JPS6357932B2 - - Google Patents

Info

Publication number
JPS6357932B2
JPS6357932B2 JP56197514A JP19751481A JPS6357932B2 JP S6357932 B2 JPS6357932 B2 JP S6357932B2 JP 56197514 A JP56197514 A JP 56197514A JP 19751481 A JP19751481 A JP 19751481A JP S6357932 B2 JPS6357932 B2 JP S6357932B2
Authority
JP
Japan
Prior art keywords
oil
film
metal
metallized film
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56197514A
Other languages
Japanese (ja)
Other versions
JPS5897823A (en
Inventor
Noryuki Sugiura
Kenji Ishida
Kenji Kuwata
Kazuo Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56197514A priority Critical patent/JPS5897823A/en
Publication of JPS5897823A publication Critical patent/JPS5897823A/en
Publication of JPS6357932B2 publication Critical patent/JPS6357932B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は誘電体フイルムの表面に金属電極を蒸
着などにより形成した金属化フイルムを巻回、ま
たは積層することにより構成される金属化フイル
ムコンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metallized film capacitor, which is constructed by winding or laminating a metallized film in which a metal electrode is formed by vapor deposition or the like on the surface of a dielectric film. .

従来、金属化フイルムコンデンサは以下に述べ
るような方法により製造されていた。まず、第1
図に示すようにポリプロピレンフイルム、ポリエ
ステルフイルム、ポリカーボネートフイルムなど
の誘電体フイルム1の両面に、真空蒸着法などに
よりアルミニウム、亜鉛等の金属電極2を前記誘
電体フイルム1の幅方向の端部に1mm〜5mm程度
の非金属化部分3を設けて形成することにより、
両面金属化フイルムを得、そしてその金属化フイ
ルムの両面に、ポリカーボネート、アセチルセル
ロール等の誘電体層4を塗布した後、これを巻回
し、その後その巻回した素子の両端面に亜鉛、
錫、銅、鉛等の金属材料を溶射して電極引出し部
5を形成し、さらにその電極引出し部5にリード
線6を溶接等により接続してコンデンサ素子を
得、そのコンデンサ素子に適当な外装を施すこと
によりコンデンサを得ている。
Conventionally, metallized film capacitors have been manufactured by the method described below. First, the first
As shown in the figure, on both sides of a dielectric film 1 such as polypropylene film, polyester film, or polycarbonate film, metal electrodes 2 made of aluminum, zinc, etc. are applied by vacuum evaporation or the like to the ends of the dielectric film 1 in the width direction for 1 mm. By forming a non-metalized part 3 of about ~5 mm,
After obtaining a double-sided metallized film and applying a dielectric layer 4 of polycarbonate, acetyl cellulose, etc. to both sides of the metallized film, this is wound, and then zinc,
A metal material such as tin, copper, or lead is thermally sprayed to form an electrode lead-out part 5, and a lead wire 6 is connected to the electrode lead-out part 5 by welding or the like to obtain a capacitor element, and a suitable exterior is applied to the capacitor element. A capacitor is obtained by applying

このような巻回型コンデンサの他に、積層型コ
ンデンサも多数生産されており、この場合はボビ
ンに巻回した後、切断して製造するという方式が
多く用いられているが、基本的な構造は、ほぼ巻
回型と同じである。
In addition to these wound-type capacitors, many multilayer capacitors are also produced, and in this case, they are often manufactured by winding them around a bobbin and then cutting them, but the basic structure is is almost the same as the wound type.

ところで、このようにして製造される金属化フ
イルムコンデンサにおいて、非金属化部分3は電
極引出し部5を形成した時に、金属電極2が互い
に反対側の電極引出し部5と接触するのを防ぐ目
的で設けられるものであり、この非金属化部分3
は、コンデンサ使用時に印加される電圧に耐える
絶縁性を有していることが必要である。この絶縁
性の要求により、従来のフイルムコンデンサで
は、定格電圧の低いものでも非金属化部分の幅を
1.0mm程度設けるのが一般的であつた。
By the way, in the metallized film capacitor manufactured in this way, the non-metalized portion 3 is used for the purpose of preventing the metal electrode 2 from coming into contact with the electrode extension part 5 on the opposite side when the electrode extension part 5 is formed. This non-metalized portion 3
It is necessary that the capacitor has insulation properties that can withstand the voltage applied when using a capacitor. Due to this insulation requirement, conventional film capacitors, even those with low rated voltages, have a narrow width of the non-metallic part.
It was common to provide a thickness of about 1.0 mm.

しかしながら、この非金属化部分3は、コンデ
ンサの静電容量に全く寄与しない部分であり、ロ
スになる部分である。従つて、静電容量に寄与し
ている金属電極2の幅、すなわち対向電極幅が比
較的大きいコンデンサの場合、この非金属化部分
3の幅はあまり重要な問題とはならないが、対向
電極幅が小さいコンデンサの場合、材料費面、コ
ンデンサの形状等で重要な問題となつている。
However, this non-metalized portion 3 does not contribute to the capacitance of the capacitor at all and is a loss portion. Therefore, in the case of a capacitor in which the width of the metal electrode 2 that contributes to capacitance, that is, the width of the counter electrode is relatively large, the width of the non-metalized portion 3 is not a very important issue, but the width of the counter electrode In the case of capacitors with small capacitors, there are important issues in terms of material costs, capacitor shape, etc.

ところで、この非金属化部分としての非金属蒸
着部の形成は、蒸着工程中において、連続進行す
る蒸着基板上に金属蒸着を実施するとともに、必
要部分に非金属蒸着部分をつくりつつ、蒸着工程
を進行させる必要性が存在する。
By the way, the formation of the non-metal evaporated portion as the non-metalized portion is achieved by continuously performing metal evaporation on the evaporation substrate during the evaporation process, and while creating the non-metal evaporation portion in the necessary areas, the evaporation process is continued. There is a need to proceed.

このような必要性に対しては、非金属蒸着部と
しての必要部分をテープで覆うテープマスク方式
および前記必要部分に油を付着させるオイルマス
ク方式が公知である。
To address this need, there are known tape mask methods in which the necessary portions as non-metal vapor deposition portions are covered with tape and oil mask methods in which oil is applied to the necessary portions.

しかし、テープマスク方式にあつては、必要部
分を覆うように耐熱テープを移動し、必要部分へ
の蒸着金属を前記耐熱テープに付着させて必要な
部分を得る方式であるため、そのテープ幅は機械
的強度に耐えられるように、一般的には2mm以上
を必要とし、しかもテープが移動しているために
非金属蒸着部分の精度も±0.5mm程度あり、テー
プ方式での1mm以下の極細幅の非金属蒸着部の形
成は困難である。
However, in the tape mask method, the heat-resistant tape is moved to cover the required area, and the vapor-deposited metal is attached to the heat-resistant tape to obtain the required area, so the width of the tape is In order to withstand mechanical strength, a width of 2 mm or more is generally required, and since the tape is moving, the accuracy of the non-metal evaporated part is about ±0.5 mm, so the tape method has an extremely narrow width of 1 mm or less. It is difficult to form non-metallic deposited parts.

一方、オイルマスク方式は、金属の蒸着処理を
行うに際して、予め必要とする非金属蒸着部分に
油蒸発器のノズルから油をフイルムに噴射して油
を付着させると、蒸着してきた金属蒸気が被膜を
形成し得ないことを利用した方式である。なお、
この方式において、フイルムに付着した油は、金
属蒸着を行う真空装置中で大部分が蒸発してしま
う。
On the other hand, in the oil mask method, when performing metal vapor deposition processing, oil is sprayed onto the film from the nozzle of an oil evaporator to the non-metal vapor deposition area that needs to be deposited in advance, and the deposited metal vapor forms a film. This method takes advantage of the fact that it cannot be formed. In addition,
In this method, most of the oil adhering to the film evaporates in a vacuum apparatus that performs metal vapor deposition.

しかし、このオイルマスク方式により得られる
非金属蒸着部の最小幅は約1mmであり、また
300μm程度の周辺部のずれ(蒸着ボケ)が生じ
てしまう。
However, the minimum width of the non-metal evaporated area obtained by this oil mask method is approximately 1 mm, and
A deviation (deposition blur) of about 300 μm occurs at the periphery.

本発明はこのオイルマスク方式の問題点の解決
を目的としてなされたものであり、0.05mm〜1mm
の極細幅の非金属蒸着部分の形成が可能な製造方
法を提供するものである。すなわち、本発明にお
いては、蒸気金属核の形成を防止する油を、金属
蒸着時に蒸発させることなく、適量の油を残すこ
とで、極細幅の非金属蒸着部を形成することを特
徴とするものである。以下、具体的な実施例に基
づき、さらに詳しく説明する。
The present invention was made with the aim of solving the problems of this oil mask method.
The purpose of the present invention is to provide a manufacturing method capable of forming a non-metal evaporated portion with an extremely narrow width. That is, the present invention is characterized in that an appropriate amount of oil that prevents the formation of vapor metal nuclei is left behind during metal deposition without being evaporated, thereby forming a non-metal deposition part with an extremely narrow width. It is. Hereinafter, it will be explained in more detail based on specific examples.

3.5μmの厚さを有するポリエチレンテレフタレ
ートフイルム7上に、第2図に示す真空蒸着機に
よりアルミニウムを300Å〜600Åの厚さに真空蒸
着した。この時、ポリエチレンテレフタレートフ
イルム7は巻取軸8から巻出されてローラーを介
して順次送給され、油蒸発器9のノズルから噴射
される絶縁油が200〜30000Åの厚さで付着された
後、クーリングキヤン10で裏面から冷却され
る。そして、別のクーリングキヤン11により裏
面から冷却されながら、蒸着源12から蒸発して
くるアルミニウムが蒸着された後、巻取軸13に
巻取られる。
Aluminum was vacuum deposited to a thickness of 300 Å to 600 Å on a polyethylene terephthalate film 7 having a thickness of 3.5 μm using a vacuum evaporator shown in FIG. At this time, the polyethylene terephthalate film 7 is unwound from the take-up shaft 8 and fed sequentially through rollers, and is coated with insulating oil sprayed from the nozzle of the oil evaporator 9 to a thickness of 200 to 30,000 Å. , and is cooled from the back side by a cooling can 10. Then, while being cooled from the back side by another cooling can 11, aluminum evaporated from the vapor deposition source 12 is vapor-deposited and then wound onto the winding shaft 13.

ここで、前記クリングキヤン10,11はでき
るだけ低温の方がよい。
Here, it is preferable that the temperature of the cling canisters 10 and 11 is as low as possible.

第3図は、巻取軸13に巻取られる前の本発明
の方法によつて蒸着された金属化フイルムの一部
を示しており、第3図において14はポリエチレ
ンテレフタレートフイルム7上に蒸着されたアル
ミニウム、15は非金属化部分、16は残留油で
ある。
FIG. 3 shows a part of the metallized film deposited by the method of the present invention before being wound onto the winding shaft 13, in FIG. 15 is the non-metallized portion, and 16 is the residual oil.

ここで、第4図〜第6図に従来のオイルマスク
方式により得た金属化フイルムと本発明の方法に
より得た金属化フイルムの非金属化部分を比較し
て示している。なお、第4図〜第6図において、
Aは油蒸発器9のノズル吐出口の寸法、Bは蒸着
後の非金属化部分15の周辺部の蒸着ボケの寸法
である。
Here, FIGS. 4 to 6 show a comparison of the non-metalized portions of a metallized film obtained by the conventional oil mask method and a metallized film obtained by the method of the present invention. In addition, in FIGS. 4 to 6,
A is the dimension of the nozzle discharge port of the oil evaporator 9, and B is the dimension of the vapor deposition blur around the non-metalized portion 15 after vapor deposition.

また、第7図に非金属化部分15の残留油の量
と蒸着ボケの寸法との関係を示している。
Further, FIG. 7 shows the relationship between the amount of residual oil in the non-metalized portion 15 and the size of the vapor deposition blur.

第4図はクーリングキヤン10,11を用いて
冷却を行わずに蒸着を行つた従来の方法によるも
ので、非金属化部分15の残留油の量が0〜50Å
の厚さの範囲となつた。その蒸着ボケ寸法は、第
7図に示すように約300μmである。
FIG. 4 shows a conventional method in which vapor deposition is performed without cooling using cooling cans 10 and 11, and the amount of residual oil in the non-metalized portion 15 is 0 to 50 Å.
range of thickness. The size of the vapor deposition blur is approximately 300 μm as shown in FIG.

また、第5図は本発明の方法によるもので、誘
電体フイルムとしてのポリエチレンテレフタレー
トフイルム7に油蒸発器9のノズルより噴射され
た絶縁油を200Å〜2200Åの厚みに付着するよう
に噴射させ、次にクーリングキヤン10,11に
より、非金属化部分15の油を冷却させたもので
ある。この時、クーリングキヤン10,11の温
度は前述したようにできるだけ低い方がよく、実
験では、−20℃〜−40℃の温度で行つた。また、
クーリングキヤン11の冷却能力が充分あれば、
クーリングキヤン10は省略しても、同様の効果
が得られる。さらに、金属蒸着後の非金属化部分
15の残留油が150Å〜2000Åになるように、油
蒸発器9からの噴射量およびクーリングキヤン1
0,11の温度を調節するようにした。
Further, FIG. 5 shows the method of the present invention, in which insulating oil is sprayed from a nozzle of an oil evaporator 9 onto a polyethylene terephthalate film 7 as a dielectric film so as to adhere to a thickness of 200 Å to 2200 Å. Next, the oil in the non-metalized portion 15 is cooled by cooling cans 10 and 11. At this time, the temperature of the cooling cans 10 and 11 should be as low as possible as described above, and in the experiment, the temperature was between -20°C and -40°C. Also,
If the cooling capacity of the cooling can 11 is sufficient,
Even if the cooling can 10 is omitted, the same effect can be obtained. Furthermore, the injection amount from the oil evaporator 9 and the cooling canister 1 are adjusted such that the residual oil in the non-metalized portion 15 after metal deposition is 150 Å to 2000 Å.
The temperature was adjusted to 0.11.

このように、残留油が150Å〜2000Åの厚さの
場合、第7図に示すように蒸着ボケは非常に少な
くなり、油蒸発器9のノズル幅と同一の非金属化
部分15を形成することができる。ここで、油蒸
発器9のノズルより蒸着基板としてのポリエチレ
ンテレフタレートフイルム7に均一の厚みの油を
付着させるためには、ポリエチレンテレフタレー
トフイルム7を油蒸発器9のノズルに接触させた
方がよい。なお、実験によれば、ノズル幅0.05mm
まで非金属化部分15の形成が可能であつた。
In this way, when the residual oil has a thickness of 150 Å to 2000 Å, the vapor deposition blur becomes very small as shown in FIG. I can do it. Here, in order to deposit oil with a uniform thickness from the nozzle of the oil evaporator 9 onto the polyethylene terephthalate film 7 as the evaporation substrate, it is better to bring the polyethylene terephthalate film 7 into contact with the nozzle of the oil evaporator 9. According to experiments, the nozzle width is 0.05mm.
It was possible to form the non-metalized portion 15 up to this point.

また、第6図は本発明による方法において、非
金属化部分15の残留油が2000Åの厚さを超えた
場合のものであり、本発明の方法であつても、残
留物が2000Åの厚さを超えた場合には蒸着ボケが
発生する。これは、油蒸発器9のノズルよりの噴
射量が多すぎたため、油が横に流れ広がり、蒸着
ボケが発生したためである。
Further, FIG. 6 shows a case where the residual oil in the non-metallized portion 15 exceeds a thickness of 2000 Å in the method according to the present invention. If it exceeds this, vapor deposition blur will occur. This is because the amount of injection from the nozzle of the oil evaporator 9 was too large, causing the oil to flow laterally and spread out, causing vapor deposition blur.

以上述べたように本発明の金属化フイルムコン
デンサの製造方法によれば、蒸着基板を油蒸発器
のノズルに接触させ、非金属化部分を金属蒸着器
上を通過する前、または通過時に冷却し、非金属
化部分の残留油を150Å〜2000Åに調節すること
により、極細幅の非金属化部分の形成、すなわち
非金属化部分の幅を従来の1mmより大幅に細くす
ることが可能となり、非金属化部分の静電容量の
ロスが大幅に少なくなり、小型のコンデンサを得
ることができるのである。
As described above, according to the method for manufacturing a metallized film capacitor of the present invention, the evaporation substrate is brought into contact with the nozzle of the oil evaporator, and the non-metalized portion is cooled before or during passing over the metal evaporator. By adjusting the residual oil in the non-metalized part to 150 Å to 2000 Å, it is possible to form a non-metalized part with an extremely narrow width, that is, to make the width of the non-metalized part much narrower than the conventional 1 mm. Capacitance loss in the metallized portion is significantly reduced, making it possible to obtain a smaller capacitor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金属化フイルムコンデンサの概
略構成を示す断面図、第2図は本発明による金属
化フイルムコンデンサの製造方法において、金属
化フイルムを製造するために使用する真空蒸着機
の一例を示す概略構成図、第3図は同方法により
得られる金属化フイルムの一例を示す断面図、第
4図は従来の製造方法により得られる金属化フイ
ルムの一例の要部を示す断面図、第5図は本発明
の方法により得られる金属化フイルムの要部を示
す断面図、第6図は本発明の方法において、残留
油量を所定の値にしなかつた場合の金属化フイル
ムの要部構造を示す断面図、第7図は本発明の方
法における金属化フイルムの残留油量と蒸着ボケ
の寸法との関係を示す図である。 7……ポリエチレンテレフタレートフイルム、
10,11……クーリングキヤン、14……金属
電極、15……非金属化部分、16……残留油。
FIG. 1 is a cross-sectional view showing the schematic structure of a conventional metallized film capacitor, and FIG. 2 is an example of a vacuum evaporation machine used to manufacture a metallized film in the method for manufacturing a metallized film capacitor according to the present invention. 3 is a cross-sectional view showing an example of a metallized film obtained by the same method, FIG. 4 is a cross-sectional view showing essential parts of an example of a metallized film obtained by the conventional manufacturing method, and FIG. The figure is a sectional view showing the main part of the metallized film obtained by the method of the present invention, and Figure 6 shows the structure of the main part of the metallized film when the residual oil amount is not set to a predetermined value in the method of the present invention. The cross-sectional view shown in FIG. 7 is a diagram showing the relationship between the amount of residual oil in the metallized film and the size of the vapor deposition blur in the method of the present invention. 7...Polyethylene terephthalate film,
10, 11...Cooling canister, 14...Metal electrode, 15...Non-metalized portion, 16...Residual oil.

Claims (1)

【特許請求の範囲】[Claims] 1 オイルマスク方式によつて非金属化部分を形
成して金属化フイルムを得る場合に、前記金属化
フイルムの非金属化部分が金属蒸着器上を通過す
る前、または通過する時にフイルムを冷却し、残
留油量が150Å〜2000Åの厚さになるようにする
ことを特徴とする金属化フイルムコンデンサの製
造方法。
1. When a metallized film is obtained by forming a non-metalized portion by an oil mask method, the film is cooled before or when the non-metalized portion of the metallized film passes over a metal evaporator. , a method for manufacturing a metallized film capacitor, characterized in that the amount of residual oil is made to have a thickness of 150 Å to 2000 Å.
JP56197514A 1981-12-07 1981-12-07 Method of producing metallized film condenser Granted JPS5897823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197514A JPS5897823A (en) 1981-12-07 1981-12-07 Method of producing metallized film condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197514A JPS5897823A (en) 1981-12-07 1981-12-07 Method of producing metallized film condenser

Publications (2)

Publication Number Publication Date
JPS5897823A JPS5897823A (en) 1983-06-10
JPS6357932B2 true JPS6357932B2 (en) 1988-11-14

Family

ID=16375727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197514A Granted JPS5897823A (en) 1981-12-07 1981-12-07 Method of producing metallized film condenser

Country Status (1)

Country Link
JP (1) JPS5897823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222127A (en) * 2011-04-08 2012-11-12 Okaya Electric Ind Co Ltd Metalized film capacitor
JP2012227401A (en) * 2011-04-21 2012-11-15 Okaya Electric Ind Co Ltd Metalized film and metalized film capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414450Y2 (en) * 1986-03-14 1992-03-31

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547113A (en) * 1978-08-30 1980-04-03 Hoechst Ag Threeedimensional filter element consisting of fiber flat moldings
JPS5579867A (en) * 1978-12-11 1980-06-16 Honshu Paper Co Ltd Vacuum evaporation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547113A (en) * 1978-08-30 1980-04-03 Hoechst Ag Threeedimensional filter element consisting of fiber flat moldings
JPS5579867A (en) * 1978-12-11 1980-06-16 Honshu Paper Co Ltd Vacuum evaporation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222127A (en) * 2011-04-08 2012-11-12 Okaya Electric Ind Co Ltd Metalized film capacitor
JP2012227401A (en) * 2011-04-21 2012-11-15 Okaya Electric Ind Co Ltd Metalized film and metalized film capacitor

Also Published As

Publication number Publication date
JPS5897823A (en) 1983-06-10

Similar Documents

Publication Publication Date Title
JP3759266B2 (en) Zinc-deposited film and metallized film capacitor
WO2016181646A1 (en) Metallized film capacitor
JPS6315737B2 (en)
JPS6357932B2 (en)
WO2017068758A1 (en) Method for manufacturing metallized film
US2891204A (en) Metallized electrical capacitor
JPH043098B2 (en)
JPS5867017A (en) Method of producing metallized film condenser
JPH0141260B2 (en)
JP2003077753A (en) Metallized film capacitor
JPS58151011A (en) Method of producing metallized film for condenser
KR940008653B1 (en) Method of making plastic film for condenser using aluminium distilation and adhesion
JPH01158714A (en) Deposition film for capacitor
JP2624449B2 (en) Manufacturing method of capacitor
JPS59103323A (en) Method of producing metal deposited film for condenser
JPH11186090A (en) Capacitor and metallized dielectric for the capacitor
JP3447307B2 (en) Film capacitor and film for manufacturing the same
JPS6128210B2 (en)
JPH10199751A (en) Metallized film and film capacitor
KR20020068561A (en) Plastic film of metal evaporation and condenser manufactured method using thereof
JP2022029479A (en) Film for film capacitor
JPH0143853Y2 (en)
JP2023084502A (en) Manufacturing method of metalized film, manufacturing method of film capacitor, and manufacturing equipment of metalized film
JPH10237623A (en) Production of electronic parts and device for producing thin coating
JPS6386413A (en) Manufacture of thin film dielectric material for capacitor