JP4105927B2 - Optical modulator element - Google Patents

Optical modulator element Download PDF

Info

Publication number
JP4105927B2
JP4105927B2 JP2002300537A JP2002300537A JP4105927B2 JP 4105927 B2 JP4105927 B2 JP 4105927B2 JP 2002300537 A JP2002300537 A JP 2002300537A JP 2002300537 A JP2002300537 A JP 2002300537A JP 4105927 B2 JP4105927 B2 JP 4105927B2
Authority
JP
Japan
Prior art keywords
optical modulator
light absorption
modulator element
type cladding
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002300537A
Other languages
Japanese (ja)
Other versions
JP2004138645A (en
Inventor
高志 三津間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2002300537A priority Critical patent/JP4105927B2/en
Publication of JP2004138645A publication Critical patent/JP2004138645A/en
Application granted granted Critical
Publication of JP4105927B2 publication Critical patent/JP4105927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高速光ファイバ通信に用いられる、電気信号を光のON/OFF信号に変換する光変調器素子に関する。
【0002】
【従来の技術】
図2に従来の光変調器素子の構造例(a)とそのバンド構造例(b)を示す。
(a)は半導体光変調器素子の基本構造であり、下部クラッド層(N型クラッド層)と光の導波方向にストライプ状に形成された上部クラッド層(P型クラッド層)に光吸収層が挟まれている。光吸収層は、両クラッド層よりも屈折率が大きく、光が光吸収層に閉じ込められる導波路構造となっており、ストライプ幅は、この導波路がシングルモード導波路となるような幅、例えばInP/InGaAsP系の材料を使った場合は、1μm程度の幅に設定されている。また、この光吸収層のバンドギャップエネルギーは、両クラッド層のそれより小さく、かつこの素子が光通信システムに組み込まれた時に使われる光のエネルギーよりも少し大きなエネルギーギャップ(一般的には25〜45meV程度大きなエネルギーギャップ)を持つように設定されている。
【0003】
従来の構造では、(b)にそのバンド構造図を示すように光吸収層内(この場合は、光吸収層全体がMQW構造のものを例としている)のウェル幅は一定(L1=L2=L3=・・・=Lm)になっていた。この素子の上下のP,N電極間に逆バイアス電圧を印加していくと、MQW光吸収層に電界が印加され、主に量子シュタルク効果によって、光の吸収端エネルギーが低エネルギー側(高波長側)にシフトし(フランツ・ケルディッシュ効果によっても同様の現象が起こる)、この導波路内を伝播する光のエネルギーに近づくため、光吸収が起こり、透過光量が低下する。この現象を利用して電気信号(電圧のHi/Low)に一致した光信号(光のON/OFF)を作りだすことができる(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平8−313853号公報 段落(0022)
【0005】
【発明が解決しようとする課題】
図3に従来の光変調器素子の上下の電極間に逆バイアス電圧(入力電気信号)を印加したときの透過光量の変化を示す。
この素子は、量子シュタルク効果もしくはフランツ・ケルディッシュ効果を利用して光吸収を起こさせることで機能するため、逆バイアス電圧の増加とともに急速に光吸収が起こり、ある程度深いバイアスではほとんど透過光量がなくなる特徴を持っている。
したがって、従来の光変調器素子の透過光量カーブで、リップルがあるような入力電気信号を光信号に変換すると図3に示したようにSpace側の出力光信号は、電気信号のリップルを圧縮し、S/Nが改善するが、Mark側では、逆バイアスが浅い領域を使っているため、電圧のわずかな変動に対して透過光量が大きく変動してしまい、S/Nを逆に劣化させてしまうというような現象がでてしまう。
この素子の1つの欠点となるMark側の変動増大を防止するには、図3に示したような浅い逆バイアス点での光吸収変化量を低減することが必要で、本発明ではこの特性を実現する構造を提案する。
【0006】
【課題を解決するための手段】
本発明は、光吸収端のエネルギーがP型クラッド層側になるほど大きくなった構造を作ることにより、逆バイアス電圧(入力電気信号)の絶対値が小さい領域で光吸収カーブがなだらかになるようにする。このような光吸収端の構造を作るには井戸を形成する材料組成を変えずに、P型クラッド層側に近づくほど井戸幅を狭くする。
【0007】
【発明の実施の形態】
図1に、本発明の光変調器素子の構造例(a)とそのバンド構造例(b)を示す。
図2の従来の光変調器素子では、光吸収層の井戸(ウェル)幅が一定であったが、本発明では、P型クラッド側のウェル幅をP型クラッド側にいくにつれて狭くなる構成(L1<L2<L3<・・・<Lm)とをした。
量子井戸構造の吸収端エネルギーは、ウェル幅が狭くなるにつれて高エネルギー側にシフトするため、本構造を用いることでP型クラッド側に近づくにつれて吸収端エネルギーが大きくなるようになる(図1(b)参照)。
この構造に印加する逆バイアス電圧を徐々に増加させていくと、まずP型クラッドとMQW光吸収層界面(P/N接合位置)からMQW光吸収層内にN型クラッド層の方へ徐々に空乏層が拡がっていき、素子に印加されている逆バイアス電圧は、この空乏層に電界を与えるため、この空乏層内で量子シュタルク効果(もしくはフランツ・ケルディッシュ効果、もしくはその複合)による吸収端の低エネルギー側シフトが起こる。したがって、本発明の構造による吸収端プロファイルでは逆バイアスが浅い領域(Mark側電圧に相当する領域)での光吸収が減少し、図3に示ような透過光量のプロファイルを実現できる。
それによって、リップルのある電気信号が素子に印加されても図3の点線で示した光信号のように従来の素子よりも小さなリップルにとどめることができ、Space側はもとよりMark側のS/Nも改善することができる。
【0008】
【発明の効果】
以上説明したように、入力電気信号にリップル等があっても、本素子で変換された光信号はSpace側のリップル圧縮だけでなくMark側のリップルも低く抑えられるので、特に高速大容量通信においては電気信号のS/Nよりも変換後の光信号のS/Nの方が良好になる波形成形効果も期待できる。
【図面の簡単な説明】
【図1】本発明の光変調器素子の構造例(a)とそのバンド構造例(b)を示す図。
【図2】従来の光変調器素子の構造例(a)とそのバンド構造例(b)を示す図。
【図3】従来と本発明の光変調器素子の電気信号−光信号変換を説明する図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical modulator element used for high-speed optical fiber communication, which converts an electrical signal into an optical ON / OFF signal.
[0002]
[Prior art]
FIG. 2 shows a structural example (a) of a conventional optical modulator element and a band structural example (b) thereof.
(a) is a basic structure of a semiconductor optical modulator device, in which a light absorption layer is formed on a lower clad layer (N-type clad layer) and an upper clad layer (P-type clad layer) formed in a stripe shape in the light guiding direction. Is sandwiched. The light absorption layer has a refractive index larger than both cladding layers and has a waveguide structure in which light is confined in the light absorption layer, and the stripe width is such a width that this waveguide becomes a single mode waveguide, for example, When an InP / InGaAsP material is used, the width is set to about 1 μm. The band gap energy of this light absorption layer is smaller than that of both clad layers and is slightly larger than the energy of light used when this device is incorporated in an optical communication system (generally 25 to It is set to have a large energy gap of about 45 meV).
[0003]
In the conventional structure, the well width in the light absorption layer (in this case, the whole light absorption layer is an MQW structure) is constant (L1 = L2 =) as shown in FIG. L3 = ... = Lm). When a reverse bias voltage is applied between the upper and lower P and N electrodes of this element, an electric field is applied to the MQW light absorption layer, and the absorption edge energy of light is reduced to the low energy side (high wavelength) mainly due to the quantum Stark effect. (The same phenomenon occurs due to the Franz-Keldish effect) and approaches the energy of light propagating in the waveguide, so that light absorption occurs and the amount of transmitted light decreases. By utilizing this phenomenon, it is possible to create an optical signal (light ON / OFF) that matches the electrical signal (voltage Hi / Low) (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
JP-A-8-313853 Paragraph (0022)
[0005]
[Problems to be solved by the invention]
FIG. 3 shows changes in the amount of transmitted light when a reverse bias voltage (input electric signal) is applied between the upper and lower electrodes of a conventional optical modulator element.
This element functions by causing light absorption by utilizing the quantum Stark effect or Franz-Keldish effect, so that light absorption occurs rapidly as the reverse bias voltage increases, and almost no transmitted light is lost at a certain deep bias. Has characteristics.
Therefore, when an input electric signal with ripples is converted into an optical signal in the transmitted light amount curve of a conventional optical modulator element, the output optical signal on the Space side compresses the ripple of the electric signal as shown in FIG. S / N improves, but on the Mark side, since the reverse bias is shallow, the amount of transmitted light greatly fluctuates with a slight change in voltage, and the S / N deteriorates conversely. The phenomenon that will end up.
In order to prevent the increase in fluctuation on the Mark side, which is one drawback of this element, it is necessary to reduce the amount of light absorption change at a shallow reverse bias point as shown in FIG. Propose the structure to be realized.
[0006]
[Means for Solving the Problems]
In the present invention, by creating a structure in which the energy at the light absorption edge increases toward the P-type cladding layer, the light absorption curve becomes gentle in a region where the absolute value of the reverse bias voltage (input electric signal) is small. To do. In order to make such a structure of the light absorption edge, the well width is narrowed toward the P-type cladding layer side without changing the material composition for forming the well.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a structural example (a) and a band structural example (b) of the optical modulator element of the present invention.
In the conventional optical modulator element of FIG. 2, the well width of the light absorption layer is constant. However, in the present invention, the well width on the P-type cladding side becomes narrower toward the P-type cladding side ( L1 <L2 <L3 <... <Lm).
Since the absorption edge energy of the quantum well structure shifts to a higher energy side as the well width becomes narrower, the absorption edge energy becomes larger as the P-type cladding side is approached by using this structure (FIG. 1B). )reference).
When the reverse bias voltage applied to this structure is gradually increased, first, gradually from the interface between the P-type cladding and the MQW light absorption layer (P / N junction position) into the MQW light absorption layer toward the N-type cladding layer. Since the depletion layer expands and the reverse bias voltage applied to the device gives an electric field to this depletion layer, the absorption edge due to the quantum Stark effect (or Franz Keldish effect, or a combination thereof) within this depletion layer The lower energy side shift occurs. Therefore, in the absorption edge profile according to the structure of the present invention, light absorption in a region where the reverse bias is shallow (region corresponding to the Mark side voltage) is reduced, and a transmitted light amount profile as shown in FIG. 3 can be realized.
As a result, even when an electrical signal having a ripple is applied to the element, the ripple can be kept smaller than that of the conventional element as in the optical signal shown by the dotted line in FIG. 3, and the S / N on the Mark side as well as on the Space side. Can also be improved.
[0008]
【The invention's effect】
As explained above, even if there are ripples in the input electrical signal, the optical signal converted by this element can suppress not only the ripple compression on the Space side but also the ripple on the Mark side. It can be expected that the S / N of the converted optical signal is better than the S / N of the electrical signal.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structural example (a) and a band structural example (b) of an optical modulator element of the present invention.
FIG. 2 is a diagram showing a structure example (a) of a conventional optical modulator element and a band structure example (b) thereof.
FIG. 3 is a diagram for explaining electrical signal-optical signal conversion in the conventional and optical modulator elements of the present invention.

Claims (1)

吸収層の全部、もしくはP型クラッド層側の一部が多重量子井戸構造(MQW)となっている光変調器素子において、
MQW構造の井戸(ウェル)幅がP型クラッド層側になるほど狭くすることによりP型クラッド層に近づくほど光吸収端のエネルギーを大きくして入力電気信号のリップルによる出力光信号のリップルを抑えて、出力光信号のS/Nを良好にすることを特徴とする光変調器素子。
In an optical modulator element in which the entire absorption layer or a part on the P-type cladding layer side has a multiple quantum well structure (MQW),
By making the well width of the MQW structure narrower toward the P-type cladding layer, the energy at the light absorption edge is increased toward the P-type cladding layer to suppress the ripple of the output optical signal due to the ripple of the input electric signal. An optical modulator element characterized by improving the S / N ratio of the output optical signal.
JP2002300537A 2002-10-15 2002-10-15 Optical modulator element Expired - Fee Related JP4105927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300537A JP4105927B2 (en) 2002-10-15 2002-10-15 Optical modulator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300537A JP4105927B2 (en) 2002-10-15 2002-10-15 Optical modulator element

Publications (2)

Publication Number Publication Date
JP2004138645A JP2004138645A (en) 2004-05-13
JP4105927B2 true JP4105927B2 (en) 2008-06-25

Family

ID=32449203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300537A Expired - Fee Related JP4105927B2 (en) 2002-10-15 2002-10-15 Optical modulator element

Country Status (1)

Country Link
JP (1) JP4105927B2 (en)

Also Published As

Publication number Publication date
JP2004138645A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US5801872A (en) Semiconductor optical modulation device
JP3839710B2 (en) Semiconductor optical modulator, Mach-Zehnder optical modulator, and optical modulator integrated semiconductor laser
JP2001215542A (en) Nonlinear optical device
JP2010539522A (en) Electroabsorption optical modulator
US6646317B2 (en) High power photodiode
JP4291085B2 (en) Waveguide type light receiving element
JP4105927B2 (en) Optical modulator element
JP2005116644A (en) Semiconductor opto-electronic waveguide
JP6939411B2 (en) Semiconductor optical device
US20220179245A1 (en) Multi-doped slab silicon optical modulator
US4811353A (en) Semiconductor optical modulator
KR100378596B1 (en) Structure of Semiconductor Optical Modulator
JPH02149818A (en) Optical modulating element
JP4550371B2 (en) Electroabsorption optical modulator, semiconductor integrated device with electroabsorption optical modulator, module using them, and method for manufacturing semiconductor integrated device with electroabsorption optical modulator
KR20040025533A (en) Semiconductor laser device
JP3795434B2 (en) Light modulation element
JP2012083473A (en) Optical gate element
WO2005081050A1 (en) Modulator-integrated light source and its manufacturing method
JP2001013472A (en) Optical semiconductor element and optical communication equipment
KR100630514B1 (en) Electro-absorption modulator and method for manufacturing of such a modulator
JPH03291617A (en) Integrated type optical modulator
JP3708758B2 (en) Semiconductor photo detector
JP3164063B2 (en) Semiconductor optical modulator and semiconductor optical device
KR20050025384A (en) Waveguide photodetector
US20210116775A1 (en) Optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees