JPH0430115A - Semiconductor optical modulator - Google Patents

Semiconductor optical modulator

Info

Publication number
JPH0430115A
JPH0430115A JP13540690A JP13540690A JPH0430115A JP H0430115 A JPH0430115 A JP H0430115A JP 13540690 A JP13540690 A JP 13540690A JP 13540690 A JP13540690 A JP 13540690A JP H0430115 A JPH0430115 A JP H0430115A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
type
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13540690A
Other languages
Japanese (ja)
Inventor
Osamu Mitomi
修 三冨
Koichi Wakita
紘一 脇田
Isamu Odaka
勇 小高
Kenji Kono
健治 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13540690A priority Critical patent/JPH0430115A/en
Publication of JPH0430115A publication Critical patent/JPH0430115A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower driving voltage without impairing an extincition ratio charac teristic by arranging a p type and an n type semiconductor layers of high-dope and high refractive index to form a part of a core part to cover a non-dope layer as the electric field impression layer of a core layer from the upper and lower sides. CONSTITUTION:A p type and an n type semiconductor guide layers 10, 12 whose refractive indexes are larger than a p type and an n type clad layers 3, 5 are arranged so as to put the non-dope semiconductor layer 11 of the core layer in between. By arranging the semiconductor layer of the high refractive index to constitute a part of the core part, the light confinement coefficient of a light control function semiconductor layer can be made large, and a light control function such as optical modulation, etc., can be made to act highly efficiently without necessitating to lengthen the length of a waveguide, and the semiconductor optical modulator of low driving voltage is obtained without impairing the extinction ratio characteristic.

Description

【発明の詳細な説明】 (産業上の利用分野1 本発明は、光通信や光情報処理の分野で使用される、低
駆動電圧で高速動作が可能な半導体光変調器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field 1) The present invention relates to a semiconductor optical modulator that is used in the fields of optical communication and optical information processing and is capable of high-speed operation at low driving voltage.

【従来の技術l 従来使用されている電界吸収形半導体光変調器の基本構
造としては、高不純物濃度のp形およびn形のクラッド
層の間にノンドープのコア層が電界印加層として配置さ
れているものがある。これら素子の電界印加層に外部電
界を印加することによって、光の変調等の光機能を可能
にしている。
[Prior art l] The basic structure of conventionally used electroabsorption semiconductor optical modulators is that a non-doped core layer is placed as an electric field application layer between p-type and n-type cladding layers with high impurity concentrations. There are things that exist. Optical functions such as light modulation are made possible by applying an external electric field to the electric field application layer of these elements.

この種の変調素子では、駆動電圧の大きさは動作可能な
上限周波数(帯域)とともに、変調器の性能を決める重
要な特性であり、駆動電圧はできる限り小さく、かつ帯
域は広いことが望ましい。
In this type of modulation element, the magnitude of the drive voltage is an important characteristic that determines the performance of the modulator, as well as the upper limit frequency (bandwidth) that can be operated, and it is desirable that the drive voltage be as small as possible and the band should be wide.

第6図は従来の光変調器の一例を示す斜視図である。FIG. 6 is a perspective view showing an example of a conventional optical modulator.

ここで、1はAu等から形成される電極、2は半導体材
料と電極1との間でオーミック接触を得るためのキャッ
プ層である。3はn形半導体層、4はノンドープ半導体
層、5はn形半導体層、6はn形半導体基板であり、こ
れら層3,4,5.6により光導波路が形成されている
。n形半導体層3およびn形半導体層5,6がクラッド
部になり、ノンドープ半導体層4がコア部になる。7は
電極である。
Here, 1 is an electrode made of Au or the like, and 2 is a cap layer for obtaining ohmic contact between the semiconductor material and the electrode 1. 3 is an n-type semiconductor layer, 4 is a non-doped semiconductor layer, 5 is an n-type semiconductor layer, and 6 is an n-type semiconductor substrate, and these layers 3, 4, and 5.6 form an optical waveguide. The n-type semiconductor layer 3 and the n-type semiconductor layers 5 and 6 become a cladding part, and the non-doped semiconductor layer 4 becomes a core part. 7 is an electrode.

この場合、電極7に対して、電極1に負の外部電圧(逆
バイアス)■を印加すると、電圧Vの大きさに応じて、
ノンドープ層4に電界が加わり、この層の吸収係数αが
変化する。
In this case, if a negative external voltage (reverse bias) ■ is applied to the electrode 1 with respect to the electrode 7, depending on the magnitude of the voltage V,
An electric field is applied to the non-doped layer 4, and the absorption coefficient α of this layer changes.

第7図はノンドープ層4の電界強度Eと、その吸収係数
の大きさαとの関係を模式的に示す図である0通常の動
作では、第7図に示すように、■すなわちEが大きくな
るほどαが太き(なり、光に対する伝搬損失が大きくな
る。このため、コア部4の端面から一定強度の光8を入
射すると、電圧Vに応じて強度変調された出力光9が光
変調器から出射される。
FIG. 7 is a diagram schematically showing the relationship between the electric field strength E of the non-doped layer 4 and the magnitude α of its absorption coefficient.0 In normal operation, as shown in FIG. It is true that α is thick (and the propagation loss for light becomes large. Therefore, when light 8 of a constant intensity is incident from the end face of the core part 4, the output light 9 whose intensity is modulated according to the voltage V is transmitted to the optical modulator. It is emitted from.

第8図は従来の半導体光変調器の例において−、ノンド
ープ層4の厚さdと、光導波路の深さ方向のスポットサ
イズwJ3よびノンドープ層(コア部)4の光閉じ込め
係数Fとの関係を示す図であり、具体例として、p形お
よびn形半導体層(クラッド部)3および5としてIn
AρAsを用い、ノンドープ層4としてInGaAs/
InAl2Asの多重量子井戸層を用いた場合の計算例
を示す、第8図から分かるように、dを小さくすると、
rが小さくなる関係があり、特にdが0.2μ履以下に
なると、スポットサイズWが急激に大きくなり、それと
ともにrの大きさも著しく小さくなる。
FIG. 8 shows the relationship between the thickness d of the non-doped layer 4, the spot size wJ3 in the depth direction of the optical waveguide, and the optical confinement coefficient F of the non-doped layer (core portion) 4 in an example of a conventional semiconductor optical modulator. As a specific example, In is used as p-type and n-type semiconductor layers (cladding parts) 3 and 5.
AρAs is used, and the non-doped layer 4 is InGaAs/
As can be seen from Figure 8, which shows a calculation example using an InAl2As multiple quantum well layer, when d is made smaller,
There is a relationship in which r becomes smaller; in particular, when d becomes less than 0.2 μm, the spot size W increases rapidly, and at the same time, the size of r also decreases significantly.

通常、低駆動電圧の光変調器を実現するためには、dを
小さくすることが考えられる。これによって5同じ外部
印加電圧Vに対して電界強度Eを強めることができるの
で、吸収係数αの変化が大きくなり、低電圧動作が可能
になる。ただし、dを小さくすると、素子容量が増加し
、上限動作周波数が低下する。そこで、これを防ぐため
に、導波路幅Wや導波路長りを小さ(すればよい。
Normally, in order to realize an optical modulator with low driving voltage, it is considered to reduce d. As a result, the electric field strength E can be strengthened for the same externally applied voltage V, so that the change in the absorption coefficient α becomes large and low voltage operation becomes possible. However, when d is decreased, the element capacitance increases and the upper limit operating frequency decreases. Therefore, in order to prevent this, the waveguide width W and the waveguide length may be reduced.

L発明が解決しようとする課題] しかし、実際の光変調器では、光導波路の実効的な吸収
係数はr×αの大きさになるので、第8図の関係から分
かるように、特にdが0.2μm以下になるとrが著し
く小さくなり、消光比(光のオン/オフ比)特性が劣化
するとともに、駆動電圧改善にも限界が生じる。また、
dを小さくした構造において、消光比を改善するために
導波路長りを長くすると、素子容量が増加するので、周
波数特性も著しく劣化する欠点があった。
L Problems to be Solved by the Invention] However, in an actual optical modulator, the effective absorption coefficient of the optical waveguide has a magnitude of r×α, so as can be seen from the relationship in FIG. When it is less than 0.2 μm, r becomes significantly small, the extinction ratio (on/off ratio of light) characteristics deteriorate, and there is a limit to the improvement of the driving voltage. Also,
In a structure in which d is small, if the length of the waveguide is increased in order to improve the extinction ratio, the element capacitance increases, which has the disadvantage of significantly deteriorating the frequency characteristics.

そこで、本発明の目的は1以上の欠点を解決して低駆動
電圧の半導体光変調器を提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a semiconductor optical modulator with a low driving voltage by solving one or more of the drawbacks.

1課題を解決するための手段1 このような目的を達成するために、本発明は、半導体基
板と、該基板上に配置され、光導波路のクラッド部を構
成する第1の導電形の第1半導体層と、該第1半導体層
上に配置され、低不純物濃度の半導体層で構成された電
界印加層と、該電界印加層上に配置され、クラッド部を
構成する第2の導電形の第2半導体層とを少なくとも具
えて構成された半導体光変調器において、前記第1半導
体層と前記電界印加層との間に配置され、前記第1の導
電形をもち、および屈折率が前記第1半導体層の屈折率
より大きい第3半導体層、および前記第2半導体層と前
記電界印加層との間に配置され、前記第2の導電形をも
ち、屈折率が前記第2の導電形半導体層の屈折率より大
きい第4半導体層の少なくとも一方を具えたことを特徴
とする。
1 Means for Solving the Problems 1 In order to achieve such objects, the present invention includes a semiconductor substrate, a first semiconductor substrate of a first conductivity type disposed on the substrate, and constituting a cladding portion of an optical waveguide. a semiconductor layer, an electric field application layer disposed on the first semiconductor layer and composed of a semiconductor layer with a low impurity concentration, and a second conductivity type semiconductor layer disposed on the electric field application layer and constituting a cladding portion. a semiconductor optical modulator configured to include at least two semiconductor layers, which are disposed between the first semiconductor layer and the electric field application layer, have the first conductivity type, and have a refractive index of the first semiconductor layer and the first semiconductor layer; a third semiconductor layer having a refractive index greater than that of the semiconductor layer; and a third semiconductor layer disposed between the second semiconductor layer and the electric field application layer, having the second conductivity type and having a refractive index of the second conductivity type semiconductor layer. It is characterized by comprising at least one of the fourth semiconductor layers having a refractive index greater than .

ここで、前記第1.第2.第3および第4半導体層の少
なくともいずれか1つの半導体層を多重量子井戸構造ま
たは多層構造にすることができる。
Here, the above-mentioned 1. Second. At least one of the third and fourth semiconductor layers can have a multiple quantum well structure or a multilayer structure.

L作 用] 本発明では、電気的には導通性があり、かつ光学的には
コア部を形成する、ハイトープで高屈折率のp、n形半
導体層を、上記第3.第4半導体層として、上記電界印
加層としてのノンドープ層の上下をはさむように配置す
ることにより、ノンドープ層の光閉じ込め係数を太き(
することができ、以て導波路長を長くすることなく、消
光比特性を損わずに駆動電圧を低下させることができる
L effect] In the present invention, the p-type, n-type semiconductor layer, which is electrically conductive and has a high refractive index and which forms the optically conductive core portion, is formed by the above-described third. By arranging the fourth semiconductor layer to sandwich the non-doped layer as the electric field application layer above and below, the optical confinement coefficient of the non-doped layer can be increased (
Therefore, the driving voltage can be lowered without increasing the waveguide length and without damaging the extinction ratio characteristics.

【実施例J 以下、図面を参照して本発明の実施例を詳細に説明する
[Embodiment J] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の構成を示す斜視図である。FIG. 1 is a perspective view showing the configuration of an embodiment of the present invention.

なお、従来例と同様の構成部分には同一符号を付すもの
とする。
Note that the same reference numerals are given to the same components as in the conventional example.

第1図において、1は電極、2はキャップ層、3はp形
半導体層、5はn形半導体層、6はn形半導体基板、7
は電極である。さらに、lOはp形の半導体ガイド層、
11はノンドープ半導体層、12はn形の半導体ガイド
層であり、基板6の一方の主面上に電極7が配置され、
同他方の主面上に層5、12.11.10.3.2.1
がこの順序で配置される。p形およびn形半導体層3お
よび5がクラッド部を構成する。ガイド層10および1
2とノンドープ半導体層11とがコア部を構成し、ノン
ドープ層11に外部電圧による電界が印加される。第1
図において、ノンドープ層11は駆動電圧を低減化する
ために、比較的薄(形成されるが、その上下にガイド層
1゜および12が配置されているため、光導波路のスポ
ットサイズは拡がらず、ノンドープ層11の光閉じ込め
係数「を大きくすることができる。
In FIG. 1, 1 is an electrode, 2 is a cap layer, 3 is a p-type semiconductor layer, 5 is an n-type semiconductor layer, 6 is an n-type semiconductor substrate, and 7
is an electrode. Furthermore, IO is a p-type semiconductor guide layer,
11 is a non-doped semiconductor layer, 12 is an n-type semiconductor guide layer, and an electrode 7 is arranged on one main surface of the substrate 6;
Layer 5, 12.11.10.3.2.1 on the same other main surface
are arranged in this order. P-type and n-type semiconductor layers 3 and 5 constitute a cladding section. Guide layers 10 and 1
2 and the non-doped semiconductor layer 11 constitute a core portion, and an electric field is applied to the non-doped layer 11 by an external voltage. 1st
In the figure, the non-doped layer 11 is formed relatively thin in order to reduce the driving voltage, but since the guide layers 1° and 12 are placed above and below it, the spot size of the optical waveguide does not expand. , the optical confinement coefficient of the non-doped layer 11 can be increased.

第2図は半導体基板6としてn形InPを用い、電極1
としてAu電極、層2としてP0形InGaAs層、層
3としてp形InP層、層10としてp形InGaAs
P層、層11としてInGaAsP/InP系の材料を
用いた1、5μm帯の多重量子井戸(MQW)層、層1
2としてn形1 nGaAsP層、層5としてn形In
P層、電極7としてAu電極を用いた構造の半導体光変
調器の場合について、−例としてガイド層1oおよび1
2の厚さag+およびdgxを等しくした(dg+=d
gt:dg)ときの、ノンドープ層11の厚さd、とス
ポットサイズとの関係の計算例を示す。
In FIG. 2, n-type InP is used as the semiconductor substrate 6, and the electrode 1
layer 2 is a P0-type InGaAs layer, layer 3 is a p-type InP layer, and layer 10 is a p-type InGaAs layer.
Layer 1 is a multiple quantum well (MQW) layer in the 1 and 5 μm band using InGaAsP/InP material as the P layer and layer 11.
n-type 1 nGaAsP layer as layer 2, n-type In as layer 5
Regarding the case of a semiconductor optical modulator having a structure in which Au electrodes are used as the P layer and the electrode 7, for example, the guide layers 1o and 1
The thickness ag+ and dgx of 2 are made equal (dg+=d
An example of calculation of the relationship between the thickness d of the non-doped layer 11 and the spot size when gt:dg) is shown.

第3図はそのときのd、と光閉じ込め係数Fの計算例で
ある。
FIG. 3 shows an example of calculation of d and the optical confinement coefficient F at that time.

第2図および第3図から分かるように、ある−定の大き
さの6に対して、d、を大きくすると、スポットサイズ
Wは小さくなり、「はそれに伴って太き(なるadsが
薄くなるほど、この傾向は著しくなり、本発明の効果は
大きくなる。なお、dgを必要以上にさらに太き(する
と、第8図の関係から分かるように、Wは逆に太き(な
り、「も小さ(なるので、本発明の効果はなくなる。
As can be seen from Figures 2 and 3, when d is increased for a certain size 6, the spot size W becomes smaller, and the spot size W becomes thicker (as the ads become thinner). , this tendency becomes remarkable, and the effect of the present invention becomes greater.If dg is made thicker than necessary (then, as can be seen from the relationship in FIG. (As a result, the effect of the present invention is lost.

第1図示の実施例は、ガイド層1013よび12によっ
てノンドープ層11を上下からはさむように構成した場
合であるが、第4図または第5図に示すように、p形半
導体ガイド層13またはn形半導体ガイド層16のみを
ノンドープ層14または15に隣り合わせるように配置
して構成しても本発明の効果を得ることができる。
In the embodiment shown in FIG. 1, the non-doped layer 11 is sandwiched between the guide layers 1013 and 12 from above and below, but as shown in FIG. The effects of the present invention can also be obtained by arranging only the shaped semiconductor guide layer 16 adjacent to the non-doped layer 14 or 15.

あるいはまた、ガイド層10.12.13または16と
して、2種類以上の材料からなる多層構造の半導体層を
用いてもよい。さらにまた、MQW構造の半導体層をガ
イド層10.12.13または16として用いることも
でき、この場合には、ガイド層の吸収効果を低減できる
ので、ガイド層の伝搬損失を小さくできる。
Alternatively, as the guide layer 10, 12, 13 or 16, a multilayered semiconductor layer made of two or more types of materials may be used. Furthermore, a semiconductor layer having an MQW structure can be used as the guide layer 10, 12, 13 or 16, and in this case, the absorption effect of the guide layer can be reduced, so that the propagation loss of the guide layer can be reduced.

【発明の効果1 以上説明したように、本発明では、光制御機能を有する
半導体層に隣接して、コア部の一部分を構成する高屈折
率の半導体層を配置することにより、光制御機能半導体
層の光閉じ込め係数を大きくすることができ、それによ
り、導波路長を長くする必要なしに、光変調等の光制御
機能を高効率に動作させることができ、以て消光比特性
を損うことなしに低駆動電圧の半導体光変調器を実現で
きる。
Effects of the Invention 1 As explained above, in the present invention, by arranging a high refractive index semiconductor layer constituting a part of the core portion adjacent to a semiconductor layer having a light control function, It is possible to increase the optical confinement coefficient of the layer, thereby allowing optical control functions such as optical modulation to operate with high efficiency without the need to increase the waveguide length, thereby impairing the extinction ratio characteristic. A semiconductor optical modulator with low driving voltage can be realized without any problems.

なお、以上では、電界吸収形半導体変調器の場合につい
て本発明を説明したが、本発明は、ノン−ドープ半導体
層の光学的機能性として吸収係数の制御を利用した光デ
イテクタ、あるいは量子閉じ込めシュタルク効果、フラ
ンツケルデイツシュ効果、ポッケルス効果等を利用した
屈折率制御を利用した光位相変調器、光スィッチ等の光
導波路機能デバイスに適用しても本発明の効果を有効に
発揮して利用できることは自明である。
Although the present invention has been described in the case of an electro-absorption semiconductor modulator, the present invention is also applicable to an optical detector that utilizes absorption coefficient control as the optical functionality of a non-doped semiconductor layer, or a quantum confined Stark modulator. The effects of the present invention can be effectively exhibited and utilized even when applied to optical waveguide functional devices such as optical phase modulators and optical switches that utilize refractive index control using the Franz Keldeitssch effect, Pockels effect, etc. is self-evident.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2図および
第3図は本発明の詳細な説明するための特性図、 第4図および第5図は本発明の他の実施例を示す斜視図
、 第6図は従来例を示す斜視図、 第7図および第8図は従来例の特性を説明する図である
。 1.7・・・電極、 2・・・キャップ層、 3・・・n形半導体層(クラッド層)、4・・・ノンド
ープ半導体層(コア層)5・・・n形半導体層(クラッ
ド層)、6・・・n形半導体基板、 8・・・入射光、 9・・・出射光、
FIG. 1 is a perspective view showing one embodiment of the invention, FIGS. 2 and 3 are characteristic diagrams for explaining the invention in detail, and FIGS. 4 and 5 are other embodiments of the invention. FIG. 6 is a perspective view showing a conventional example, and FIGS. 7 and 8 are diagrams explaining characteristics of the conventional example. 1.7... Electrode, 2... Cap layer, 3... N-type semiconductor layer (cladding layer), 4... Non-doped semiconductor layer (core layer) 5... N-type semiconductor layer (cladding layer) ), 6... N-type semiconductor substrate, 8... Incident light, 9... Outgoing light,

Claims (1)

【特許請求の範囲】 1)半導体基板と、該基板上に配置され、光導波路のク
ラッド部を構成する第1の導電形の第1半導体層と、該
第1半導体層上に配置され、低不純物濃度の半導体層で
構成された電界印加層と、該電界印加層上に配置され、
クラッド部を構成する第2の導電形の第2半導体層とを
少なくとも具えて構成された半導体光変調器において、 前記第1半導体層と前記電界印加層との間に配置され、
前記第1の導電形をもち、および屈折率が前記第1半導
体層の屈折率より大きい第3半導体層、および前記第2
半導体層と前記電界印加層との間に配置され、前記第2
の導電形をもち、屈折率が前記第2の導電形半導体層の
屈折率より大きい第4半導体層の少なくとも一方を具え
たことを特徴とする半導体光変調器。 2)前記第1、第2、第3および第4半導体層の少なく
ともいずれか1つの半導体層を多重量子井戸構造とした
ことを特徴とする請求項1記載の半導体光変調器。 3)前記第1、第2、第3および第4半導体層の少なく
ともいずれか1つの半導体層を多重構造としたことを特
徴とする請求項1記載の半導体光変調器。
[Scope of Claims] 1) A semiconductor substrate, a first semiconductor layer of a first conductivity type disposed on the substrate and constituting a cladding portion of an optical waveguide, and a first semiconductor layer disposed on the first semiconductor layer and having a low an electric field application layer formed of a semiconductor layer with an impurity concentration; and an electric field application layer disposed on the electric field application layer,
A semiconductor optical modulator configured to include at least a second semiconductor layer of a second conductivity type constituting a cladding portion, disposed between the first semiconductor layer and the electric field application layer,
a third semiconductor layer having the first conductivity type and having a refractive index greater than the refractive index of the first semiconductor layer;
disposed between the semiconductor layer and the electric field application layer, and the second
A semiconductor optical modulator comprising at least one of a fourth semiconductor layer having a conductivity type and a refractive index greater than the refractive index of the second conductivity type semiconductor layer. 2) The semiconductor optical modulator according to claim 1, wherein at least one of the first, second, third, and fourth semiconductor layers has a multiple quantum well structure. 3) The semiconductor optical modulator according to claim 1, wherein at least one of the first, second, third, and fourth semiconductor layers has a multilayer structure.
JP13540690A 1990-05-28 1990-05-28 Semiconductor optical modulator Pending JPH0430115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13540690A JPH0430115A (en) 1990-05-28 1990-05-28 Semiconductor optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13540690A JPH0430115A (en) 1990-05-28 1990-05-28 Semiconductor optical modulator

Publications (1)

Publication Number Publication Date
JPH0430115A true JPH0430115A (en) 1992-02-03

Family

ID=15150983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13540690A Pending JPH0430115A (en) 1990-05-28 1990-05-28 Semiconductor optical modulator

Country Status (1)

Country Link
JP (1) JPH0430115A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274247A (en) * 1992-05-21 1993-12-28 The United States Of America As Represented By The Secretary Of The Army Optic modulator with uniaxial stress
JP2012141395A (en) * 2010-12-28 2012-07-26 Mitsubishi Electric Corp Optical semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274247A (en) * 1992-05-21 1993-12-28 The United States Of America As Represented By The Secretary Of The Army Optic modulator with uniaxial stress
JP2012141395A (en) * 2010-12-28 2012-07-26 Mitsubishi Electric Corp Optical semiconductor device

Similar Documents

Publication Publication Date Title
US5801872A (en) Semiconductor optical modulation device
US6777718B2 (en) Semiconductor optical device
JP3839710B2 (en) Semiconductor optical modulator, Mach-Zehnder optical modulator, and optical modulator integrated semiconductor laser
US6278170B1 (en) Semiconductor multiple quantum well mach-zehnder optical modulator and method for fabricating the same
EP0662628A1 (en) Semiconductor multiple quantum well Mach-Zehnder optical modulator and method for fabricating the same
US5017974A (en) Optical modulator with superlattice having asymmetric barriers
JPH0430115A (en) Semiconductor optical modulator
US4811353A (en) Semiconductor optical modulator
JP3001365B2 (en) Optical semiconductor element and optical communication device
JPH07113711B2 (en) Semiconductor waveguide type optical switch
JP3249235B2 (en) Light switch
JP3527078B2 (en) Light control element
JP2760276B2 (en) Selectively grown waveguide type optical control device
JPH03231220A (en) Optical semiconductor device
JP3844664B2 (en) Absorption semiconductor quantum well optical modulator
JP2706315B2 (en) Optical waveguide phase modulator
JPH0430114A (en) Semiconductor optical element
JPS61270726A (en) Waveguide type optical gate switch
JPH08327958A (en) Electric field absorption type semiconductor optical modulator
JP4105927B2 (en) Optical modulator element
JPH09179081A (en) Optical modulator and optical semiconductor switch
JPH09101491A (en) Semiconductor mach-zehnder modulator and its production
JP2004294860A (en) Electrically absorbing optical modulator element
JPH05259567A (en) Waveguide type multiple quantum well light control element
JPH03192788A (en) Integrated optical modulator