JPH0357460B2 - - Google Patents

Info

Publication number
JPH0357460B2
JPH0357460B2 JP60223796A JP22379685A JPH0357460B2 JP H0357460 B2 JPH0357460 B2 JP H0357460B2 JP 60223796 A JP60223796 A JP 60223796A JP 22379685 A JP22379685 A JP 22379685A JP H0357460 B2 JPH0357460 B2 JP H0357460B2
Authority
JP
Japan
Prior art keywords
ultra
quantum well
thin
functional element
optical circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60223796A
Other languages
Japanese (ja)
Other versions
JPS6285227A (en
Inventor
Yasuharu Suematsu
Masahiro Asada
Hiroaki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO KOGYO DAIGAKUCHO
Original Assignee
TOKYO KOGYO DAIGAKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO KOGYO DAIGAKUCHO filed Critical TOKYO KOGYO DAIGAKUCHO
Priority to JP60223796A priority Critical patent/JPS6285227A/en
Publication of JPS6285227A publication Critical patent/JPS6285227A/en
Publication of JPH0357460B2 publication Critical patent/JPH0357460B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01725Non-rectangular quantum well structures, e.g. graded or stepped quantum wells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01725Non-rectangular quantum well structures, e.g. graded or stepped quantum wells
    • G02F1/0175Non-rectangular quantum well structures, e.g. graded or stepped quantum wells with a spatially varied well profile, e.g. graded or stepped quantum wells
    • G02F1/01758Non-rectangular quantum well structures, e.g. graded or stepped quantum wells with a spatially varied well profile, e.g. graded or stepped quantum wells with an asymmetric well profile, e.g. asymmetrically stepped quantum wells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、量子井戸構造をなす超薄膜多層構造
を有する光導波路を備え、超薄膜多層構造におけ
る屈折率の印加電界に応じた変化を利用して各種
の外部光回路機能を呈する光回路機能素子に関
し、特に、多段階のエネルギー準位を有する階段
型量子井戸構造をなすように超薄膜多層構造を構
成して印加電界による屈折率変化の効率を増大さ
せるようにしたものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention comprises an optical waveguide having an ultra-thin multilayer structure forming a quantum well structure, and utilizes changes in the refractive index of the ultra-thin multilayer structure in response to an applied electric field. Regarding optical circuit functional elements that exhibit various external optical circuit functions, in particular, ultra-thin film multilayer structures are configured to form stepped quantum well structures with multiple energy levels, and changes in refractive index due to applied electric fields are developed. It is designed to increase efficiency.

(従来の技術) 従来のこの種光回路機能素子としては、 (1) 電気光学結晶を用いた薄膜光導波路 (2) 電流注入方式による屈折率制御を行なう素子 が知られているが、前者(1)には電気光学結晶の方
向によつて屈折率が異なり、ミラーを構成するた
めの電極を結晶表面の設けるので小型化が困難で
ある、という欠点があり、後者(2)は屈折率変化の
応答速度が小さいという欠点があつた。
(Prior art) Conventional optical circuit functional elements of this type include (1) thin-film optical waveguides using electro-optic crystals, (2) elements that control refractive index by current injection method, but the former ( 1) has the disadvantage that the refractive index differs depending on the direction of the electro-optic crystal, and it is difficult to miniaturize because the electrodes for forming the mirror are provided on the crystal surface, while the latter (2) The disadvantage was that the response speed was slow.

そこで、本発明者らは、さきに、特願昭60−
39900号明細書により、量子井戸構造をなす超薄
膜多層構造の光導波路の印加電界による屈折率変
化を利用して各種の外部光回路機能を呈するよう
にした屈折率変化の応答速度の大きい小型化容易
な光回路機能素子を提案した。この従来提案の光
回路機能素子は、第8図に示すように、半導体基
板1上にエネルギー準位の異なる2種類の半導体
薄膜を交互に積層して超薄膜多層構造を形成し、
第9図に示すように、伝導帯C.B.と価電子帯V.
B.との間に多層量子井戸MQWを有するポテンシ
アル構造を構成し、基板1とは反対極性の半導体
層3を介して上下に電極5,4を設け、矢印方向
の電界EFを印加したものでり、その印加電界EF
に応じて第9図示のポテンシアル構造が第10図
に示すように傾斜する。かかるポテンシアル構造
の傾斜に伴い、無電界(V=0)のときには、第
11図に点線で示すように量子井戸Wの中央に位
置する伝導帯の電子波動関数と価電子帯の正孔波
動関数とが印加電界(V<0)に応じて、第11
図に実線で示すように互いに逆の方向に偏移し、
かかる電子と正孔との波動関数のずれによつて屈
折率が変化する。かかる屈折率の変化は電圧印加
に即応して生ずるので、かかる超薄膜多層構造を
設けた光導波路を種々組合せて、小型の半導体装
置により応答の速い各種の機能を有する外部光回
路を構成することができる。
Therefore, the present inventors first applied for a patent application filed in 1983-
According to the specification of No. 39900, miniaturization with a high response speed of refractive index change is achieved by utilizing the refractive index change due to an applied electric field of an optical waveguide with an ultra-thin film multilayer structure forming a quantum well structure to exhibit various external optical circuit functions. A simple optical circuit functional element was proposed. As shown in FIG. 8, this conventionally proposed optical circuit functional element has two types of semiconductor thin films having different energy levels alternately laminated on a semiconductor substrate 1 to form an ultra-thin multilayer structure.
As shown in Figure 9, the conduction band CB and the valence band V.
B. A potential structure having a multilayer quantum well MQW is formed between the substrate 1 and the substrate 1, and electrodes 5 and 4 are provided above and below via a semiconductor layer 3 of opposite polarity to the substrate 1, and an electric field EF in the direction of the arrow is applied. The applied electric field EF
Accordingly, the potential structure shown in FIG. 9 is tilted as shown in FIG. Due to the inclination of the potential structure, when there is no electric field (V = 0), the electron wave function in the conduction band and the hole wave function in the valence band located at the center of the quantum well W, as shown by the dotted line in FIG. and depending on the applied electric field (V<0), the 11th
As shown by the solid lines in the figure, they shift in opposite directions,
The refractive index changes due to the shift in the wave functions of electrons and holes. Since such a change in refractive index occurs immediately in response to voltage application, it is possible to construct an external optical circuit having various functions with a quick response using a small semiconductor device by combining various optical waveguides provided with such an ultra-thin multilayer structure. I can do it.

(発明が解決しようとする問題点) しかしながら、上述した従来提案のこの種光回
路機能素子においては、多層量子井戸構造が単一
エネルギーレベルの量子井戸からなつており、し
たがつて、量子井戸構造に電界を印加したとき、
伝導帯C.B.内の電子の波動関数と価電子帯V.B.
内の正孔の波動関数とが、第11図に示したよう
に、互いに逆の方向に同じように偏移するだけで
あり、したがつて、電子と正孔との波動関数の相
互偏移によつて生ずる屈折率の印加電界に応じた
変化の態様が単調であつて屈折率の変化が小さ
い、という問題があつた。
(Problems to be Solved by the Invention) However, in this type of optical circuit functional element conventionally proposed as described above, the multilayer quantum well structure consists of quantum wells at a single energy level; When an electric field is applied to
Electron wave function in conduction band CB and valence band VB
As shown in FIG. There is a problem in that the manner in which the refractive index changes depending on the applied electric field is monotonous and the change in the refractive index is small.

本発明の目的は、従来提案のこの種光回路機能
素子における上述した問題を解決し、印加電界に
応ずる屈折率変化を増大させて、従来提案による
よりも応用範囲が広く、性能の優れた多層量子井
戸構造利用の光回路機能素子を実現することにあ
る。
The purpose of the present invention is to solve the above-mentioned problems in conventionally proposed optical circuit functional elements of this type, increase the change in refractive index in response to an applied electric field, and provide a multilayer multilayer device with a wider range of application and superior performance than the conventionally proposed devices. The objective is to realize an optical circuit functional element using a quantum well structure.

(問題点を解決するための手段) すなわち、本発明光回路機能素子は、少なくと
も3段階のエネルギー準位を有する階段型量子井
戸構造をなす超薄膜多層構造を少なくとも一部に
有する光導波路を備え、前記超薄膜多層構造にお
ける屈折率を印加電界に応じ変化させて当該光導
波路を伝播する光を制御し得るように構成したこ
とを特徴とするものであり、非対称型および対称
型の2種類の階段状量子井戸構造をなし得るもの
である。
(Means for Solving the Problems) That is, the optical circuit functional element of the present invention includes an optical waveguide having, at least in part, an ultra-thin multilayer structure forming a stepped quantum well structure having at least three energy levels. , characterized in that the refractive index of the ultra-thin multilayer structure is changed according to the applied electric field to control the light propagating through the optical waveguide, and there are two types: an asymmetric type and a symmetric type. It can form a stepped quantum well structure.

(作用) したがつて、本発明によれば、光導波路を構成
する超薄膜多層構造をなす量子井戸構造を階段型
にしているので、印加電界に対して超薄膜多層構
造の屈折率を変則的ではあるが格段に効率よく変
化させることができ、従来提案の単一量子井戸構
造のものに比して応用範囲の格段に広い光回路機
能素子を実現することができる。
(Function) Therefore, according to the present invention, since the quantum well structure that constitutes the ultra-thin multi-layer structure constituting the optical waveguide is made into a stepped structure, the refractive index of the ultra-thin multi-layer structure becomes irregular with respect to the applied electric field. However, it can be changed much more efficiently, and it is possible to realize an optical circuit functional element that has a much wider range of applications than the previously proposed single quantum well structure.

なお、単一井戸構造についても同様であるが、
超薄膜多層構造における屈折率の変化の増大に付
随して光吸収の印加電界による変化も増大する
が、光吸収の絶対量がわずかであるため、かかる
光吸収変化の増大は無視することができる。
The same applies to the single well structure, but
Concomitantly with the increase in the change in refractive index in ultrathin multilayer structures, the change in light absorption due to the applied electric field also increases, but since the absolute amount of light absorption is small, such increase in light absorption change can be ignored. .

(実施例) 以下に図面を参照して実施例につき本発明を詳
細に説明する。
(Example) The present invention will be described in detail below with reference to the drawings.

本発明光回路機能素子は、第8図に示した従来
提案の単一量子井戸構造をなす超薄膜多層構造の
光導波路を有する光回路機能素子とほぼ同様の、
第1図に示すように、例えばn型の半導体基板1
上に多層量子井戸構造MQWをなす超薄膜多層構
造2を積層し、さらに、例えばp型半導体層3を
介して上下に電極層5および4を設けて矢印方向
に電界EFを印加した光導波路を備えているが、
第8図示の従来構造とは異なり、超薄膜多層構造
2をそれぞれ異なるエネルギー準位を有する少な
くとも3種類の半導体超薄膜を反復積層して構成
してある。したがつて、かかる構成の超薄膜多層
構造がなすポテンシアル構造は、第9図に示した
従来提案による単一量子井戸構造とは格段に相違
して、第2図a,bおよび第3図a,bに示すよ
うな階段型の量子井戸構造をなしている。
The optical circuit functional element of the present invention is almost similar to the conventionally proposed optical circuit functional element having an optical waveguide of an ultra-thin multilayer structure having a single quantum well structure, as shown in FIG.
As shown in FIG. 1, for example, an n-type semiconductor substrate 1
An optical waveguide is constructed by laminating an ultra-thin multilayer structure 2 forming a multilayer quantum well structure MQW on top, and further providing electrode layers 5 and 4 above and below via a p-type semiconductor layer 3, and applying an electric field EF in the direction of the arrow. I am prepared, but
Unlike the conventional structure shown in FIG. 8, the ultra-thin film multilayer structure 2 is constructed by repeatedly laminating at least three types of semiconductor ultra-thin films each having a different energy level. Therefore, the potential structure formed by the ultra-thin multilayer structure having such a configuration is markedly different from the conventionally proposed single quantum well structure shown in FIG. , b has a stepped quantum well structure.

第2図a,bは、本発明による階段型量子井戸
構造の最も簡単な基本的構成例として非対称の階
段型量子井戸構造を示す。すなわち、図の両端部
に位置する例えばInPからなる薄膜の間に、順次
に低いエネルギー準位を有する例えばGaAlInAs
およびGaInAsPからなる半導体超薄膜を挟んで
被着し、伝導帯C.B.、価電子帯V.B.ともに非対
称の階段状にエネルギー・ポテンシアルが変化し
た非対称階段型の量子井戸Wを構成しており、第
2図aとbとは、例えばGaAlInAsおよび
GaInAsPとした半導体超薄膜の配置順を逆にし
た点のみが相違している。かかる構成の階段型量
子井戸構造においては、伝導帯C.B.の量子井戸W
内における電子の波動関数と価電子帯V.B.の量
子井戸W内における正孔の波動関数とは、後述す
るような印加電界が存在しない状態にあつても、
第11図に点線で示した単一量子井戸内の各波動
関数とは異なり、それぞれの量子井戸の底の深い
方に偏在した状態になつている。
FIGS. 2a and 2b show an asymmetric stepped quantum well structure as the simplest basic configuration example of the stepped quantum well structure according to the present invention. That is, between the thin films made of, for example, InP located at both ends of the figure, there are layers of, for example, GaAlInAs, which have successively lower energy levels.
An ultra-thin semiconductor film consisting of GaInAsP and GaInAsP is sandwiched between the layers to form an asymmetric step-type quantum well W in which the energy potential changes in an asymmetric step-like manner in both the conduction band CB and the valence band VB. a and b are, for example, GaAlInAs and
The only difference is that the arrangement order of the GaInAsP semiconductor ultra-thin film is reversed. In the stepped quantum well structure with such a configuration, the quantum well W in the conduction band CB
The wave function of an electron in the quantum well W in the valence band VB and the wave function of a hole in the quantum well W in the valence band VB are as follows, even in the absence of an applied electric field as described below.
Unlike each wave function in a single quantum well shown by a dotted line in FIG. 11, the wave functions are unevenly distributed at the deep bottom of each quantum well.

なお、各半導体超薄膜は電子・正孔の波動の波
長に対応した膜厚の超薄膜とし、第2図a,bに
示した構成配置の超薄膜群を図示の順、例えば
InP−GaAlInAs−GaInAsP−InP……の順に反
復積層して、光波の波長に対応した層厚の多層構
造にする。
Each semiconductor ultra-thin film is an ultra-thin film with a film thickness corresponding to the wavelength of electron/hole waves, and the ultra-thin film groups with the configurations shown in FIGS. 2a and 2b are arranged in the order shown, e.g.
InP-GaAlInAs-GaInAsP-InP... are repeatedly stacked in this order to form a multilayer structure with a layer thickness that corresponds to the wavelength of the light wave.

一方、第3図a,bには対称の階段型量子井戸
構造の構成例を示す。すなわち、図の両端部に位
置する例えばInPからなる薄膜の間に、例えば上
述した順次に低いエネルギー順位を有する
GaAlInAsおよびGaInAsPからなる半導体超薄膜
を、伝導帯C.B.、価電子帯V.B.ともに対称の階
段状にエネルギー・ポテンシアルが変化した対称
階段型の量子井戸Wを構成するように配置してお
り、第3図aには、伝導帯C.B.、価電子帯V.B.
ともに下向きの凸形のポテンシアル構造を示し、
第3図bには、伝導帯C.B.、価電子帯V.B.とも
に上向きの凸形のポテンシアル構造を示す。な
お、かかる構成配置の超薄膜群を図示の順に反復
積層して多層構造にすること、対称階段型量子井
戸構造におけると同様である。
On the other hand, FIGS. 3a and 3b show examples of configurations of symmetrical stepped quantum well structures. That is, between the thin films made of, for example, InP located at both ends of the figure, for example, there is a layer having the sequentially lower energy order as described above.
Ultra-thin semiconductor films made of GaAlInAs and GaInAsP are arranged to form a symmetrical step-type quantum well W in which the energy potential changes in a symmetrical step-like manner in both the conduction band CB and the valence band VB, as shown in Figure 3. In a, conduction band CB, valence band VB
Both exhibit a downward convex potential structure,
FIG. 3b shows an upward convex potential structure in both the conduction band CB and the valence band VB. Incidentally, the ultra-thin film group having such a configuration is repeatedly laminated in the order shown in the figure to form a multilayer structure, which is the same as in the case of a symmetric stepped quantum well structure.

しかして、第2図a,bに示した非対称階段型
量子井戸構造をなす超薄膜多層構造に矢印y方向
の電界を印加すると、従来提案の単一量子井戸構
造につき第11図に実線で示したと同様に、伝導
帯C.B.の電子波動関数と価電子帯V.B.の正孔波
動関数とが印加電界に応じて互いに逆の方向に偏
移するが、非対称階段型量子井戸構造において
は、第4図a,bに示すように、電子波動関数お
よび正孔波動関数がともに量子井戸Wの底の深い
方に一層偏在した状態に大幅に偏移するので、第
11図示の単一量子井戸構造に比して、印加電界
に応じた屈折率の変化が格段に増大する。しか
も、第4図aとbとでは同一非対称階段型量子井
戸構造に帯する電界の印加方向が互いに逆である
にも拘わらず、いずれにおいても、電子波動関
数、正孔波動関数がともに大幅に偏移しており、
したがつて、印加電界に対する屈折率の変化の方
向は正にも負にもなり得る、という単一量子井戸
構造におけるとは格段に相違した作用効果が得ら
れる。
Therefore, when an electric field in the direction of the arrow y is applied to the ultra-thin film multilayer structure forming the asymmetric stepped quantum well structure shown in FIGS. Similarly, the electron wave function in the conduction band CB and the hole wave function in the valence band VB shift in opposite directions depending on the applied electric field, but in the asymmetric stepped quantum well structure, as shown in Fig. 4. As shown in Figures a and b, both the electron wave function and the hole wave function are significantly shifted to a state where they are more unevenly distributed at the deeper bottom of the quantum well W, compared to the single quantum well structure shown in Figure 11. As a result, the change in refractive index in response to the applied electric field is significantly increased. Moreover, even though the directions of electric fields applied to the same asymmetric stepped quantum well structure are opposite to each other in Figure 4 a and b, both the electron wave function and the hole wave function are significantly different in both cases. It is deviated,
Therefore, the direction of change in refractive index in response to an applied electric field can be either positive or negative, which is a much different effect than in a single quantum well structure.

一方、第3図a,bに示した対称階段型量子井
戸構造をなす超薄膜多層構造に矢印y方向の電界
を印加すると、例えば第3図aに示したように伝
導対C.B.、価電子対V.B.ともに下向き凸形のポ
テンシアル構造の場合には、第5図に示すよう
に、価電子対V.B.中の正孔波動関数は量子井戸
W内の底の端部の深い方に偏移し易いが、伝導帯
C.B.中の電子波動関数は量子井戸W内の中央部の
深い底に捉われて偏移し難く、したがつて、互い
に異なる番号のエネルギー準位間における遷移
は、単一量子井戸構造に比すれば著しく増大する
が、上述した非対称階段型量子構造ほどには増大
せず、いずれの量子井戸構造とも相違した態様の
屈折率変化を呈することになる。
On the other hand, when an electric field in the direction of the arrow y is applied to the ultra-thin film multilayer structure forming the symmetric stepped quantum well structure shown in Figure 3a and b, for example, the conduction pair CB and the valence electron pair are When both VB and VB have a downwardly convex potential structure, the hole wave function in the valence electron pair VB tends to shift toward the deeper end of the bottom of the quantum well W, as shown in Figure 5. , conduction band
The electron wave function in the CB is trapped at the deep bottom in the center of the quantum well W and is difficult to shift. Therefore, the transition between energy levels with different numbers is different from that in a single quantum well structure. Although the refractive index increases significantly, it does not increase as much as the above-mentioned asymmetric stepped quantum structure, and the refractive index changes in a manner different from that of any quantum well structure.

なお、第3図bに示したように伝導帯C.B.、価
電子帯V.B.ともに上向き凸形のポテンシアル構
造の場合には、第5図につき上述した正孔波動関
数と電子波動関数との印加電界に応じた偏移の態
様が逆になるだけで同様の傾向を示し、また、第
5図に示した対称階段型量子井戸構造における電
界の印加方向を逆にしても、価電子帯V.B.中の
正孔波動関数が量子井戸W内の底の他端部の深い
方に偏移するだけで、第5図につき上述したと同
様の屈折率変化が得られる。
If the conduction band CB and valence band VB both have an upwardly convex potential structure as shown in Figure 3b, The same tendency is shown only if the mode of the corresponding shift is reversed, and even if the direction of electric field application in the symmetric stepped quantum well structure shown in Fig. 5 is reversed, the positive shift in the valence band VB A refractive index change similar to that described above with respect to FIG. 5 can be obtained by simply shifting the hole wave function deeper into the other end of the bottom of the quantum well W.

本発明による階段型量子井戸構造をなす超薄膜
多層構造を有する光導波路を備えた光回路機能素
子は、階段型量子井戸構造が印加電界に応じて呈
する超薄膜多層構造の屈折率変化が格段に増大す
るほかは、単一量子井戸構造による従来提案の光
回路機能素子と同様の作用効果を呈するのである
から、従来提案の光回路機能素子を用いたのと同
様の構成により各種の機能を有する光回路を格段
に効率よく実現することができる。
The optical circuit functional device according to the present invention includes an optical waveguide having an ultra-thin multilayer structure forming a stepped quantum well structure. Other than the increased size, it exhibits the same effect as the conventionally proposed optical circuit functional element using a single quantum well structure, so it has various functions with the same configuration as the conventionally proposed optical circuit functional element. Optical circuits can be realized much more efficiently.

例えば、第6図に示すように、階段型量子井戸
構造をなす超薄膜多層構造を有する光導波路6
に、その超薄膜多層構造を一部共有する分岐光導
波路7を設けて、共有部分の超薄膜多層構造の一
部に陰影を付して図示する電極5により適切に電
界を印加すれば、無電界時には出力端Oaに直進
する入射光波Linを、電界印加領域の界面に生ず
る屈折率の差により全反射させて、分岐光導波路
7の出力端Obに導く機能を呈する光スイツチ回
路を効率よく実現することができる。
For example, as shown in FIG. 6, an optical waveguide 6 having an ultra-thin multilayer structure forming a stepped quantum well structure
If a branch optical waveguide 7 is provided that shares a part of the ultra-thin multilayer structure, and an electric field is appropriately applied to the shared part of the ultra-thin multilayer structure by an electrode 5 (shown in shading), no problem can be achieved. Efficiently realizes an optical switch circuit that exhibits the function of completely reflecting the incident light wave Lin, which travels straight to the output end Oa when an electric field is applied, due to the difference in refractive index that occurs at the interface of the electric field application region, and guiding it to the output end Ob of the branch optical waveguide 7. can do.

また、第7図に示すように、ともに階段型量子
井戸構造をなす超薄膜多層構造を有する一対の光
導波路6aと6bとにおける一部の超薄膜多層構
造を互いに近接させて平行に配置し、それら近接
平行した部分の超薄膜多層構造に電極5a,5b
をそれぞれ設けて電圧Va,Vbをそれぞれ印加す
れば、近接平行部分の超薄膜多層構造相互間にお
ける光波の漏洩移動を適切に制御して方向性光結
合回路を効率よく実現することができる。
Further, as shown in FIG. 7, part of the ultra-thin multi-layer structure of a pair of optical waveguides 6a and 6b, both of which have an ultra-thin multi-layer structure forming a stepped quantum well structure, are arranged in parallel and close to each other, Electrodes 5a, 5b are formed on the ultra-thin multilayer structure of these close parallel parts.
By providing these and applying voltages Va and Vb, respectively, it is possible to appropriately control the leakage movement of light waves between the ultra-thin multilayer structures in adjacent parallel portions, and efficiently realize a directional optical coupling circuit.

(発明の効果) 以上の説明から明らかなように、本発明によれ
ば、単一量子井戸構造をなす超薄膜多層構造の光
導波路を備えた従来提案の光回路機能素子におけ
る超薄膜多層構造がなす量子井戸構造を非対称も
しくは対称の階段型とすることにより、この種光
回路機能素子の印加電界に対する屈折率変化の効
率を格段に増大させることができ、したがつて、
この種光回路機能素子を用いて構成し得る各種の
機能の光回路を格段に効率よく実現し得るとい
う、格別の効果が得られる。
(Effects of the Invention) As is clear from the above description, according to the present invention, the ultra-thin multi-layer structure in the conventionally proposed optical circuit functional element equipped with the optical waveguide of the ultra-thin multi-layer structure forming a single quantum well structure is improved. By making the quantum well structure formed into an asymmetrical or symmetrical step-type structure, the efficiency of refractive index change in response to an applied electric field of this type of optical circuit functional element can be greatly increased, and therefore,
A special effect can be obtained in that optical circuits with various functions that can be constructed using this type of optical circuit functional element can be realized with much higher efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明光回路機能素子の構成例を示す
断面図、第2図a,bは同じくその光回路機能素
子における非対称階段型量子井戸構造の構成例を
それぞれ示す線図、第3図a,bは同じくその光
回路機能素子における対称階段型量子井戸構造の
構成例をそれぞれ示す線図、第4図a,bは第2
図a,bに示した非対称階段型量子井戸構造の印
加電界に応じた動作の態様の例をそれぞれ示す線
図、第5図は第3図aに示した対称階段型量子井
戸構造の印加電界に応じた動作の態様の例を示す
線図、第6図は本発明光回路機能素子を光スイツ
チ回路に適用した構成例を示す線図、第7図は本
発明光回路機能素子を方向性光結合回路に適用し
た構成例を示す線図、第8図は従来の光回路機能
素子の構成を示す断面図、第9図は同じくその光
回路機能素子における量子井戸構造の構成を示す
線図、第10図は電界印加時における第9図示の
量子井戸構造の構成を示す線図、第11図は第9
図示の量子井戸構造の印加電界に応じた動作の態
様を示す線図である。 1……半導体基板、2……超薄膜多層構造、3
……半導体層、4,5,5a,5b……電極、
6,6a,6b……光導波路、7……分岐光導波
路、C.B.……伝導帯、V.B.……価電子帯、W…
…量子井戸。
FIG. 1 is a cross-sectional view showing an example of the structure of the optical circuit functional element of the present invention, FIGS. 4a and b are diagrams respectively showing configuration examples of the symmetric stepped quantum well structure in the optical circuit functional element, and FIGS.
Diagrams showing examples of the behavior of the asymmetric stepped quantum well structure shown in Figures a and b, depending on the applied electric field, and Figure 5 shows the applied electric field of the symmetric stepped quantum well structure shown in Figure 3 a. FIG. 6 is a diagram showing an example of a configuration in which the optical circuit functional element of the present invention is applied to an optical switch circuit, and FIG. 7 is a diagram showing an example of the operation mode according to the optical circuit functional element of the present invention. A diagram showing a configuration example applied to an optical coupling circuit, FIG. 8 is a cross-sectional view showing the configuration of a conventional optical circuit functional element, and FIG. 9 is a diagram showing the configuration of a quantum well structure in the optical circuit functional element. , FIG. 10 is a diagram showing the configuration of the quantum well structure shown in FIG. 9 when an electric field is applied, and FIG. 11 is a diagram showing the configuration of the quantum well structure shown in FIG.
FIG. 3 is a diagram illustrating how the illustrated quantum well structure behaves in response to an applied electric field. 1...Semiconductor substrate, 2...Ultra-thin film multilayer structure, 3
... Semiconductor layer, 4, 5, 5a, 5b ... Electrode,
6, 6a, 6b... optical waveguide, 7... branch optical waveguide, CB... conduction band, VB... valence band, W...
...Quantum well.

Claims (1)

【特許請求の範囲】 1 少なくとも3段階のエネルギー準位を有する
階段型量子井戸構造をなす超薄膜多層構造を少な
くとも一部に有する光導波路を備え、前記超薄膜
多層構造における屈折率を印加電界に応じ変化さ
せて当該光導波路を伝播する光を制御し得るよう
に構成したことを特徴とする光回路機能素子。 2 特許請求の範囲第1項記載の機能素子におい
て、それぞれエネルギー準位の異なる少なくとも
3種類の半導体超薄膜を非対称に配置して反復積
層することにより非対称階段型量子井戸構造をな
す前記超薄膜多層構造を構成したことを特徴とす
る光回路機能素子。 3 特許請求の範囲第1項記載の機能素子におい
て、それぞれエネルギー準位の異なる少なくとも
3種類の半導体超薄膜を対称に配置して反復積層
することにより対称階段型量子井戸構造をなす前
記超薄膜多層構造を構成したことを特徴とする光
回路機能素子。 4 特許請求の範囲第3項記載の機能素子におい
て、伝導帯のエネルギー準位が対称に順次に異な
る前記対称階段型量子井戸構造をなすように前記
超薄膜多層構造を構成したことを特徴とする光回
路機能素子。 5 特許請求の範囲第3項記載の機能素子におい
て、価電子帯のエネルギー準位が対称に順次に異
なる前記対称階段型量子井戸構造をなすように前
記超薄膜多層構造を構成したことを特徴とする光
回路機能素子。 6 特許請求の範囲第2項記載の機能素子におい
て、前記非対称階段型量子井戸構造におけるエネ
ルギー準位の変化とは逆の方向の電界を前記超薄
膜多層構造に印加することを特徴とする光回路機
能素子。 7 特許請求の範囲第2項記載の機能素子におい
て、前記非対称階段型量子井戸構造におけるエネ
ルギー準位の変化と同一方向の電界を前記超薄膜
多層構造に印加することを特徴とする光回路機能
素子。 8 特許請求の範囲第1項乃至第7項のいずれか
に記載の機能素子において、前記光光導波路に前
記超薄膜多層構造の一部分を共有する分岐光導波
路を設け、前記超薄膜多層構造における前記共有
する一部分の一部に電界を印加して当該一部の前
記超薄膜多層構造における屈折率を変化させるこ
とにより、前記光導波路を伝播する光を前記分岐
光導波路に導くようにしたことを特徴とする光回
路機能素子。 9 特許請求の範囲第1項乃至第7項のいずれか
に記載の機能素子をそれぞれの前記超薄膜多層構
造の一部分を互いに平行に近接させて対に配置
し、それぞれの前記超薄膜多層構造における前記
一部分に電界を印加して当該一部分の前記超薄膜
多層構造における屈折率をそれぞれ変化させるこ
とにより、当該一部分の前記超薄膜多層構造相互
間において一方の前記光導波路を伝播する光を他
方の前記光導波路に導くようにしたことを特徴と
する光回路機能素子。
[Scope of Claims] 1. An optical waveguide having at least a part of an ultra-thin multi-layer structure forming a stepped quantum well structure having at least three energy levels, the refractive index of the ultra-thin multi-layer structure depending on an applied electric field. An optical circuit functional element characterized in that it is configured to be able to control light propagating through the optical waveguide by changing it accordingly. 2. In the functional device according to claim 1, the ultra-thin film multilayer has an asymmetric stepped quantum well structure formed by asymmetrically arranging and repeatedly stacking at least three types of semiconductor ultra-thin films each having a different energy level. An optical circuit functional element characterized by having a structure. 3. In the functional device according to claim 1, the ultra-thin film multilayer has a symmetric stepped quantum well structure formed by symmetrically arranging and repeatedly stacking at least three types of semiconductor ultra-thin films each having a different energy level. An optical circuit functional element characterized by having a structure. 4. The functional device according to claim 3, characterized in that the ultra-thin film multilayer structure is configured to form the symmetric stepped quantum well structure in which the energy levels of the conduction band are symmetrically and sequentially different. Optical circuit functional element. 5. The functional device according to claim 3, characterized in that the ultra-thin multilayer structure is configured to form the symmetric stepped quantum well structure in which the energy levels of the valence band are symmetrically and sequentially different. Optical circuit functional element. 6. An optical circuit in the functional element according to claim 2, characterized in that an electric field in a direction opposite to the change in energy level in the asymmetric stepped quantum well structure is applied to the ultra-thin multilayer structure. Functional element. 7. An optical circuit functional element according to claim 2, characterized in that an electric field in the same direction as the change in energy level in the asymmetric stepped quantum well structure is applied to the ultra-thin multilayer structure. . 8. The functional device according to any one of claims 1 to 7, wherein the optical waveguide is provided with a branched optical waveguide that shares a part of the ultra-thin film multilayer structure, The light propagating through the optical waveguide is guided to the branch optical waveguide by applying an electric field to a portion of the shared portion to change the refractive index of the ultra-thin multilayer structure of the portion. Optical circuit functional element. 9. The functional elements according to any one of claims 1 to 7 are arranged in pairs with portions of each of the ultra-thin multilayer structures parallel to each other and close to each other, and the functional elements of each of the ultra-thin multilayer structures are By applying an electric field to the part to change the refractive index of the ultra-thin film multilayer structure of the part, the light propagating through one of the optical waveguides is changed between the parts of the ultra-thin film multilayer structure. An optical circuit functional element characterized by being guided to an optical waveguide.
JP60223796A 1985-10-09 1985-10-09 Optical circuit function element Granted JPS6285227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60223796A JPS6285227A (en) 1985-10-09 1985-10-09 Optical circuit function element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60223796A JPS6285227A (en) 1985-10-09 1985-10-09 Optical circuit function element

Publications (2)

Publication Number Publication Date
JPS6285227A JPS6285227A (en) 1987-04-18
JPH0357460B2 true JPH0357460B2 (en) 1991-09-02

Family

ID=16803851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60223796A Granted JPS6285227A (en) 1985-10-09 1985-10-09 Optical circuit function element

Country Status (1)

Country Link
JP (1) JPS6285227A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164019A (en) * 1986-01-16 1987-07-20 Nec Corp Optical directional coupling element
JPH0827446B2 (en) * 1986-02-18 1996-03-21 日本電信電話株式会社 Quantum well type optical modulator and manufacturing method thereof
JP2656476B2 (en) * 1986-10-03 1997-09-24 株式会社日立製作所 Semiconductor device
JP2909586B2 (en) * 1987-06-17 1999-06-23 富士通株式会社 Semiconductor light emitting device
JP2752066B2 (en) * 1987-10-15 1998-05-18 株式会社東芝 Semiconductor optical device
JP2695872B2 (en) * 1987-11-18 1998-01-14 株式会社日立製作所 Semiconductor optical device and recording device using the same
JPH01262523A (en) * 1988-04-14 1989-10-19 Fujitsu Ltd Optical semiconductor element
JP2540949B2 (en) * 1989-07-19 1996-10-09 日本電気株式会社 Optical semiconductor material
JPH0675257A (en) * 1992-07-30 1994-03-18 Internatl Business Mach Corp <Ibm> Nonlinear optics device
JPH09318918A (en) * 1996-05-29 1997-12-12 Nec Corp Semiconductor optical modulator

Also Published As

Publication number Publication date
JPS6285227A (en) 1987-04-18

Similar Documents

Publication Publication Date Title
US8116600B2 (en) Optical phase modulation element and optical modulator using the same
JP5251981B2 (en) Optical control element and optical waveguide circuit
JPH0357460B2 (en)
US20060023993A1 (en) Directional optical coupler
US5712935A (en) Optical switch
CN114624903A (en) Method for improving modulation efficiency in silicon optical modulator
CN115145057A (en) Multi-doped flat silicon optical modulator
TWI810493B (en) Dielectric electro-optic phase shifter
JPH0827447B2 (en) Optical waveguide device
JP5069267B2 (en) Variable focus lens
JPH0430115A (en) Semiconductor optical modulator
KR900700859A (en) Electro-optic modulator
JPH01178932A (en) Optical switch
JP2014085398A (en) Optical modulator and optical deflector
JPS62145224A (en) Optical waveguide element
JPH03225325A (en) Light guide parts of semiconductor
JPH03164710A (en) Semiconductor light guide part
JPS6210413B2 (en)
JPS61220491A (en) Optical bistable integrated element
JPH01179014A (en) Optical wavelength variable filter
JPH0225837A (en) Distribution coupling type optical switch and its manufacture
JPH04163986A (en) Semiconductor surface type optical modulator element
JPH059011B2 (en)
JPH043012A (en) Method for driving semiconductor optical device
JPH03200225A (en) Distribution coupling type optical switch

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term