JPH03291617A - Integrated type optical modulator - Google Patents

Integrated type optical modulator

Info

Publication number
JPH03291617A
JPH03291617A JP9451390A JP9451390A JPH03291617A JP H03291617 A JPH03291617 A JP H03291617A JP 9451390 A JP9451390 A JP 9451390A JP 9451390 A JP9451390 A JP 9451390A JP H03291617 A JPH03291617 A JP H03291617A
Authority
JP
Japan
Prior art keywords
optical modulator
layer
optical
optical waveguide
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9451390A
Other languages
Japanese (ja)
Inventor
Akira Ajisawa
味澤 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9451390A priority Critical patent/JPH03291617A/en
Publication of JPH03291617A publication Critical patent/JPH03291617A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators

Abstract

PURPOSE:To improve the coupling efficiency, to execute the modulation at a high speed and to make the wavelength chirping width small by forming an optical waveguide layer of the same structure and the same composition having light emission and absorption functions of light from a quantum well layer and a barrier layer having an energy gap being higher by 20 - 80meV than a quantum level of the quantum well layer. CONSTITUTION:In a laser area I and an optical modulator area II, an optical waveguide layer 3 of the same structure and the same composition having light emission and absorption functions of light is provided. Also, the optical waveguide layer 3 consists of single or plural quantum well layers 13, and a barrier layer 14 having an energy gap being higher by 20 - 80meV than a quantum level of the quantum well layer 13. Also, in the vicinity of the optical waveguide layer 3 of the laser area I, a diffraction grating 7 is provided, and on the laser area I, and on the optical modulator area II, an electrode 9 for injecting a current, and an electrode 10 for applying an electric field are formed independently, respectively. In such a way, optical coupling of 100% is obtained, and also, it can be formed by single crystal growth, therefore, the manhour is small and easy and the yield is enhanced, and moreover, high speed modulation can be executed, and the wavelength chirping width becomes small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信、光計測、光情報処理の分野で用いら
れる分布帰還型半導体レーザと光変調器を同一基板上に
集積した集積型光変調器に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an integrated type integrated feedback semiconductor laser and optical modulator used in the fields of optical communication, optical measurement, and optical information processing, in which a distributed feedback semiconductor laser and an optical modulator are integrated on the same substrate. This invention relates to optical modulators.

〔従来の技術〕[Conventional technology]

近年光フアイバ通信の長距離大容量化が急速に進んでい
る。光フアイバ通信により数G b / s帯の高速長
距離伝送を行う場合、光源側で光の強度変調に伴う波長
の変化、いわゆる波長のチャーピングが生じると光ファ
イバの波長分散の影響により伝送後の光波形の歪が生じ
、その結果伝送エラーを起こす。従ってG b / s
帯の高速での長距離光フアイバ通信を実現するために、
変調時の波長チャーピングの小さい信号光源が強く要求
される。
In recent years, long-distance and large-capacity optical fiber communications have been rapidly increasing. When performing high-speed, long-distance transmission in the several Gb/s band using optical fiber communication, if a change in wavelength due to light intensity modulation, so-called wavelength chirping, occurs on the light source side, the wavelength dispersion of the optical fiber causes a change in the wavelength after transmission. distortion of the optical waveform occurs, resulting in transmission errors. Therefore G b /s
In order to realize high-speed, long-distance optical fiber communication,
A signal light source with small wavelength chirping during modulation is strongly required.

この様な光源として分布帰還型半導体レーザ(以下DF
BLDと称する)と光変調器を一体に集積した集積型光
変調器が研究されている。高速変調可能な光調器として
は電界吸収型光変調器がある。これは寄生容量の大きさ
で変調帯域が決まるのでそれを低減することにより高速
化できる。
Distributed feedback semiconductor laser (hereinafter referred to as DF) is used as such a light source.
An integrated optical modulator that integrates an optical modulator (referred to as a BLD) and an optical modulator is being researched. An electroabsorption optical modulator is an example of a light modulator capable of high-speed modulation. Since the modulation band is determined by the size of the parasitic capacitance, the speed can be increased by reducing it.

この例としてDFBLDと電界吸収型光変調器を集積し
たものが電子情報通信学会光量子エレクトロニクス研究
会技術研究報告第89巻第87号0QE89−30 (
1989年6月〉に記載されている。5 G b / 
sの高速変調が可能で波長チャーピング幅は従来に比べ
1/10以下の0.16人に抑えられた。この集積型光
変調器ではDFBLDに直流電流を注入して定出力動作
させ、その出力光を電界吸収型光変調器で強度変調する
。ここでは光変調器の吸収層に電界をかけた時、吸収層
のバンドギャップより小さなエネルギーの光に対する吸
収の増加(フランツ・ケルデイツシュ効果〉を利用して
いる。従って吸収層のバンドキャップはDFBLDの活
性層のバンドギャップより大きい。このバンドギャップ
の差△Egは前記文献を含め従来例では33〜86me
Vとなっている。この値はΔEgが大きいと変調に要す
る動作電圧が高くなり、小さいと光変調器の挿入損失が
大きくなることを考慮して決定されている。
As an example of this, a device that integrates a DFBLD and an electroabsorption optical modulator is the Institute of Electronics, Information and Communication Engineers, Photon and Quantum Electronics Study Group, Technical Research Report, Vol. 89, No. 87, 0QE89-30 (
June 1989>. 5Gb/
It is possible to perform high-speed modulation of s, and the wavelength chirping width has been suppressed to 0.16, which is less than 1/10 of that of conventional methods. In this integrated optical modulator, a direct current is injected into the DFBLD to operate at a constant output, and the output light is intensity-modulated by an electro-absorption optical modulator. Here, when an electric field is applied to the absorption layer of the optical modulator, the increase in absorption of light with energy smaller than the bandgap of the absorption layer (Franz-Kjeldetsch effect) is utilized.Therefore, the bandgap of the absorption layer is the same as that of the DFBLD. It is larger than the band gap of the active layer.This band gap difference ΔEg is 33 to 86 me in conventional examples including the above-mentioned document.
It is V. This value is determined in consideration of the fact that when ΔEg is large, the operating voltage required for modulation becomes high, and when ΔEg is small, the insertion loss of the optical modulator becomes large.

従来例ではDFBLDが形成されているレーザ領域の活
性層と光変調器が形成されている光変調器領域の吸収層
では異なる組成(又はエネルギーバンドギャップ〉であ
るため、二つの領域間には屈折率の差があり、光学的結
合効率が50〜60%と低く約1/3の光が散乱光とな
っていた。このためファイバ結合入力は低くまた散乱光
が大ききため、ファイバと集積型光変調器の結合時の障
害となっていた。またレーザ領域の活性層と光変調器領
域の吸収層の組成が異なるため、選択成長で両者を段差
なく横方向に接続して形成するのは難しく、素子製作上
多大の工数がかかるとともに歩留りを悪くしていた。
In the conventional example, the active layer in the laser region where the DFBLD is formed and the absorption layer in the optical modulator region where the optical modulator is formed have different compositions (or energy band gaps), so there is a refraction gap between the two regions. The optical coupling efficiency was low at 50 to 60%, and about 1/3 of the light was scattered light.For this reason, the fiber coupling input was low and the scattered light was large, so fiber and integrated type This was an obstacle when coupling the optical modulator.Also, since the active layer in the laser region and the absorption layer in the optical modulator region have different compositions, it is difficult to connect them laterally without any step by selective growth. This is difficult, requires a large amount of man-hours in device manufacturing, and reduces yield.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は製造方法が容易で歩留りが高く、またレ
ーザ領域と光変調器領域の結合効率がよく、しかも高速
変調可能で波長チャーピング幅の小さい優れた集積型光
変調器を提供することにある。
An object of the present invention is to provide an excellent integrated optical modulator that is easy to manufacture, has a high yield, has good coupling efficiency between the laser region and the optical modulator region, is capable of high-speed modulation, and has a small wavelength chirping width. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の集積型光変調器は、半導体基板上に集積された
レーザ領域と光変調器領域とからなり、前記レーザ領域
及び光変調器領域に、同一構造及び同一組成で光の発光
及び吸収機能を有する光導波層を有し、前記光導波層が
単一または複数の量子井戸層と、前記量子井戸層の量子
準位より20〜80 m e V高いエネルギーギャッ
プを持つ障壁層とからなり、前記レーザ領域の光導波層
近傍には回折格子を有し、前記レーザ領域の上には電流
注入のための電極が、前記光変調器領域の上には電界印
加の電極がそれぞれ独立に形成されていることを特徴と
している。
The integrated optical modulator of the present invention includes a laser region and an optical modulator region integrated on a semiconductor substrate, and the laser region and the optical modulator region have the same structure and the same composition and have light emission and absorption functions. The optical waveguide layer is composed of a single or multiple quantum well layers and a barrier layer having an energy gap higher than the quantum level of the quantum well layer by 20 to 80 m e V, A diffraction grating is provided near the optical waveguide layer in the laser region, an electrode for current injection is formed above the laser region, and an electrode for applying an electric field is independently formed above the optical modulator region. It is characterized by

〔作用〕[Effect]

この集積型光変調器ではレーザ領域と光変調器領域が同
一組成、同一構造で、レーザ領域から光変調器領域まで
連続した先導波層を用いているので、レーザ領域と光変
調器領域の境界部での散乱光がなく、100%の光学的
結合が得られる。また、−回の結晶成長で形成できるも
ので工数が少なく容易で歩留りが高い。レーザ領域での
発光は量子井戸より行われ、発振波長は回折格子のピッ
チでほぼ決まるため、発振波長での量子井戸の吸収係数
は比較的小さく、更に光導波層中の量子井戸の占める割
合、即ち量子井戸層への光閉じ込め係数を比較的自由に
制御することができるため、本発明に用いた光導波路は
量子井戸層での吸収を十分に抑えた低損失の光導波路と
して用いることができる。また本発明の光導波路中の障
壁層はレーザの発振波長に比べて数+meV程度大きな
バンドギャップを持っているので光変調器領域に電界が
印加されていないときは非常に透明な光導波路として働
いているが、電界が印加されると障壁層でのフランツ・
ケルデイツシュ効果により、レーザ領域からの光は吸収
される。更に電界吸収型の光変調器になっているために
高速変調可能で波長チャーピング幅も小さくすることが
できる。この様に歩留りが高く、低損失で高速低チャー
プの集積型光変調器が得られる。
In this integrated optical modulator, the laser region and the optical modulator region have the same composition and structure, and a continuous waveguide layer is used from the laser region to the optical modulator region, so the boundary between the laser region and the optical modulator region is 100% optical coupling is obtained with no scattered light at the end. In addition, since it can be formed by two times of crystal growth, it is easy and has a high yield with a small number of man-hours. Light emission in the laser region is performed by quantum wells, and the oscillation wavelength is approximately determined by the pitch of the diffraction grating, so the absorption coefficient of the quantum well at the oscillation wavelength is relatively small, and the proportion of the quantum well in the optical waveguide layer That is, since the optical confinement coefficient in the quantum well layer can be controlled relatively freely, the optical waveguide used in the present invention can be used as a low-loss optical waveguide that sufficiently suppresses absorption in the quantum well layer. . Furthermore, since the barrier layer in the optical waveguide of the present invention has a bandgap that is several + meV larger than the oscillation wavelength of the laser, it functions as a very transparent optical waveguide when no electric field is applied to the optical modulator region. However, when an electric field is applied, Franz
Due to the Kjelditssch effect, light from the laser region is absorbed. Furthermore, since it is an electro-absorption type optical modulator, high-speed modulation is possible and the wavelength chirping width can be reduced. In this way, a high-yield, low-loss, high-speed, low-chirp integrated optical modulator can be obtained.

〔実施例〕〔Example〕

以下に本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(a)、(b)、(c)に、本発明による集積型
光変調器の一実施例を示す。第1図(a)はその斜視図
で、(b)は光が伝播する光学軸に沿ったA−A’での
断面図、(c)は光導波層の拡大図である。まずその製
造工程について述べる。
FIGS. 1(a), (b), and (c) show an embodiment of an integrated optical modulator according to the present invention. FIG. 1(a) is a perspective view thereof, FIG. 1(b) is a sectional view taken along line AA' along the optical axis along which light propagates, and FIG. 1(c) is an enlarged view of the optical waveguide layer. First, the manufacturing process will be described.

まずn−InP基板1上に部分的に(レーザ領域■とな
る部分)に回折格子7を干渉露光法及び化学エツチング
法により形成する。回折格子7の周期は発振波長が1.
55μmになるように2420人とした。その後全面に
、波長組成1.20μmのn−InGaAsPクラッド
層2を0.2μm、光の発光及び吸収機能を有する光導
波層3を0.3μm、p−InPクラッド層4を0.1
μm、p−InGaAsキャップ層5を0.5μm、順
次MOVPE法により形成する。光導波層3は、第1図
(C)に示すように、1−InGaAs量子井戸層13
と、波長組成1.45μmのi −I n G a A
 s P障壁層1.4よりなり、ここでは70人の量子
井戸層2層を950人の障壁層で挟む構成となっている
。次に、化学エツチング法により回折格子7とは垂直方
向に光導波層3を含むメサストライプ8を形成した後、
このメサストライプ8の上部を除いてFeドープ高抵抗
In2層6をMOVPE法で結晶成長させる。メサスト
ライプ8の光導波層3での幅は1.5〜2.0μm、高
さは2μmである。レーザ領域Iと光変調器領域■の表
面には分離された電極9.10を、また基板1側には電
極11を形成し、電極9.10間での電気的絶縁を得る
ために、電極間にp−InPクラッド層4の途中までの
深さの溝を設ける。電極9,10間の長さは50μmで
あり、その間の電気抵抗は数MΩ以上である。へき開に
より、レーザ領域長300μm、光変調器領域長150
μmとなるように切り出した後、光変調器領域側端面に
無反射コーテイング膜12を施す。このようにして集積
型光変調器が完成する。
First, a diffraction grating 7 is formed partially on the n-InP substrate 1 (the part that will become the laser region 2) by interference exposure method and chemical etching method. The period of the diffraction grating 7 is equal to the oscillation wavelength of 1.
The number of people was 2420 so that the thickness was 55 μm. Thereafter, a 0.2 μm thick n-InGaAsP cladding layer 2 with a wavelength composition of 1.20 μm, a 0.3 μm optical waveguide layer 3 having light emission and absorption functions, and a 0.1 μm p-InP cladding layer 4 are then applied to the entire surface.
A p-InGaAs cap layer 5 having a thickness of 0.5 μm is sequentially formed by MOVPE. The optical waveguide layer 3 includes a 1-InGaAs quantum well layer 13, as shown in FIG. 1(C).
and i-I n G a A with a wavelength composition of 1.45 μm.
It consists of 1.4 sP barrier layers, and here the structure is such that two quantum well layers of 70 layers are sandwiched between barrier layers of 950 layers. Next, after forming a mesa stripe 8 including the optical waveguide layer 3 in a direction perpendicular to the diffraction grating 7 by a chemical etching method,
A Fe-doped high-resistance In2 layer 6 is grown using the MOVPE method except for the upper part of the mesa stripe 8. The width of the mesa stripe 8 in the optical waveguide layer 3 is 1.5 to 2.0 μm, and the height is 2 μm. Separated electrodes 9.10 are formed on the surfaces of the laser region I and the optical modulator region (2), and electrodes 11 are formed on the substrate 1 side, and in order to obtain electrical insulation between the electrodes 9.10, A groove having a depth up to the middle of the p-InP cladding layer 4 is provided between them. The length between the electrodes 9 and 10 is 50 μm, and the electrical resistance therebetween is several MΩ or more. By cleavage, the laser region length is 300 μm and the optical modulator region length is 150 μm.
After cutting out to a size of μm, a non-reflection coating film 12 is applied to the end face on the side of the optical modulator region. In this way, an integrated optical modulator is completed.

次に、本実施例の集積型光変調器の動作について説明す
る。この実施例においてレーザ領域に電極9より電流を
注入することにより、レーザ発振が得られる。このとき
回折格子の周期および量子井戸の厚さより波長1.55
μmで単一のスペクトル発振が得られた。発振しきい値
電流は30mA程度であった。レーザ領域で発振した光
は光導波層を伝わってそのまま光変調器領域へ導かれる
。本発明においてはレーザ領域と光変調器領域は同一の
光導波層3により光学的に接続されているためここでの
結合効率は100%である。
Next, the operation of the integrated optical modulator of this example will be explained. In this embodiment, laser oscillation can be obtained by injecting current into the laser region through electrode 9. At this time, the wavelength is 1.55 from the period of the diffraction grating and the thickness of the quantum well.
A single spectral oscillation in μm was obtained. The oscillation threshold current was about 30 mA. The light oscillated in the laser region travels through the optical waveguide layer and is guided directly to the optical modulator region. In the present invention, since the laser region and the optical modulator region are optically connected by the same optical waveguide layer 3, the coupling efficiency here is 100%.

次に光変調器領域における動作について説明する。第2
図(a)、(b)は光変調器領域での変調動作を説明す
るために、光変調器領域におけるバンド構造を示したも
ので、(a)は電界が印加されていない場合、(b)は
電界が印加された場合について示した。光変調器領域へ
導かれた波長1.55μmの光は、電極10に逆バイア
スが印加されていない時には光導波層3を通って光出力
15として取り出される。この時、第2図(a)のバン
ド構造に示したように1.55μmの光に対しての光変
調器領域での吸収損失は、主に光導波層3における量子
井戸層13によるものであり、障壁層14が吸収損失に
与える影響は、その波長組成が1.45μmでありエネ
ルギー差として55meV程度あることから非常に小さ
い。また量子井戸レーザの場合、発振波長における量子
井戸での吸収係数は一般に200〜300c+n−’で
あるが、本発明においては光導波層3中の量子井戸層1
3の割合、即ち導波光の量子井戸への閉じ込め係数が4
%程度と非常に小さいため、導波路としての吸収係数は
30〜40 d B / cmであり、光変調器領域長
150μmを考えるとこの量子井戸層13による吸収損
失の影響は0.5dB程度と小さいことが判る。従って
電極10に逆バイアスが印加されていない時の光出力1
5としてmWオーダーを得ることができる。
Next, the operation in the optical modulator area will be explained. Second
Figures (a) and (b) show the band structure in the optical modulator region in order to explain the modulation operation in the optical modulator region. ) shows the case when an electric field is applied. The light with a wavelength of 1.55 μm guided to the optical modulator region passes through the optical waveguide layer 3 and is extracted as an optical output 15 when no reverse bias is applied to the electrode 10. At this time, as shown in the band structure of FIG. 2(a), the absorption loss in the optical modulator region for light of 1.55 μm is mainly due to the quantum well layer 13 in the optical waveguide layer 3. The influence of the barrier layer 14 on absorption loss is very small because its wavelength composition is 1.45 μm and the energy difference is about 55 meV. Further, in the case of a quantum well laser, the absorption coefficient in the quantum well at the oscillation wavelength is generally 200 to 300c+n-', but in the present invention, the quantum well layer 1 in the optical waveguide layer 3
3, that is, the confinement coefficient of guided light in the quantum well is 4.
%, the absorption coefficient as a waveguide is 30 to 40 dB/cm, and considering the optical modulator region length of 150 μm, the effect of absorption loss due to the quantum well layer 13 is about 0.5 dB. It turns out it's small. Therefore, the optical output 1 when no reverse bias is applied to the electrode 10
5, mW order can be obtained.

次に電極10に逆バイアスが印加された場合を考える。Next, consider a case where a reverse bias is applied to the electrode 10.

この時のバンド構造が第2図(b)に示されている。こ
の場合光導波層3全体に電界が印加されるために、障壁
層14のポテンシャルも変形する。その結果、障壁層で
のフランツ ケルデ9 0 ィッシス効果により1.55μmの波長の光は吸収され
る。ここでは障壁層のバンドギャップエネルギーとの差
が55 m e V程度であるので1×105V/σの
電界強度で500cm−’以上の吸収係数の増加が得ら
れる。従って電極10に3Vの電圧を印加することによ
り20dB以上の消光比が得られる。
The band structure at this time is shown in FIG. 2(b). In this case, since an electric field is applied to the entire optical waveguide layer 3, the potential of the barrier layer 14 is also deformed. As a result, light with a wavelength of 1.55 μm is absorbed due to the Franz Kjelde90 Issis effect in the barrier layer. Here, since the difference from the bandgap energy of the barrier layer is about 55 m e V, an increase in absorption coefficient of 500 cm -' or more can be obtained with an electric field strength of 1×10 5 V/σ. Therefore, by applying a voltage of 3 V to the electrode 10, an extinction ratio of 20 dB or more can be obtained.

以上説明したように、本実施例ではレーザ領域と光変調
器領域の結合効率が100%であり光変調器領域側端面
からの光出力として数mW程度得られ、動作電圧3V以
下で20dB以上の消光比を持つ強度変調が得られる集
積型光変調器が実現でき、更にフランツ・ケルデイツシ
ュ効果を用いているため低チャーピング、高速変調特性
を有し、2.4Gb/sの良好な変調も可能である。
As explained above, in this example, the coupling efficiency between the laser region and the optical modulator region is 100%, and the optical output from the end face of the optical modulator region is approximately several mW, and the operating voltage is 3 V or less and the optical power is 20 dB or more. An integrated optical modulator that can obtain intensity modulation with an extinction ratio can be realized, and since it uses the Franz-Kjelditssch effect, it has low chirping and high-speed modulation characteristics, and it is also possible to perform good modulation at 2.4 Gb/s. It is.

ここに示した実施例は一例であり、同様な効果が得られ
るならば量子井戸層の厚さ、暦数、障壁層の組成、各層
の厚さなど実施例に規定されるものではない。また材料
に関してもI n G a A s P系のみならずI
nGaAlAs系等を用いても良い。
The embodiment shown here is an example, and the thickness of the quantum well layer, the number of calendars, the composition of the barrier layer, the thickness of each layer, etc. are not limited to the embodiments, as long as similar effects can be obtained. Regarding materials, not only I n Ga A s P type but also I
nGaAlAs or the like may also be used.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明による集積型光変調
器では、レーザ領域と光変調器領域が同一構造の連続し
た光導波層を有するため、100%の高い結合効率がえ
られる他、製作工程において選択成長を必要としないた
め素子製作の工数が少なく歩留りが高いという利点があ
る。また本発明に用いた光導波層では吸収損失が小さい
ため高い光出力が得られ、さらにフランツ・ケルデイツ
シュ効果により低電圧で高い消光比が得られる。
As explained in detail above, in the integrated optical modulator according to the present invention, since the laser region and the optical modulator region have continuous optical waveguide layers with the same structure, a high coupling efficiency of 100% can be obtained, and Since selective growth is not required in the process, there are advantages in that the number of man-hours for manufacturing the device is small and the yield is high. Further, the optical waveguide layer used in the present invention has a small absorption loss, so a high optical output can be obtained, and furthermore, a high extinction ratio can be obtained at a low voltage due to the Franz-Kjelditssch effect.

また、本素子は変調時におけるチャーピングがほとんど
ないため、G b / s帯の長距離超大容量光フアイ
バ通信用の光源として最適である。
Furthermore, since this device exhibits almost no chirping during modulation, it is ideal as a light source for long-distance ultra-high capacity optical fiber communications in the Gb/s band.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)、(c)は本発明の集積型光変調
器の実施例を示す図であり、(a)は斜視図、(b)は
そのA−A’断面図、(C)は光導波層の拡大断面図で
ある。第2図(a)。 (b)は本発明の素子の変調動作を説明するために、光
変調器領域におけるバンド構造を示したもので、(a)
は電界が印加されていない場合、(b)は電界が印加さ
れた場合の図である。 図において1はn−InP基板、2はn−InGaAs
Pクラッド層、3は光導波層、4はp−InPクラッド
層、5は1)  InGaAsキャップ層、6は高抵抗
InP層、7は回折格子、8はメサストライプ、9,1
0.11は電極、12は無反射コーテイング膜、13は
i−I nGaAs量子井戸層、14はi −I n 
G a A s P障壁層、15は光出力である。
FIGS. 1(a), (b), and (c) are diagrams showing an embodiment of the integrated optical modulator of the present invention, in which (a) is a perspective view and (b) is a sectional view taken along line AA'. , (C) is an enlarged cross-sectional view of the optical waveguide layer. Figure 2(a). (b) shows the band structure in the optical modulator region in order to explain the modulation operation of the device of the present invention, and (a)
(b) is a diagram when no electric field is applied, and (b) is a diagram when an electric field is applied. In the figure, 1 is an n-InP substrate, 2 is an n-InGaAs
P cladding layer, 3 optical waveguide layer, 4 p-InP cladding layer, 5 1) InGaAs cap layer, 6 high resistance InP layer, 7 diffraction grating, 8 mesa stripe, 9,1
0.11 is an electrode, 12 is a non-reflective coating film, 13 is an i-I nGaAs quantum well layer, and 14 is an i-I n
G a A s P barrier layer, 15 is the optical output.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に集積されたレーザ領域と光変調器領域と
からなり、前記レーザ領域及び光変調器領域に、同一構
造及び同一組成で光の発光及び吸収機能を有する光導波
層を有し、前記光導波層が単一または複数の量子井戸層
と、前記量子井戸層の量子準位より20〜80meV高
いエネルギーギャップを持つ障壁層とからなり、前記レ
ーザ領域の光導波層近傍には回折格子を有し、前記レー
ザ領域の上には電流注入のための電極が、前記光変調器
領域の上には電界印加の電極がそれぞれ独立に形成され
ていることを特徴とする集積型光変調器。
It consists of a laser region and an optical modulator region integrated on a semiconductor substrate, and the laser region and the optical modulator region have an optical waveguide layer having the same structure and composition and having a light emission and absorption function, The optical waveguide layer includes a single or multiple quantum well layers and a barrier layer having an energy gap 20 to 80 meV higher than the quantum level of the quantum well layer, and a diffraction grating is provided near the optical waveguide layer in the laser region. An integrated optical modulator, characterized in that an electrode for current injection is formed above the laser region, and an electrode for applying an electric field is formed above the optical modulator region, respectively.
JP9451390A 1990-04-10 1990-04-10 Integrated type optical modulator Pending JPH03291617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9451390A JPH03291617A (en) 1990-04-10 1990-04-10 Integrated type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9451390A JPH03291617A (en) 1990-04-10 1990-04-10 Integrated type optical modulator

Publications (1)

Publication Number Publication Date
JPH03291617A true JPH03291617A (en) 1991-12-20

Family

ID=14112406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9451390A Pending JPH03291617A (en) 1990-04-10 1990-04-10 Integrated type optical modulator

Country Status (1)

Country Link
JP (1) JPH03291617A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627798B1 (en) * 1993-06-02 1997-08-06 France Telecom Monolithically integrated laser-modulator with multiquantum well structure
JP2002148575A (en) * 2000-11-15 2002-05-22 Mitsubishi Electric Corp Optical modulator and optical modulator integtation type laser diode
JP2005064512A (en) * 2003-08-13 2005-03-10 Samsung Electronics Co Ltd Integrated optical device and manufacturing method therefor
KR100519920B1 (en) * 2002-12-10 2005-10-10 한국전자통신연구원 High Speed Optical Processing including Saturable Absorber and Gain-Clamped Optical Amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627798B1 (en) * 1993-06-02 1997-08-06 France Telecom Monolithically integrated laser-modulator with multiquantum well structure
JP2002148575A (en) * 2000-11-15 2002-05-22 Mitsubishi Electric Corp Optical modulator and optical modulator integtation type laser diode
KR100519920B1 (en) * 2002-12-10 2005-10-10 한국전자통신연구원 High Speed Optical Processing including Saturable Absorber and Gain-Clamped Optical Amplifier
JP2005064512A (en) * 2003-08-13 2005-03-10 Samsung Electronics Co Ltd Integrated optical device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US5801872A (en) Semiconductor optical modulation device
JP3244116B2 (en) Semiconductor laser
JPH1168241A (en) Semiconductor laser
US6278170B1 (en) Semiconductor multiple quantum well mach-zehnder optical modulator and method for fabricating the same
JPH0927658A (en) Semiconductor optical integrated circuit and manufacture thereof
JPH08146365A (en) Semiconductor mach-zehnder modulation device and its production
EP0662628B1 (en) Semiconductor multiple quantum well Mach-Zehnder optical modulator
JPH01319986A (en) Semiconductor laser device
JPH03291617A (en) Integrated type optical modulator
JPH07231132A (en) Semiconductor optical device
JPH05158085A (en) Optical modulation device and its manufacture
JP2669335B2 (en) Semiconductor light source and manufacturing method thereof
US11189991B2 (en) Semiconductor optical element and semiconductor optical device comprising the same
JPH08248364A (en) Light intensity modulation element and semiconductor laser with light intensity modulation element
JPH02149818A (en) Optical modulating element
JPH08234148A (en) Optical semiconductor device and its production
JPH03120777A (en) Integrated type light modulator
JP3146821B2 (en) Manufacturing method of semiconductor optical integrated device
JP2760276B2 (en) Selectively grown waveguide type optical control device
JP3164063B2 (en) Semiconductor optical modulator and semiconductor optical device
EP1059554B1 (en) Operating method for a semiconductor optical device
JP2890644B2 (en) Manufacturing method of integrated optical modulator
JP3185860B2 (en) Absorption modulator
JPH03225320A (en) Light modulator and photodetector
JPH03192787A (en) Integrated optical modulator