JPS6014499B2 - Manufacturing method for resin-clad plastic film capacitors - Google Patents

Manufacturing method for resin-clad plastic film capacitors

Info

Publication number
JPS6014499B2
JPS6014499B2 JP489780A JP489780A JPS6014499B2 JP S6014499 B2 JPS6014499 B2 JP S6014499B2 JP 489780 A JP489780 A JP 489780A JP 489780 A JP489780 A JP 489780A JP S6014499 B2 JPS6014499 B2 JP S6014499B2
Authority
JP
Japan
Prior art keywords
resin
capacitor
film
manufacturing
plastic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP489780A
Other languages
Japanese (ja)
Other versions
JPS56101735A (en
Inventor
敏幸 西森
英一 和田
猛 浜辺
幹夫 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP489780A priority Critical patent/JPS6014499B2/en
Publication of JPS56101735A publication Critical patent/JPS56101735A/en
Publication of JPS6014499B2 publication Critical patent/JPS6014499B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は樹脂外装プラスチックフィルムコンデンサの特
性を大幅に改善することを目的とした製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a manufacturing method aimed at significantly improving the characteristics of a resin-clad plastic film capacitor.

ここで表わすプラスチックフィルムコンデンサとは、有
機フィルム(例えば、ポリエチレンテレフタレート、ポ
リプロピレンなど)にアルミ蒸着を両面または片面に施
した金属化フィルムを巻回し、その巻回した端面に亜鉛
等を金属溶射(メタリコソ)して電極引出部とし、その
後プレスしながら高温熱処理したものにリード付けし、
樹脂外装して得られるコンデンサを示すものである。
The plastic film capacitor referred to here is a metallized film with aluminum vapor deposited on both or one side wrapped around an organic film (e.g., polyethylene terephthalate, polypropylene, etc.), and the end surface of the wound film is coated with metal spraying (metallic coating) such as zinc. ) to form an electrode lead-out part, then heat-treated at high temperature while pressing, and then attached a lead.
This figure shows a capacitor obtained with a resin exterior.

特に、この金属化フィルム使用のプラスチックフィルム
コンデンサの特長は、電極が薄い蒸着膜層ができている
ため、仮に誘電体フィルム中に電気的弱点部が生じて破
壊に至るようになっても、その破壊エネルギーにより弱
点部近辺の蒸着膜が飛散して絶縁が回復する自己回復作
用を持つことである。この特長を生かし、現在ではかな
り高電氏までこの種のコンデンサが使用可能になってき
た。しかも、製造工程も従来のような、長期乾燥、含浸
、コンデソサ集合といった煩雑な作業も大きく簡素化さ
れているため、このプラスチックフィルムコンデンサが
従釆のMPコンデンサ、箔タイプコンデンサにかわつて
用いられるようになってきた。しかしながら、このプラ
スチックフイルムコンデンサの構造上、金属化フィルム
面と誘電体フィルム面間には微小な空隙層があり、高電
位額度で使用されると、その空隙層に微小放電(コロナ
)が発生し、このコロナが目線的に発生すると、遂には
誘電体フィルムを劣化させたり電極の蒸着膜がコロナの
エネルギーで飛散し容量を減少させることになるため、
大きな問題とされていた。
In particular, the feature of this plastic film capacitor using metallized film is that the electrodes are made of a thin vapor-deposited film layer, so even if an electrical weak point occurs in the dielectric film and leads to breakdown, it will not be damaged. It has a self-healing effect in which the vapor deposited film near the weak point is scattered by the destructive energy and the insulation is restored. By taking advantage of this feature, this type of capacitor can now be used even at very high electricians. Moreover, the manufacturing process has been greatly simplified, and the complicated work of conventional methods, such as long-term drying, impregnation, and capacitor assembly, has been greatly simplified, so this plastic film capacitor has come to be used instead of the conventional MP capacitor and foil type capacitor. It has become. However, due to the structure of this plastic film capacitor, there is a minute void layer between the metallized film surface and the dielectric film surface, and when used at a high potential level, a minute discharge (corona) occurs in the void layer. If this corona occurs from the perspective, it will eventually deteriorate the dielectric film and the vapor deposited film of the electrode will be scattered by the energy of the corona, reducing the capacitance.
It was considered a big problem.

従来、この対策としてコロナ発生を抑える方法またはコ
ロナが発生しても影響の少ない方法の各立場で種々の検
討がなされてきた。前者の方法として、コンデンサ素子
内の微少空0隙層にあらかじめ絶縁油を含浸したものを
樹脂外装することによりコロナの発生を防止する方法や
、コンデソサ素子内の空隙層の内圧を高めた状態で樹脂
外装することによりコロナ発生開始電圧を上げる方法(
例えば、樹脂外装時にガス発生す夕る樹脂を使ったり、
樹脂外装の一連の工程を加圧状態で行なったりする方法
など)が採られてきたが、いずれも十分な効果が得られ
なかった。
Conventionally, as a countermeasure against this problem, various studies have been conducted on methods to suppress the occurrence of corona or methods that have less impact even if corona occurs. The former method is to prevent the generation of corona by coating the microporous layer in the capacitor element with a resin that has been impregnated with insulating oil in advance, or to prevent the generation of corona by increasing the internal pressure of the void layer in the capacitor element. A method of increasing the corona generation starting voltage by coating with resin (
For example, using a resin that generates gas during resin packaging,
Methods such as performing a series of steps for resin packaging under pressure have been adopted, but none of them have been sufficiently effective.

つまり、フィルム間の空隙層があまりに小さいため、絶
縁油が十分含浸しても、外装樹脂に絶縁油が吸収された
りして製造上も特性上も不安定となるのである。また、
素子を囲む雰囲気を恒久的に加圧状態にするには、外装
樹脂のガス透過性、または端子と外装樹脂の密着性の安
定性などを考えると、長期的特性に信頼を欠いているこ
となどの問題を多くかかえており、実用上困難である。
次に、コロナが発生しても影響の少ない後者の方法とし
ては、誘電体フィルムとして譲電率の小さなものを使う
ことで、空隙層にかかる分坦電圧を小さなものにしたり
、または電極を構成する漆着膜厚を厚くすることで蒸着
膜飛散割合を小さくする工夫などがなされてきたが、誘
電率の低いフィルムはコンデンサの体積を大きくする不
利な点があり、コンデンサフイルムとして使用できるフ
ィルムには特性的に限りがある。また、蒸着膜厚を厚く
することは、自己回復作用時に大きなエネルギーが必要
になり、誘電体フィルムを大きく劣化させ、破壊値を低
下させる。本発明はこのような問題点を解決するのに有
効な手段を提供するものである。
In other words, the void layer between the films is so small that even if the film is sufficiently impregnated with insulating oil, the insulating oil may be absorbed by the exterior resin, resulting in instability in terms of manufacturing and properties. Also,
In order to permanently pressurize the atmosphere surrounding the device, the long-term characteristics may be unreliable, considering the gas permeability of the exterior resin or the stability of the adhesion between the terminals and the exterior resin. It has many problems and is difficult in practice.
Next, the latter method, which has less influence even if corona occurs, is to use a dielectric film with a small yield rate to reduce the partial voltage applied to the gap layer, or to form an electrode. Efforts have been made to reduce the rate of scattering of the vapor deposited film by increasing the thickness of the lacquer film, but films with low dielectric constants have the disadvantage of increasing the volume of the capacitor, so it is difficult to use films that can be used as capacitor films. has limited characteristics. In addition, increasing the thickness of the deposited film requires a large amount of energy during the self-healing action, greatly deteriorating the dielectric film and lowering the breakdown value. The present invention provides effective means for solving these problems.

まず、コロナの発生の機構について、さらに詳細に検討
すると、今、金属化フィルム厚をd〆、空隙層をda、
フィルムの譲亀率をど〆、空気のコロナ発生電圧をV
aとすると、コンデンサのコロナ発生電圧VSは、下記
の式で表わされる。
First, if we consider the mechanism of corona generation in more detail, we will find that the metallized film thickness is d, the void layer is da,
What is the yield rate of the film?V is the corona generation voltage of the air.
Assuming that a, the corona generation voltage VS of the capacitor is expressed by the following formula.

VS=岸(da十dlメーごナ この式で、Vaはパッシヱン曲線によって与‐えられる
ものとして考えると、Vsを決定づけるdaには最小値
を有しており、daがそれ以上大きくても小さくても、
VSは高くなる。
VS = Kishi (da + dl) In this formula, if we consider Va as being given by a passive curve, then da, which determines Vs, has a minimum value, and even if da is larger than that, it will still be small. Even though
VS becomes higher.

つまり、コロナ発生開始電圧を上げるには、フィルム間
の空隙層da十分に厚くするか、薄くするかであるが、
実用上少なくする方法が好ましい。このため現在は、金
属フィルムに強いテンションを加えて巻き取り、コンデ
ンサ素子をプレスしながら高温熱処理する方法を用いて
いるが、現実には樹脂外装する時、樹脂の硬化の際に生
じる熱などでコンデンサ素子のプレスが緩み、十分なプ
レス効果が得られないため、特性的にも劣る状態にあっ
た。
In other words, in order to increase the corona generation starting voltage, the gap layer between the films must be made sufficiently thick or thin.
Practically speaking, it is preferable to reduce the amount. For this reason, the current method is to apply strong tension to the metal film, roll it up, and press the capacitor element while heat-treating it at a high temperature. The pressing of the capacitor element became loose and a sufficient pressing effect could not be obtained, resulting in poor characteristics.

そこで、本発明では、この緩みを防止すると同時に、特
性を改良するものである。
Therefore, the present invention aims to prevent this loosening and at the same time improve the characteristics.

すなわち、コンデンサ素子の緩む原因である樹脂外装工
程の間、電極間に電圧を印加してマックスウエル応力〔
F=を(こ羊;)2〕を働かせ、これによってコンデン
サ素子を強く締め付け続け、樹脂硬化時もその状態を保
つようにした方法である。
That is, during the resin packaging process, which is the cause of loosening of capacitor elements, a voltage is applied between the electrodes to reduce Maxwell stress [
This is a method in which the capacitor element is kept strongly tightened by applying F=(kgoat;)2], and this state is maintained even when the resin hardens.

さらに、本発明では、電圧を印加することによって、フ
ィルム間の弱点部を自己回復させることもでき、静電客
容の安定化の役目も果たすことができる。図に本発明の
製造方法による樹脂外装プラスチックフィルムコンデン
サAと従来の方法によるコンデンサ8との樹脂外装前後
の容量変化と、温度70℃の条件下で交流250Vの電
圧を印加した後の容量変化を比較して示している。
Furthermore, in the present invention, weak points between the films can be self-healed by applying a voltage, and the electrostatic capacity can also be stabilized. The figure shows the capacitance changes before and after the resin-clad plastic film capacitor A manufactured by the manufacturing method of the present invention and the capacitor 8 manufactured by the conventional method, and the capacitance change after applying a voltage of 250 VAC at a temperature of 70°C. A comparison is shown.

なお、本発明品の試料としては、厚さ5r、幅32肋の
ポリエチレンテレフタレートフィルムの両面に電極金属
を蒸着した両面金属化フィルムと、厚さ5A、幅3仇奴
のポリプロピレンフィルムとを交互に重ね合せて大きな
母体ドラムに巻回した後、端面に亜鉛を金属溶射して電
極引出部を設け、高温熱処理、母体コンデンサの切断、
リード付けの一連の工程を経て積層コンデンサ素子とし
、そしてその素子に直流300Vを印加しながら、付着
させたェポキシ樹脂を温度80℃,1虫時間で硬化させ
て外装したもを用いた。図から明らかなように、従来品
においては、樹脂外装前後の容量は0.5%程低下した
が、本発明品では容量変化がほとんどなく、コンデンサ
素子の緩みの発生がない。
In addition, as a sample of the product of the present invention, a double-sided metallized film in which electrode metal was vapor-deposited on both sides of a polyethylene terephthalate film with a thickness of 5 mm and a width of 32 ribs, and a polypropylene film with a thickness of 5 mm and a width of 3 mm were alternately used. After stacking them and winding them around a large base drum, the end faces are metal sprayed with zinc to form electrode lead-out parts, subjected to high-temperature heat treatment, and the base capacitor cut off.
A multilayer capacitor element was obtained through a series of steps of attaching leads, and while applying 300 V DC to the element, the attached epoxy resin was cured at a temperature of 80° C. for 1 hour, and an exterior package was used. As is clear from the figure, in the conventional product, the capacitance before and after the resin packaging decreased by about 0.5%, but in the product of the present invention, there is almost no change in capacitance, and no loosening of the capacitor element occurs.

また、連続寿命試験を行なった場合でも、コロナによる
容量変化が本発明品は従来品に対して非常に少ないこと
が判った。さらに、本発明では、従来から多く生産され
ている金属化フィルムを巻回しただけの者回型コンデン
サよりも、1枚1枚が独立した金属化フィルムからなる
積層コンデンサにおいて、特に著しく効果がある。以上
のように本発明の製造方法によれば、樹脂外装時に電圧
を印加するだけという簡単な工程により、容量変化のほ
とんどない優れた樹脂外装プラスチックフィルムコンデ
ンサを得ることができるのである。
Furthermore, even when a continuous life test was conducted, it was found that the capacitance change due to corona was much smaller in the product of the present invention than in the conventional product. Furthermore, the present invention is particularly effective in laminated capacitors made of independent metallized films, compared to conventional multilayer capacitors in which only metalized films are wound. . As described above, according to the manufacturing method of the present invention, an excellent resin-clad plastic film capacitor with almost no change in capacitance can be obtained through a simple process of applying a voltage during resin-cladding.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の製造方法による樹脂外装プラスチックフィ
ルムコンデンサと従釆の製造方法によるコンデンサとの
容量変化の特性を比較して示す図である。
The figure is a diagram showing a comparison of the capacitance change characteristics of a resin-clad plastic film capacitor manufactured by the manufacturing method of the present invention and a capacitor manufactured by a conventional manufacturing method.

Claims (1)

【特許請求の範囲】[Claims] 1 金属化フイルムを用いてコンデンサ素子を構成した
樹脂外装プラスチツクフイルムコンデンサの製造方法に
おいて、前記コンデンサ素子に電圧を印加しながら樹脂
で外装することを特徴とする樹脂外装プラスチツクフイ
ルムコンデンサの製造方法。
1. A method for manufacturing a resin-clad plastic film capacitor in which a capacitor element is constructed using a metallized film, the method comprising sheathing the capacitor element with a resin while applying a voltage to the capacitor element.
JP489780A 1980-01-18 1980-01-18 Manufacturing method for resin-clad plastic film capacitors Expired JPS6014499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP489780A JPS6014499B2 (en) 1980-01-18 1980-01-18 Manufacturing method for resin-clad plastic film capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP489780A JPS6014499B2 (en) 1980-01-18 1980-01-18 Manufacturing method for resin-clad plastic film capacitors

Publications (2)

Publication Number Publication Date
JPS56101735A JPS56101735A (en) 1981-08-14
JPS6014499B2 true JPS6014499B2 (en) 1985-04-13

Family

ID=11596455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP489780A Expired JPS6014499B2 (en) 1980-01-18 1980-01-18 Manufacturing method for resin-clad plastic film capacitors

Country Status (1)

Country Link
JP (1) JPS6014499B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121314A (en) * 1984-11-16 1986-06-09 松下電器産業株式会社 Resin packaged metalized film capacitor
JPS62186512A (en) * 1986-02-12 1987-08-14 松下電器産業株式会社 Metallized film capacitor

Also Published As

Publication number Publication date
JPS56101735A (en) 1981-08-14

Similar Documents

Publication Publication Date Title
KR920009175B1 (en) Film capacitor and manufacture of the same
US3179862A (en) Dual-film metallized condensers
JPS6315737B2 (en)
JPS5826652B2 (en) Kinzokuka film capacitor
JP2847355B2 (en) Metallized film capacitor and method of manufacturing the same
JPS6014499B2 (en) Manufacturing method for resin-clad plastic film capacitors
JPS6046529B2 (en) capacitor
JPS5824005B2 (en) metallized dielectric capacitor
JP2002367854A (en) Double-sided metallization film capacitor
JPH0533524B2 (en)
JPH10214748A (en) Cased film capacitor
JP2562159Y2 (en) Metallized film capacitors
JPH03201421A (en) Laminated film capacitor
JP2900751B2 (en) Film capacitor and manufacturing method thereof
JPS6336676Y2 (en)
JPS5840327B2 (en) Metallized organic film capacitor
JPS6336679Y2 (en)
JPS6031235Y2 (en) DC high voltage capacitors for communication equipment
JPH07105311B2 (en) Metallized film capacitor and manufacturing method thereof
JPS6247108A (en) Metalized plastic film capacitor
JP2009277826A (en) Metallized film capacitor
JP2000294446A (en) Manufacture of metallized film capacitor
JPH0547593A (en) Evaporation metallized film capacitor
JPS596520A (en) Condenser
JPH02152214A (en) Manufacture of dry-type capacitor