsuchiya et al. Numerical simulation of nonlinear sound wave propagation using constrained interpolation profile method: one-dimensional case
JPH0464788B2 (en)
JPH09280969A (en) Method and apparatus for measurement of bending stress of pipe
CN113008174B (en) Electromagnetic ultrasonic sound time measuring method and device
KR100671418B1 (en) Method for Measuring Thickness of Metal Sheet by using Electromagnetic Acoustic Transducer
JP2008096171A (en) Electromagnetic ultrasonic sensor and electromagnetic ultrasonic detection system
JP2002084659A (en) Power system analyzing simulator
JP3512512B2 (en) Ultrasonic flow velocity measuring device
JPH02248824A (en) Apparatus for measuring residual stress
RU2085858C1 (en) Ultrasound method for detection of product volume which runs through pipe and device which implements said method
JPS63311192A (en) Ultrasonic range finder
JP3844282B2 (en) Object identification apparatus and method
RU2189111C2 (en) Displacement measurement technique
JPH038688B2 (en)
JPS5925182B2 (en) AE monitoring device
CN117784148A (en) Ultrasonic wave-based obstacle detection method, device and storage medium
SU777850A1 (en) Magnetostriction displacement sensor
RU2080559C1 (en) Magnetostriction motion-to-code transducer
JP2005009893A (en) Ultrasonic fluid measuring device
JPH03291562A (en) Received signal processing method for electromagnetic ultrasonic wave