JPH0362911A - Metallized film capacitor and manufacture thereof - Google Patents

Metallized film capacitor and manufacture thereof

Info

Publication number
JPH0362911A
JPH0362911A JP19895189A JP19895189A JPH0362911A JP H0362911 A JPH0362911 A JP H0362911A JP 19895189 A JP19895189 A JP 19895189A JP 19895189 A JP19895189 A JP 19895189A JP H0362911 A JPH0362911 A JP H0362911A
Authority
JP
Japan
Prior art keywords
electrode
face
dielectric
film
metallized film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19895189A
Other languages
Japanese (ja)
Other versions
JPH07105311B2 (en
Inventor
Hisaaki Tachihara
久明 立原
Kunio Oshima
大嶋 邦雄
Tadashi Kimura
忠司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1198951A priority Critical patent/JPH07105311B2/en
Publication of JPH0362911A publication Critical patent/JPH0362911A/en
Publication of JPH07105311B2 publication Critical patent/JPH07105311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/145Organic dielectrics vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To prevent the deterioration of a dielectric loss tangent characteristic and accuracy of capacitance and to make it possible to achieve a compact configuration and mass production at low costs by forming an irregular surface so that a part of 90% or more of the surface is specified on the end surfaces of neighboring dielectrics at the end surface parts of specified electrode leads having the specified thickness. CONSTITUTION:A plurality of electrodes 2a and 2b whose thickness of the electrode resistor is within a range of 100-900Angstrom by vapor deposition or a method similar to the vapor deposition. The end surfaces of a film capacitor where the electrodes of the capacitor are led out are brought into contact with a gas at least containing a component having reacting property with an organic material which constitutes a dielectric. Parts 11a-11b on the side of the end surfaces for the electrode leads of the dielectric are chemically removed selectively. The vapor deposition electrodes are exposed from the end surfaces for the electrode leads. Neighboring dielectric layers are lapped by 90% or more at said end surfaces so as not to exceed 0.2mm, and irregularities are formed. In this way, the excellent connection between the vapor deposition electrodes having the thin film thickness required for obtaining a self- recovering property and the end surface electrodes can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属化フィルムコンデンサとその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to metallized film capacitors and methods of manufacturing the same.

従来の技術 近年、電子部品の小型化が要求されるようになり、フィ
ルムコンデンサにおいても小型化、高性能化が望筐れで
いる。
BACKGROUND OF THE INVENTION In recent years, there has been a demand for smaller electronic components, and film capacitors are also desired to be smaller and have higher performance.

フィルムコンデンサの小型化のためには、誘電体フィル
ムを薄膜化する方法が最も有効であるっ以下、図面を参
照しながら、従来の金属化フィルムコンデンサの一例に
ついて説明する。
The most effective way to reduce the size of a film capacitor is to make the dielectric film thinner. Hereinafter, an example of a conventional metallized film capacitor will be described with reference to the drawings.

第6図は従来の金属化フィルムコンデンサ素子の構造を
示す断面図である。
FIG. 6 is a sectional view showing the structure of a conventional metallized film capacitor element.

第6図において、sla 、rslbは金属化フィルム
、52a 、s2bは蒸着もしくは蒸着に類するたトエ
ばスパッタ、イオンブレーティング等(以下、まとめて
蒸着と称する。)により形成された金属蒸着膜である。
In FIG. 6, sla and rslb are metalized films, and 52a and s2b are metal vapor deposited films formed by vapor deposition or similar methods such as vapor sputtering, ion blating, etc. (hereinafter collectively referred to as vapor deposition). .

58a 、5Bbは非金属化部(マージンと呼ばれる。58a and 5Bb are non-metalized portions (referred to as margins).

)67は外部へ電極を引き出すために設けられたフィル
ムの間隙(ラップと呼ばれる。)、54a 、54bI
I′i、電極引き出し端面に金属溶射等で形成された端
面電極である。
) 67 is a film gap (called a wrap) provided for drawing out the electrode to the outside, 54a, 54bI
I'i is an end face electrode formed by metal spraying or the like on the end face of the electrode extension.

従来、蒸着膜と端面電極の接続を確実に行なうためにフ
ィルムの巻き取り時に、フィルムを幅方向に交互にずら
せていわゆるラップ57を形成していた。これにより、
金属溶射等で形成される端面電極s4a、s4bの一部
分がラップに介挿され、蒸着膜5ea 、ssbと接続
されていた。
Conventionally, in order to ensure reliable connection between the deposited film and the end electrode, when the film is wound up, the film is alternately shifted in the width direction to form so-called wraps 57. This results in
A portion of the end face electrodes s4a, s4b formed by metal spraying or the like was inserted into the wrap and connected to the vapor deposited films 5ea, ssb.

発明が解決しようとする課題 しかしながら、フィルムが薄膜化されると、フィルム自
身のいわゆる腰の弱さにより、金属溶射時にラップがふ
さがってし1い、蒸着膜と端面電極との接続が妨げられ
てし!うという問題があった。そのため誘電正接特性の
劣化や、静電容量精度の劣化を招いていた。
Problems to be Solved by the Invention However, when the film is made thinner, the so-called stiffness of the film itself causes the wrap to become clogged during metal spraying, which prevents the connection between the deposited film and the end electrode. death! There was a problem. This resulted in deterioration of dielectric loss tangent characteristics and deterioration of capacitance accuracy.

また、小型化のためには、ラップは小さい方がよく、現
在最小で0.2mm程度といわれているが、前記のよう
な工法ではラップを前記の寸法以下で一定に保つことが
難しく、歩留りの低下、製造装置のコスト高を招いてい
た。
In addition, for miniaturization, it is better to have a smaller lap, and currently it is said that the minimum size is about 0.2 mm, but with the above construction method, it is difficult to maintain the lap at a constant value below the above-mentioned size, and the yield is low. This has led to a decline in production costs and an increase in the cost of manufacturing equipment.

さらに、フィルムが薄膜化されると、絶縁欠陥が増える
ことによシ絶縁破壊限界が低下するため、使用定格電圧
を従来と同一のま1で高くすることが困雉となり、使用
電圧を低減する等の措置が必要であった。
Furthermore, as the film becomes thinner, the dielectric breakdown limit decreases due to the increase in insulation defects, making it difficult to increase the rated voltage to the same level as before, so the voltage used must be reduced. Such measures were necessary.

ここで、金属化フィルムコンデンサには自己回復性があ
り、これは蒸着膜抵抗が大きいほど(すなわち蒸着膜厚
が薄いほど)自己回復能力が高く、したがって、蒸着膜
厚を薄くすることで、使用電圧を同じま1に高くするこ
とができるが、従来の技術では、フィルムの膜厚を薄く
しても自己回復性を利用して使用電圧を同じに保とうと
すると、蒸着膜厚を非常に薄くしなければならなかった
Here, metallized film capacitors have self-healing properties, which means that the greater the resistance of the deposited film (that is, the thinner the deposited film is), the higher the self-healing ability is. It is possible to increase the voltage at the same level, but with conventional technology, if you try to maintain the same voltage using self-healing properties even if the thickness of the film is thinned, the thickness of the deposited film must be extremely thin. I had to.

一方、蒸着膜厚を非常に薄くすると、蒸着膜と端面電極
との接続が非常に弱くなり、誘電正接特性の劣化や、静
電容量精度の劣化を招き実用に適さなくなると共に、コ
ンデンサ中に抵抗成分が増え、性能の低下につながると
いう課題を有していた。
On the other hand, if the thickness of the deposited film is made very thin, the connection between the deposited film and the end electrode becomes very weak, leading to deterioration of dielectric loss tangent characteristics and capacitance accuracy, making it unsuitable for practical use. The problem was that the number of components increased, leading to a decline in performance.

これを解決するために、従来の技術では、第6図に示す
ように、蒸M電極の対向する部分62a。
In order to solve this problem, in the conventional technique, as shown in FIG. 6, opposing portions 62a of vaporized M electrodes are used.

62bは蒸着膜厚を薄くし、電極引き出し部分近傍66
a、66bは蒸M膜厚を厚くして、蒸着膜厚を部分的に
変えることで、この課題を解決していたが、この方法で
は、蒸着工法が複雑になるためにコスト高につながると
いう課題を有していた。
62b, the thickness of the deposited film is reduced, and the area 66 near the electrode extension part is
A and 66b solved this problem by increasing the thickness of the evaporated M film and partially changing the thickness of the evaporated film, but this method complicates the evaporation method and leads to higher costs. I had an issue.

本発明は上記従来の方法にあった課題に鑑がみ、フィル
ムを薄1嘆化しても定格電圧を下げることなく、筐た蒸
着電極と端面電極の必要な接続が十分に確保されて誘電
正接特性や静電容量精度の劣化をおこさず、かつ小型で
、低コストで量産できるフィルムコンデンサとその製造
方法を提供しようとするものである。
In view of the above-mentioned problems with the conventional methods, the present invention has been developed to ensure that even if the film is made thinner, the necessary connection between the evaporated electrode in the casing and the end face electrode is sufficiently secured without lowering the rated voltage. The present invention aims to provide a film capacitor that does not cause deterioration in characteristics or capacitance accuracy, is small in size, and can be mass-produced at low cost, and a method for manufacturing the same.

課題を解決するための手段 上記課題を解決するために、本発明は、蒸着もしくは蒸
着に類する工法によって膜厚が100人から900人の
範囲にある複数の電極を形成し、フィルムコンデンサの
電極引き出しをすべき端面を、誘電体を構成する有機材
料と反応性のある成分を少なくとも含むガスに接触させ
て、誘電体の電極引き出し端面側部分を化学的に選択的
除去するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention forms a plurality of electrodes with a film thickness in the range of 100 to 900 wafers by vapor deposition or a method similar to evaporation, and forms a plurality of electrodes with a thickness in the range of 100 to 900 wafers. The end surface to be removed is brought into contact with a gas containing at least a component reactive with the organic material constituting the dielectric material, and the portion of the dielectric material on the side of the electrode extension end surface is chemically and selectively removed.

筐た、蒸着電極を前記電極引き出しをすべき端面より露
出させ、また、隣り合う誘電体層を前記端面中90多以
上0.2mmを超えない範囲でラップさせて凹凸を形成
するものである。
The evaporated electrode is exposed from the end face where the electrode is to be drawn out, and the adjacent dielectric layers are lapped within the end face within a range of not less than 90 mm and not more than 0.2 mm to form irregularities.

作   用 との構成により、薄いフィルムを用いて、隣り合う誘電
体層を前記端面中90%以上0.2flを超えない範囲
でラップさせて凹凸を形成することができるので、蒸着
電極と端面電極の必要な接続が十分に確保されて誘電正
接特性や静電容量精度の劣化をおこさず、また自己回復
性を得るために必要な薄い膜厚の蒸着電極と端面電極と
の良好な接続を得ることができ、蒸着膜厚を部分的に変
えることなく、使用定格電圧を従来と同一の11で小型
の金属化フィルムコンデンサを量産性良く、低コストで
製造することができる。
By using a thin film, it is possible to form unevenness by wrapping adjacent dielectric layers in a range of 90% or more but not exceeding 0.2fl on the end face, so that the vapor deposited electrode and the end face electrode can be overlapped. The necessary connections are sufficiently secured to prevent deterioration of dielectric loss tangent characteristics and capacitance accuracy, and a good connection between the thin evaporated electrode and the end electrode, which is necessary to obtain self-healing properties, is obtained. Therefore, it is possible to manufacture small metallized film capacitors with good mass productivity and at low cost with the same rated voltage of 11 as before without partially changing the thickness of the deposited film.

実施例 以下、本発明の金属化フィルムコンデンサとその製造方
法について、実施例にもとづいて説明する。
EXAMPLES Hereinafter, the metallized film capacitor of the present invention and its manufacturing method will be explained based on examples.

第1図は本実施例における金属化フィルムコンデンサの
断面図である。
FIG. 1 is a sectional view of the metallized film capacitor in this example.

図において、1a、1bは片面金属化フィルムで、?1
ii2 a 、 2 bを有機材料からなる誘電体膜(
以下フィルムと称す。)3a、3b上にそれぞれ真空蒸
着法で形成したものである。4a、+bは金属溶射法で
形成した端面電極で、その一部分6が’t’Ff、極2
 a 、 2 bとフイ/’ム3a*3bとの間、もし
くはフィルム3a、3b間の一部分の少なくとも一方に
介挿されている。端面型1i4a#4bの一部分6が、
上述のように層間に挿入されていることにより、片面金
属化フィルム1a、1bの積層体と端面電極4a、+b
との付着力が非常に強くなっている。
In the figure, 1a and 1b are single-sided metalized films, and ? 1
ii2a and 2b are dielectric films made of organic materials (
Hereinafter referred to as film. ) are formed on each of 3a and 3b by a vacuum evaporation method. 4a, +b are end face electrodes formed by metal spraying, a part 6 of which is 't'Ff, pole 2
It is inserted between a, 2b and the films 3a*3b, or at least one of the parts between the films 3a and 3b. A portion 6 of the end face mold 1i4a#4b is
By being inserted between the layers as described above, the laminate of the single-sided metallized films 1a and 1b and the end surface electrodes 4a and +b
The adhesion with is very strong.

esa、ebはそれぞれ電i2a#2bの突き出し部で
、フィルム3a 、3bの電極引き出し端面側部分を後
述するように選択的に除去することによって形成された
ものであり、電12at2bの表面と端面電極4a、4
bとが接続されているので、非常に良好なコンタクトが
得られる。
esa and eb are protruding parts of the electrode i2a#2b, respectively, which are formed by selectively removing the electrode extension end surface side portions of the films 3a and 3b, as described later, and the surface of the electrode 12at2b and the end surface electrode. 4a, 4
Since it is connected with b, very good contact can be obtained.

以下、その具体例について第2図を用いて説明する。Hereinafter, a specific example thereof will be explained using FIG. 2.

誘電体となる厚さ2μmのポリ−エチレンテレフタレー
トフィルム3 a p 3 b上K 、アルミニウムを
真空蒸着して厚さ300人の電極2a、2bを形成して
、片面金属化フィルム1a、1bを作製した。そして、
この片面金属化フィルム1a。
A poly-ethylene terephthalate film 3 a p 3 b with a thickness of 2 μm is used as a dielectric material, and aluminum is vacuum-deposited to form electrodes 2 a and 2 b with a thickness of 300 mm, thereby producing single-sided metallized films 1 a and 1 b. did. and,
This single-sided metallized film 1a.

1b上に、マスキング法により、フィルム長さ方向に延
びる複数条の非金属化部分7a、了すを設けた。
A plurality of non-metalized portions 7a extending in the length direction of the film were provided on 1b by a masking method.

この片面金属化フィルム1a、1bを非金属化部分8の
位置をずらして重ね、それを第2図Aに示すように平板
状のボビン8に巻き取り、加熱しながらプレスした後、
ボビン8から切断、分離して第2図Bに示すような、複
数のコンデンサ要素を有する積層体9を得た。
These single-sided metallized films 1a and 1b are stacked with the non-metalized portion 8 shifted, wound onto a flat bobbin 8 as shown in FIG. 2A, and pressed while heating.
The bobbin 8 was cut and separated to obtain a laminate 9 having a plurality of capacitor elements as shown in FIG. 2B.

この積層体9を、各コンデンサ要素の電極引き出し端面
A 、 A/で、鋭利な刃物例えば剃刀を用いて切断し
て、第2図Cに示すコンデンサ要素10を得た。この切
断によって、コンデンサ要素10の電極引き出し端面1
1a、11bには、フィルム3a、3bと電極2a、2
bとの間、もしくはフィルム3a、3b間に間隙12が
多数形成されていた。
This laminate 9 was cut using a sharp knife, such as a razor, at the electrode extension end faces A and A/ of each capacitor element to obtain a capacitor element 10 shown in FIG. 2C. By this cutting, the electrode extension end face 1 of the capacitor element 10 is
1a, 11b include films 3a, 3b and electrodes 2a, 2.
A large number of gaps 12 were formed between the films 3a and 3b or between the films 3a and 3b.

このようにして得られたコンデンサ要素10の電極引き
出し端面11a、11bと間隙12に、酸素を高周波電
界によって電離して得られる反応性の高いガヌを反応さ
せて、フィルム電極引き出し端面側部分と、間隙部分に
露出するフィルム3a3bの表面の一部分を選択的に除
去した。フィルム電極引き出し端面側部分の除去幅は当
初の電極引き出し端面11a、11bから0.05fl
とした。
The electrode end faces 11a, 11b and the gap 12 of the capacitor element 10 obtained in this manner are reacted with highly reactive GANU obtained by ionizing oxygen using a high-frequency electric field to form a film electrode end face side portion. , a portion of the surface of the film 3a3b exposed in the gap was selectively removed. The removal width of the film electrode extension end face side portion is 0.05 fl from the original electrode extension end faces 11a and 11b.
And so.

フィルム3a、sbの選択的除去により、電極2a、2
bが第2図りに符号13a、13bで示したような突き
出した形となった。その後、亜鉛を金属溶射法で電極引
き出し端面11a、11bにそれぞれ吹き付けて、端面
電極4a、4bを形成し、コンデンサ母材71を得た。
By selectively removing the films 3a, sb, the electrodes 2a, 2
b has a protruding shape as shown by numerals 13a and 13b in the second drawing. Thereafter, zinc was sprayed onto the electrode lead-out end faces 11a and 11b using a metal spraying method to form end face electrodes 4a and 4b, thereby obtaining a capacitor base material 71.

このようにして得られたコンデンサ母材71を第3図に
示すような回転の刃72を用いて切断してコンデンサ素
子73を得た。
The capacitor base material 71 thus obtained was cut using a rotating blade 72 as shown in FIG. 3 to obtain a capacitor element 73.

このようにして得られたコンデンサ素子を切断して観察
すると、第1図に示すように端面電極4a。
When the capacitor element thus obtained is cut and observed, an end surface electrode 4a can be seen as shown in FIG.

4bの一部分が、電極2a、2bとフィルム3a。A part of 4b is electrodes 2a, 2b and film 3a.

3bとの間、もしくはフィルム3a、sb間のlE棒引
き出し端面側の一部分に多数介挿されていた。
3b or between the films 3a and sb, a large number of them were inserted in a part of the end surface of the lE rod drawn out.

しかし、それらは対向する電極に1では達していなかっ
た。
However, they did not reach the opposing electrodes at 1.

比較例Aとして、同じ、厚さ2μmのポリーエチレンテ
レフタレートフィルム上ニ、アルミニウムを真空蒸着し
て厚さ2O00人の電極を形成して、片面金属化フィル
ムを作製し、実施例と同じ工程に供してコンデンサ素子
を得た。
As Comparative Example A, aluminum was vacuum-deposited on the same polyethylene terephthalate film with a thickness of 2 μm to form an electrode with a thickness of 2000 μm to produce a single-sided metallized film, which was subjected to the same process as in the example. A capacitor element was obtained.

比較例Bとして、同じ、厚さ2μmのポリ−エチレンテ
レフタレートフィルム上に、アルミニウムを真空蒸着し
て厚さ300人の電甑を形成して、片面金属化フィルム
を作製し、ラップをQ 、 2 ml設けて巻き取り、
加熱しながらプレスした後、亜鉛を金属溶射法で電極夕
1き出し端面にそれぞれ吹き付けて、端面電極を形成し
、コンデンサ素子を得た。
As Comparative Example B, on the same polyethylene terephthalate film with a thickness of 2 μm, aluminum was vacuum-deposited to form a 300-μm-thick electric kettle to produce a single-sided metallized film, and the wrap was Q, 2. ml and roll it up,
After pressing while heating, zinc was sprayed onto the exposed end faces of each electrode layer using a metal spraying method to form end face electrodes and obtain capacitor elements.

このようにして得られた比較例Bのコンデンサ素子を切
断して観察すると、第 図に示すように端面’を極の一
部分が、フィルムのラップに多数介挿されていた。しか
し、それらは対向する電極にまでは達していなかった。
When the thus obtained capacitor element of Comparative Example B was cut and observed, it was found that many portions of the poles at the end surfaces were inserted into the wrap of the film, as shown in FIG. However, they did not reach the opposing electrodes.

以上のようにして得られた本発明のコンデンサと、比較
例A、Bのコンデンサについて直流電圧50V、100
V、125V、150Vを60秒印加したときの静電容
量変化率、誘電正接特性、絶縁抵抗の値を第4図に示す
The capacitor of the present invention obtained as described above and the capacitors of Comparative Examples A and B were
FIG. 4 shows the capacitance change rate, dielectric loss tangent characteristics, and insulation resistance values when V, 125 V, and 150 V were applied for 60 seconds.

第4図に示すように、本発明の金属化フィルムコンデン
サは比較例に比べて高い電圧筐で静電容量変化率、誘電
正接特性、絶縁抵抗値が良好な値1で保持されている。
As shown in FIG. 4, the metallized film capacitor of the present invention maintains the capacitance change rate, dielectric loss tangent characteristic, and insulation resistance value at a good value of 1 at a higher voltage than the comparative example.

これは本発明の金属化フィルムコンデンサが良好な自己
回復性を有していることを示している。
This indicates that the metallized film capacitor of the present invention has good self-healing properties.

また、本発明のコンデンサと、比較例A、Bのコンデン
サについて高温負荷信頼性試験に供した。
Further, the capacitor of the present invention and the capacitors of Comparative Examples A and B were subjected to a high temperature load reliability test.

試験温度は86℃、負荷電圧は100Vで行なった。そ
の結果を第6図に示す。
The test temperature was 86°C and the load voltage was 100V. The results are shown in FIG.

第5図に示すように、本発明の金属化フィルムコンデン
サは静電容量変化率、誘電正接特性、絶縁抵抗値が比較
例に比べて長い間係たれている。
As shown in FIG. 5, the capacitance change rate, dielectric loss tangent characteristic, and insulation resistance value of the metallized film capacitor of the present invention have been maintained for a long time compared to the comparative example.

比較例Aは絶縁抵抗値が低下し、比較例Bは静電容量変
化率が大きく、誘電正接特性が劣化した。
In Comparative Example A, the insulation resistance value decreased, and in Comparative Example B, the capacitance change rate was large and the dielectric loss tangent characteristics were deteriorated.

以上の結果から本発明のフィルムコンデンサは、使用電
圧が高くても良好な特性を保持できることが分かる。
The above results show that the film capacitor of the present invention can maintain good characteristics even at high operating voltages.

また本発明のフィルムコンデンサは、電極引き出し端面
部の凹凸量が通常のラップよシ小さぐできるので外形寸
法を小型でき、蒸着膜厚を部分的に変えるなどの特別な
工法を必要としないので製造コストが上がることがなく
、量産性が高い。
In addition, the film capacitor of the present invention can have smaller external dimensions because the amount of unevenness on the end face of the electrode extension can be smaller than that of ordinary wrap, and manufacturing does not require special methods such as partially changing the thickness of the deposited film. There is no cost increase and mass production is high.

なお、本実施例では誘電体としてポリ−エチレンテレフ
タレートを使用し、それに電極としてアルミニウムを真
空蒸着して形成し、さらに端面電極として亜鉛を金属溶
射して形成したものを用いたが、構成材料や、電極ふ・
よび端面電極の形成方法はこれに限られるものではなく
、通常のフィルムコンデンサで用いられる材料や、電極
釦よび端面電極の形成方法を用いることができる。
In this example, polyethylene terephthalate was used as the dielectric, aluminum was vacuum-deposited as the electrode, and zinc was sprayed as the end electrode. , electrode
The method for forming the electrode button and the end surface electrode is not limited to this, and materials used in ordinary film capacitors and methods for forming the electrode button and the end surface electrode can be used.

また、コンデンサの構造としては、本実施例に示した積
層形に限られるものではなく、巻回形に対しても上述と
同等硬化が得られるのは言う1でもないことである。
Furthermore, the structure of the capacitor is not limited to the laminated type shown in this embodiment, and it is of course possible to obtain the same hardening as described above with a wound type as well.

さらに、フィルムの構造も、本実施例で示した片面金属
化フィルムに限られるものではなく、両面金属化フィル
ムや、金属化フィルムの少なくとも片面に誘電体を形成
した複合フィルムを用いても、上述と同等の効果を得る
ことができる。
Furthermore, the structure of the film is not limited to the single-sided metallized film shown in this example, and a double-sided metalized film or a composite film in which a dielectric material is formed on at least one side of the metallized film may be used as described above. The same effect can be obtained.

フィルムの選択的除去方法も、本実施例に限られるもの
ではなく、例えばフッ素や水素を活性化して反応性を高
めたガスなどを用いることができる。
The method for selectively removing the film is not limited to this example, and for example, a gas with increased reactivity by activating fluorine or hydrogen can be used.

発明の効果 以上のように本発明は、蒸着もしくは蒸着に類する工法
によって電極抵抗膜厚100人から900人の範囲にあ
る複数の電極を形成し、フィルムコンデンサの電極引き
出しをすべき端面を、誘電体を構成する有機材料と反応
性のある成分を少なくとも含むガスに接触させて、誘電
体の電極引き出し端面側部分を化学的に選択的除去し、
蒸M電極を前記電極引き出しをすべき端面より露出させ
、また、隣り合う誘電体層を前記端面中90%以上0.
2mmを超えない範囲でラップさせて凹凸を形成するこ
とによシ、蒸着膜厚を部分的に変えることなく、自己回
復性を得るために必要な薄い膜厚の蒸着電極と端面電極
との良好な接続を得ることができ、小型で使用定格電圧
の高く、かつ信頼性の高いフィルムコンデンサを量産性
良く提供することができる。
Effects of the Invention As described above, the present invention forms a plurality of electrodes with an electrode resistor film thickness in the range of 100 to 900 by vapor deposition or a method similar to vapor deposition, and the end face of the film capacitor from which the electrodes are to be drawn is dielectrically coated. chemically and selectively removing the electrode extension end surface side portion of the dielectric by bringing it into contact with a gas containing at least a component reactive with the organic material constituting the body;
The vaporized M electrode is exposed from the end surface where the electrode is to be drawn out, and the adjacent dielectric layer is 0.0.
By forming unevenness by lapping within a range not exceeding 2 mm, it is possible to create a good bond between the thin evaporated electrode and the end electrode, which is necessary to obtain self-healing properties, without partially changing the thickness of the evaporated film. This makes it possible to provide a compact, highly reliable film capacitor with a high operating voltage rating and with good mass production efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるフィルムコンデンサの一実施例
の断面図、第2図はその製造方法を説明するための図で
あり、同図(8)は平板状のボビンを使用した巻き取シ
工程を示す斜視図、同図(B)は平板状のボビンから分
離した積層体の断面図、同図(qは積層体を切断した状
態を示す断面図、同図0は積層体の電極引き出し端面側
部分を選択的に除去した状態を示す断面図、第3図はコ
ンデンサ母材を切断してコンデンサ素子を得る工程を示
す斜視図、第4図は本発明と比較例のコンデンサについ
て直流電圧を印加したときの結果を示した特性図、第6
図は同じく高温負荷試験の結果を示した0t!J=図、
第6図は従来のフィルムコンデンサの断面図、第7図は
従来のフィルムコンデンサに釦ケる蒸着膜厚を部分的に
変えた例を示した断面図である。 1a、1b・・・・・・片面金属化フィルム、2a、2
b・・・・・・電極、3a、3b・・・・・・誘電体膜
(フィルム)、4a、4b・・・・・・端面電極、5・
・・・・・端面電極の一部分、ea 、eb・・・・・
・電極2a、2bの突き出し部。
Figure 1 is a sectional view of one embodiment of the film capacitor according to the present invention, Figure 2 is a diagram for explaining the manufacturing method thereof, and Figure (8) is a winding system using a flat bobbin. A perspective view showing the process. Figure (B) is a sectional view of the laminate separated from the flat bobbin. Figure 0 is a cross-sectional view of the laminate separated from the flat bobbin. 3 is a cross-sectional view showing a state in which the end face side portion is selectively removed, FIG. 3 is a perspective view showing the process of cutting the capacitor base material to obtain a capacitor element, and FIG. 4 is a DC voltage diagram for capacitors of the present invention and a comparative example. Characteristic diagram showing the results when applying
The figure also shows the results of the high temperature load test at 0t! J = figure,
FIG. 6 is a sectional view of a conventional film capacitor, and FIG. 7 is a sectional view showing an example of a conventional film capacitor in which the thickness of the deposited film is partially changed. 1a, 1b... Single-sided metallized film, 2a, 2
b... Electrode, 3a, 3b... Dielectric film (film), 4a, 4b... End electrode, 5.
...Part of the end electrode, ea, eb...
-Protruding parts of electrodes 2a and 2b.

Claims (11)

【特許請求の範囲】[Claims] (1)膜厚が100Åから900Åの範囲にある複数の
電極と、前記電極間に配置され少なくとも1層以上の有
機材料からなる誘電体と、電極引き出し端面にそれぞれ
付与され前記電極と交互に接続されている端面電極とを
備え、前記電極引き出し端面部において隣り合う誘電体
の端面が凹凸面をなし、かつその凹凸量が0.2mmを
こえない範囲で前記電極引き出し端面中90%以上ある
ことを特徴とする金属化フィルムコンデンサ。
(1) A plurality of electrodes having a film thickness in the range of 100 Å to 900 Å, a dielectric material made of at least one layer of organic material disposed between the electrodes, and a dielectric material provided on each electrode extension end face and alternately connected to the electrodes. and an end face electrode, the end faces of adjacent dielectrics in the electrode lead-out end face portion are uneven surfaces, and the amount of the unevenness is not more than 0.2 mm and covers 90% or more of the electrode lead-out end face. A metallized film capacitor featuring:
(2)端面電極の少なくとも一部分が、電極引き出し端
面において少なくとも5μm以上凹凸する誘電体層間、
もしくは誘電体と電極の層間に介挿されていることを特
徴とする請求項1記載の金属化フィルムコンデンサ。
(2) At least a portion of the end face electrode has an uneven dielectric layer of at least 5 μm or more on the electrode extension end face;
2. The metallized film capacitor according to claim 1, wherein the metallized film capacitor is interposed between a dielectric layer and an electrode layer.
(3)100Åから900Åの範囲にある複数の電極を
形成し、前記電極間に配置されている少なくとも1層以
上の有機材料からなる誘電体との積層物あるいは巻回物
における前記誘電体の端面のそろっている電極引き出し
端面を、前記有機材料と反応性のある成分を少なくとも
含むガスに接触させて前記誘電体の前記電極引き出し端
面側部分を化学的に選択的除去した後に、端面電極を形
成することを特徴とする金属化フィルムコンデンサの製
造方法。
(3) An end face of the dielectric in a laminate or a wound product in which a plurality of electrodes having a thickness in the range of 100 Å to 900 Å are formed and the dielectric consists of at least one layer of organic material arranged between the electrodes. forming an end electrode after chemically selectively removing a portion of the dielectric on the side of the electrode extension end surface by contacting the electrode extension end face with the aligned electrode extension end face with a gas containing at least a component reactive with the organic material; A method for manufacturing a metallized film capacitor, characterized by:
(4)誘電体の前記電極引き出し端面側部分を、少なく
とも酸素を含むプラズマで化学的に選択的除去すること
を特徴とする請求項3記載の金属化フィルムコンデンサ
の製造方法。
(4) The method for manufacturing a metallized film capacitor according to claim 3, characterized in that the portion of the dielectric material on the side of the electrode extension end surface is chemically and selectively removed using plasma containing at least oxygen.
(5)誘電体の前記電極引き出し端面側部分を、酸素を
含むガスにCF_4,SF_6およびN_2Oのうちの
少なくとも一種を添加したプラズマで化学的に選択的除
去することを特徴とする請求項3記載の金属化フィルム
コンデンサの製造方法。
(5) The electrode extension end surface side portion of the dielectric is chemically and selectively removed using plasma containing oxygen-containing gas added with at least one of CF_4, SF_6, and N_2O. A method of manufacturing metallized film capacitors.
(6)誘電体の前記電極引き出し端面側部分を、少なく
とも酸素を含むプラズマから引き出した酸素ラジカルで
化学的に選択的除去することを特徴とする請求項3記載
の金属化フィルムコンデンサの製造方法。
(6) The method for manufacturing a metallized film capacitor according to claim 3, characterized in that the portion of the dielectric on the side of the electrode extension end face is chemically and selectively removed using oxygen radicals extracted from plasma containing at least oxygen.
(7)誘電体の前記電極引き出し端面側部分を、少なく
ともオゾンを含むガスで化学的に選択的除去することを
特徴とする請求項3記載の金属化フィルムコンデンサの
製造方法。
(7) The method of manufacturing a metallized film capacitor according to claim 3, characterized in that the portion of the dielectric material on the side of the electrode extension end surface is chemically and selectively removed using a gas containing at least ozone.
(8)誘電体の前記電極引き出し端面側部分を、少なく
ともオゾンを含むガスにN_2Oを添加したガスで化学
的に選択的除去することを特徴とする請求項3記載の金
属化フィルムコンデンサの製造方法。
(8) The method for manufacturing a metallized film capacitor according to claim 3, characterized in that the portion of the dielectric on the side of the electrode extension end face is chemically and selectively removed with a gas containing at least ozone and N_2O added thereto. .
(9)誘電体の前記電極引き出し端面側部分を化学的に
選択的除去する際に、紫外線を照射することを特徴とす
る請求項7または8記載の金属化フィルムコンデンサの
製造方法。
(9) The method for manufacturing a metallized film capacitor according to claim 7 or 8, wherein ultraviolet rays are irradiated when selectively removing the electrode extension end face side portion of the dielectric material chemically.
(10)膜厚が100Åから900Åの範囲にある電極
層を有し、かつ複数のコンデンサ要素を有する広幅の片
面金属化フィルムを巻回もしくは積層する工程と、前記
工程で得られた巻回物あるいは積層物を電極引き出し端
面部分で切断する工程と、前記電極引き出し端面を前記
フィルムを構成する有機材料と反応性のある成分を少な
くとも含むガスに接触させて前記フィルムの電極引き出
し端面側部分を化学的に選択的除去する工程と、前記電
極引き出し端面側部分に端面電極を形成する工程とを有
する金属化フィルムコンデンサの製造方法。
(10) A step of winding or laminating a wide single-sided metalized film having an electrode layer with a film thickness in the range of 100 Å to 900 Å and having a plurality of capacitor elements, and a wound product obtained in the above step. Alternatively, the step of cutting the laminate at the end face portion of the electrode lead-out side, and the step of bringing the end face of the lead-out electrode into contact with a gas containing at least a component reactive with the organic material constituting the film to chemically cut the end face side portion of the electrode lead-out face of the film. 1. A method for manufacturing a metallized film capacitor, the method comprising the steps of: selectively removing the capacitor; and forming an end electrode on the end surface side portion of the electrode extension.
(11)膜厚が100Åから900Åの範囲にある電極
層を有し、かつ複数のコンデンサ要素を有する広幅の両
面金属化フィルムと広幅の合わせフィルムとを交互に重
ね合わせるように巻回もしくは積層する工程と、前記工
程で得られた巻回物あるいは積層物を電極引き出し端面
部分で切断する工程と、前記電極引き出し端面を前記フ
ィルムを構成する有機材料と反応性のある成分を少なく
とも含むガスに接触させて前記フィルムの電極引き出し
端面側部分を化学的に選択的除去する工程と、前記電極
引き出し端面側部分に端面電極を形成する工程とを有す
る金属化フィルムコンデンサの製造方法。
(11) A wide double-sided metallized film having an electrode layer with a film thickness in the range of 100 Å to 900 Å and a plurality of capacitor elements and a wide laminated film are alternately wound or laminated. a step of cutting the rolled product or laminate obtained in the step at the end face portion of the electrode extension, and contacting the end face of the electrode extension with a gas containing at least a component reactive with the organic material constituting the film. A method for manufacturing a metallized film capacitor, comprising the steps of: chemically selectively removing a portion of the film on the side of the electrode extension end face; and forming an end face electrode on the side portion of the electrode extension end face.
JP1198951A 1989-07-31 1989-07-31 Metallized film capacitor and manufacturing method thereof Expired - Lifetime JPH07105311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1198951A JPH07105311B2 (en) 1989-07-31 1989-07-31 Metallized film capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1198951A JPH07105311B2 (en) 1989-07-31 1989-07-31 Metallized film capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0362911A true JPH0362911A (en) 1991-03-19
JPH07105311B2 JPH07105311B2 (en) 1995-11-13

Family

ID=16399659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1198951A Expired - Lifetime JPH07105311B2 (en) 1989-07-31 1989-07-31 Metallized film capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07105311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103930960A (en) * 2011-11-11 2014-07-16 松下电器产业株式会社 Film capacitor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169229A (en) * 1981-04-10 1982-10-18 Matsushita Electric Ind Co Ltd Oil-immersed metallized film capacitor
JPS587812A (en) * 1981-07-06 1983-01-17 松下電器産業株式会社 Method of producing metallized film condenser
JPS5937564A (en) * 1982-08-27 1984-03-01 Canon Inc Transfer material conveying device
JPS59163826A (en) * 1983-03-08 1984-09-14 Toshiba Corp Dry etching method
JPS59165423A (en) * 1983-03-11 1984-09-18 Comput Basic Mach Technol Res Assoc Tapered etching of organic resin film
JPS6032322A (en) * 1983-08-02 1985-02-19 Toshiba Corp Resist film removing device
JPS6122612A (en) * 1984-04-16 1986-01-31 スペクトラム コントロール インコーポレーテツド Method of treating edge of monolithic capacitor
JPS62190828A (en) * 1986-02-18 1987-08-21 松下電器産業株式会社 Manufacture of metallized film capacitor
JPS62272539A (en) * 1986-05-20 1987-11-26 Fujitsu Ltd Removing method for resist
JPS63262843A (en) * 1987-04-20 1988-10-31 Nec Corp Gas plasma etching method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169229A (en) * 1981-04-10 1982-10-18 Matsushita Electric Ind Co Ltd Oil-immersed metallized film capacitor
JPS587812A (en) * 1981-07-06 1983-01-17 松下電器産業株式会社 Method of producing metallized film condenser
JPS5937564A (en) * 1982-08-27 1984-03-01 Canon Inc Transfer material conveying device
JPS59163826A (en) * 1983-03-08 1984-09-14 Toshiba Corp Dry etching method
JPS59165423A (en) * 1983-03-11 1984-09-18 Comput Basic Mach Technol Res Assoc Tapered etching of organic resin film
JPS6032322A (en) * 1983-08-02 1985-02-19 Toshiba Corp Resist film removing device
JPS6122612A (en) * 1984-04-16 1986-01-31 スペクトラム コントロール インコーポレーテツド Method of treating edge of monolithic capacitor
JPS62190828A (en) * 1986-02-18 1987-08-21 松下電器産業株式会社 Manufacture of metallized film capacitor
JPS62272539A (en) * 1986-05-20 1987-11-26 Fujitsu Ltd Removing method for resist
JPS63262843A (en) * 1987-04-20 1988-10-31 Nec Corp Gas plasma etching method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103930960A (en) * 2011-11-11 2014-07-16 松下电器产业株式会社 Film capacitor
CN103930960B (en) * 2011-11-11 2017-05-03 松下知识产权经营株式会社 Film capacitor
CN106783169A (en) * 2011-11-11 2017-05-31 松下知识产权经营株式会社 Thin film capacitor
CN106783170A (en) * 2011-11-11 2017-05-31 松下知识产权经营株式会社 Thin film capacitor
CN106783169B (en) * 2011-11-11 2018-08-24 松下知识产权经营株式会社 Thin film capacitor
CN106783170B (en) * 2011-11-11 2018-08-24 松下知识产权经营株式会社 Thin film capacitor

Also Published As

Publication number Publication date
JPH07105311B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
KR920009175B1 (en) Film capacitor and manufacture of the same
JPH0817143B2 (en) Film capacitor and manufacturing method thereof
US5844770A (en) Capacitor structures with dielectric coated conductive substrates
JPS5826652B2 (en) Kinzokuka film capacitor
JPH0362911A (en) Metallized film capacitor and manufacture thereof
JPH0258764B2 (en)
JPH0334520A (en) Manufacture of film capacitor
JP2842350B2 (en) Multilayer capacitors
JPH0533524B2 (en)
JPH0334521A (en) Manufacture of film capacitor
JPH11186090A (en) Capacitor and metallized dielectric for the capacitor
JPS6014499B2 (en) Manufacturing method for resin-clad plastic film capacitors
US4422126A (en) Noninductive electrical capacitor
JPH1140451A (en) Laminate film capacitor and manufacture thereof
JPS6357932B2 (en)
JPH05109583A (en) Film capacitor
JPH0141260B2 (en)
JPH0379014A (en) Manufacture of film capacitor
JPS62183507A (en) Manufacture of laminated capacitor
JPS5867017A (en) Method of producing metallized film condenser
JPS62194606A (en) Thin film dielectric material
JPH02222130A (en) Metallized organic film capacitor and manufacture thereof
JPS60231315A (en) Film capacitor
JPS6286603A (en) Zinc sulphide thin film dielectric material
JPH11251175A (en) Capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 14