JPH07231132A - Semiconductor optical device - Google Patents

Semiconductor optical device

Info

Publication number
JPH07231132A
JPH07231132A JP2121994A JP2121994A JPH07231132A JP H07231132 A JPH07231132 A JP H07231132A JP 2121994 A JP2121994 A JP 2121994A JP 2121994 A JP2121994 A JP 2121994A JP H07231132 A JPH07231132 A JP H07231132A
Authority
JP
Japan
Prior art keywords
semiconductor
optical
modulator
active layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2121994A
Other languages
Japanese (ja)
Inventor
Norifumi Sato
佐藤  憲史
Osamu Mitomi
修 三冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2121994A priority Critical patent/JPH07231132A/en
Publication of JPH07231132A publication Critical patent/JPH07231132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a device which enables high speed operation with excellent stability of oscillation wavelength by providing a common active layer formed on a semiconductor substrate and three regions of a light emitting element, an optical modulator and a semiconductor optical amplifier which are optically coupled sequentially. CONSTITUTION:A common active layer 1 to 3 formed on a semiconductor substrate 5, and three regions of a light emitting element I, an optical modulator II and a semiconductor amplifier III which are optically coupled sequentially are provided. For example, a common semiconductor layer (active layer) 1 to 3 having a small band gap consisting of InGaAsP is formed and a P-type InP layer 4 is formed thereon. A diffraction grating 6 is formed on a semiconductor layer 2 of the semiconductor laser to form a distribution feedback type laser. The electrodes 7 to 9 isolated to the resions I to III are respectively formed on the upper surface of the P-type InP layer 4, a common electrode 10 is formed at the rear surface of the substrate 5 and the regions I to III are coupled optically but is isolated electrically.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体光装置に関し、特
に高速動作が可能で発振波長の安定性に優れた光源とし
ての半導体光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical device, and more particularly to a semiconductor optical device as a light source which can operate at high speed and has excellent stability of oscillation wavelength.

【0002】[0002]

【従来の技術】図4は従来の電界吸収型光変調器を用い
たレーザの光変調を説明するための図である。このレー
ザはいわゆる変調器付き半導体レーザであり、Iは半導
体分布帰還型レーザ、IIは電界吸収型光変調器である。
半導体分布帰還型レーザおよび電界吸収型光変調器は同
一のn型半導体基板5上に形成され、光学的に結合して
いるが電気的には絶縁されている。すなわち変調器(I
I)の活性層1とレーザ(I)の活性層2は共通の半導
体層からなり、レーザの活性層2には回折格子が形成さ
れ、クラッド層であるp型半導体層4上に変調器への電
界印加のための電極7とレーザへの電流注入のための電
極8が分離して形成されている。基板5の裏面には共通
グランド電極10が設けられている。Iの半導体分布帰
還型レーザには順方向に一定電流を注入することで一定
の光出力が得られる。IIの電界吸収型光変調器には逆方
向に符号化された電圧を加えることにより符号化された
光出力が得られる。
2. Description of the Related Art FIG. 4 is a diagram for explaining optical modulation of a laser using a conventional electroabsorption type optical modulator. This laser is a so-called modulator-equipped semiconductor laser, I is a semiconductor distributed feedback laser, and II is an electroabsorption optical modulator.
The semiconductor distributed feedback laser and the electro-absorption optical modulator are formed on the same n-type semiconductor substrate 5 and are optically coupled but electrically insulated. Ie modulator (I
The active layer 1 of I) and the active layer 2 of the laser (I) are composed of a common semiconductor layer, a diffraction grating is formed in the active layer 2 of the laser, and a modulator is formed on the p-type semiconductor layer 4 which is a clad layer. An electrode 7 for applying the electric field and an electrode 8 for injecting a current into the laser are separately formed. A common ground electrode 10 is provided on the back surface of the substrate 5. A constant light output can be obtained by injecting a constant current in the forward direction in the semiconductor distributed feedback laser of I. A coded optical output is obtained by applying a coded voltage in the opposite direction to the electroabsorption optical modulator of II.

【0003】[0003]

【発明が解決しようとする課題】電界吸収型光変調器を
用いたレーザの光変調では、レーザの電流を直接変調す
る方式に比べ出力光の波長変動が小さいことが知られて
いる。しかし、変調器においても電圧印加に伴い屈折率
が変動するため位相変調が起こり波長変動を引き起こす
ことが知られている。高速変調時にはこの波長変動が光
通信の長距離化を制限する要因となっている。本発明は
このような従来の問題を解決し、高速動作が可能で発振
波長の安定性に優れた半導体光装置を提供することを目
的とする。
It is known that in the optical modulation of a laser using an electro-absorption optical modulator, the wavelength variation of output light is smaller than that in the method of directly modulating the laser current. However, it is known that even in the modulator, since the refractive index changes with the application of voltage, phase modulation occurs and the wavelength changes. At the time of high-speed modulation, this wavelength variation is a factor that limits the extension of optical communication over long distances. SUMMARY OF THE INVENTION It is an object of the present invention to solve such conventional problems and to provide a semiconductor optical device capable of high-speed operation and excellent in stability of oscillation wavelength.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明半導体光装置の第1の態様によれば、半導体
基板上に形成された共通の活性層部を有し、かつ順次光
学的に結合された発光素子、光変調器および半導体光増
幅器の三つの領域を有することを特徴とする。
In order to achieve the above object, according to a first aspect of the semiconductor optical device of the present invention, the semiconductor optical device has a common active layer portion formed on a semiconductor substrate and has a sequential optical structure. It has three regions, that is, a light emitting device, a light modulator, and a semiconductor optical amplifier, which are coupled to each other.

【0005】本発明の第2の態様によれば、半導体基板
上に形成した半導体多層膜を積層した活性層部を共通と
する発光素子と光変調器と半導体光増幅器とを複合した
半導体光装置であって、前記光変調器において前記発光
素子からの発光出力を電界光吸収変調し、前記半導体光
増幅器で該変調器での発光出力の位相変調と逆の位相変
調を行うことを特徴とする。
According to the second aspect of the present invention, a semiconductor optical device including a light emitting element, an optical modulator, and a semiconductor optical amplifier which share an active layer portion in which semiconductor multi-layered films formed on a semiconductor substrate are shared. In the optical modulator, the light emission output from the light emitting element is subjected to electro-optical absorption modulation, and the semiconductor optical amplifier performs phase modulation opposite to the phase modulation of the light emission output in the modulator. .

【0006】上述した装置のいずれにおいても前記発光
素子は回折格子を有するレーザであり、前記光変調器は
逆方向に加えられた電界により光吸収係数を制御する電
界光吸収型変調器であり、かつ前記半導体光増幅器は順
方向に電流が注入され利得飽和レベルに設定されるとよ
い。また前記共通の活性層が量子井戸構造を有する半導
体多層膜からなってもよい。
In any of the above-mentioned devices, the light emitting element is a laser having a diffraction grating, and the optical modulator is an electro-optical absorption type modulator that controls an optical absorption coefficient by an electric field applied in the opposite direction, In addition, it is preferable that the semiconductor optical amplifier is set to a gain saturation level by injecting a current in the forward direction. Further, the common active layer may be composed of a semiconductor multilayer film having a quantum well structure.

【0007】さらに前記光変調器の活性層部および前記
半導体光増幅器の活性層部上に半導体光導波路が設けら
れてもよく、前記発光素子の前記光変調器の反対側の端
部に直接または前記半導体基板上に形成された光導波路
を介して受光素子が設けられてもよく、また前記光変調
器の活性層部のバンドギャップが前記発光素子および前
記半導体光増幅器の活性層部のバンドギャップより大き
くてもよい。
Further, a semiconductor optical waveguide may be provided on the active layer portion of the optical modulator and the active layer portion of the semiconductor optical amplifier, and may be provided directly or at an end portion of the light emitting element opposite to the optical modulator. A light receiving element may be provided via an optical waveguide formed on the semiconductor substrate, and the band gap of the active layer portion of the optical modulator is the band gap of the active layer portion of the light emitting element and the semiconductor optical amplifier. May be larger.

【0008】本発明の第3の態様によれば、同一の半導
体基板上に形成され光学的に順次結合されている第1,
第2および第3の半導体素子を有する半導体装置であっ
て、それぞれの半導体素子はバンドギャップの小さい半
導体層をp型半導体とn型半導体で挾んだ接合を有し、
前記バンドギャップの小さい半導体層は光の走行方向に
沿って前記三つの半導体素子に対応する三つの領域の分
かれ、中央の領域のバンドギャップが両端の領域のバン
ドギャップより大きく、かつ前記第1および第3の半導
体装置のいずれかの前記バンドギャップの小さい半導体
層に回折格子が形成されていることを特徴とする。
According to the third aspect of the present invention, the first and the first optically coupled layers formed on the same semiconductor substrate
A semiconductor device having second and third semiconductor elements, each semiconductor element having a junction in which a semiconductor layer having a small band gap is sandwiched between a p-type semiconductor and an n-type semiconductor,
The semiconductor layer having a small band gap is divided into three regions corresponding to the three semiconductor elements along the traveling direction of light, the band gap of the central region is larger than the band gaps of the end regions, and the first and A diffraction grating is formed in a semiconductor layer having a small band gap in any one of the third semiconductor devices.

【0009】さらに本発明の第4の態様によれば、半導
体基板上に形成された活性層部を共通とする第1および
第2の半導体素子を複合した半導体光装置であって、前
記第1の半導体素子は入力光を電界光吸収変調する光変
調器であり、前記第2の半導体素子は該変調器での発光
出力の位相変調と逆位相の変調を行う半導体光増幅器で
あることを特徴とする。
Further, according to a fourth aspect of the present invention, there is provided a semiconductor optical device in which first and second semiconductor elements having a common active layer portion formed on a semiconductor substrate are combined, wherein Is a light modulator that modulates the input light by electro-optical absorption, and the second semiconductor device is a semiconductor optical amplifier that performs a phase modulation of the light emission output of the modulator and a phase opposite thereto. And

【0010】[0010]

【作用】半導体増幅器ではある一定以上の光が入力する
と利得飽和を起こし、キャリアが減少することが知られ
ている。この時、キャリアの減少に伴いプラズマ効果に
より屈折率が増大するため位相が変調され、周波数変動
すなわち波長変動が起こる。この効果は、電界吸収型光
変調器において起こる位相変調とは逆位相であるため、
変調器の位相変調による周波数変動を打ち消し、さらに
レーザの注入電流を増大し光出力を増大させるか、半導
体増幅器の注入電流を増大し利得飽和を増長させること
で逆位相の位相変調を生じさせることもできる。
It is known that in a semiconductor amplifier, when a certain amount of light or more is input, gain saturation occurs and carriers are reduced. At this time, since the refractive index increases due to the plasma effect as the number of carriers decreases, the phase is modulated and frequency fluctuation, that is, wavelength fluctuation occurs. This effect has the opposite phase to the phase modulation that occurs in the electro-absorption optical modulator,
To cancel the frequency fluctuation due to the phase modulation of the modulator and further increase the injection current of the laser to increase the optical output, or to increase the injection current of the semiconductor amplifier and increase the gain saturation to generate the antiphase phase modulation. You can also

【0011】[0011]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0012】図1に本発明の半導体光装置の模式的断面
を示す。同一のn型半導体基板5(例えばn−InP基
板)上に半導体レーザ(I)、光変調器(II)および半
導体光増幅器(III )の三つの領域が形成されている。
各領域は基板5上に形成された例えばInGaAsPか
らなるバンドギャップの小さい共通の半導体層(活性
層)1,2,3と、この半導体層上のp型半導体層4
(例えばp−InP)とを有する。すなわち、バンドギ
ャップの小さい共通の半導体層をn型とp型の半導体層
で挾んだ接合を有する。半導体レーザの半導体層2には
回折格子6が形成され、分布帰還型レーザとしている。
p型半導体層4の上面にはそれぞれの領域に分離された
電極7,8および9が形成され、一方基板5の裏面には
共通電極10が形成されている。このように、各領域
I,IIおよびIII は光学的に結合され、電気的には絶縁
されている。このような構造は通常の結晶成長方法、リ
ソグラフィー手法によって作製することができる。
FIG. 1 shows a schematic cross section of a semiconductor optical device of the present invention. Three regions of a semiconductor laser (I), an optical modulator (II) and a semiconductor optical amplifier (III) are formed on the same n-type semiconductor substrate 5 (for example, an n-InP substrate).
The respective regions are common semiconductor layers (active layers) 1, 2 and 3 formed on the substrate 5 and made of, for example, InGaAsP and having a small band gap, and the p-type semiconductor layer 4 on the semiconductor layers.
(For example, p-InP). That is, a common semiconductor layer having a small band gap is sandwiched between an n-type semiconductor layer and a p-type semiconductor layer. A diffraction grating 6 is formed on the semiconductor layer 2 of the semiconductor laser to form a distributed feedback laser.
Separated electrodes 7, 8 and 9 are formed on the upper surface of the p-type semiconductor layer 4, while a common electrode 10 is formed on the rear surface of the substrate 5. Thus, the regions I, II and III are optically coupled and electrically insulated. Such a structure can be produced by a normal crystal growth method or a lithography method.

【0013】Iの半導体分布帰還型レーザには順方向に
一定電流を注入することで一定の光出力が得られる。II
の電界吸収型光変調器に電界を印加すると半導体層1の
吸収率が変化し、入力光を変調できる。例えば逆方向に
符号化された電圧を加えることにより符号化された光出
力が得られる。ここで無電界時の透明性を増すために領
域(II)の半導体層1のバンドギャップを両端の領域
(I,III )の半導体層2,3のバンドギャップより大
きくするとよい。例えば半導体層1を1.55μm組成
のInGaAsPとし、半導体層2,3を1.48μm
組成のInGaAsPとする。III の半導体増幅器には
一定電流を注入している。Iの半導体分布帰還型レーザ
の電流を増大することで大きな光出力が得られる。III
の半導体増幅器ではある一定以上の光が入力すると利得
飽和を起こし、キャリアが減少しプラズマ効果により屈
折率が増大するため位相変調が起こり、この効果は、電
界吸収型光変調器において起こる位相変調とは逆位相で
あるため、位相変調を打ち消し、さらに逆位相の位相変
調を生じさせることもできる。図2はそれを説明する図
であって、(a)は光変調器(II)の出力波形の一例を
示す。(b)は光変調器内での光の周波数変動(∂φII
/∂t)の時間変化の一例を示す。光変調器に印加する
電界の立上りおよび立下り時に屈折率が変動するため位
相変調が起こり、そのために周波数変動を引き起こして
いる。(c)は半導体光増幅器(III )内での周波数変
動(∂φIII /∂t)の一例を示す。半導体増幅器では
ある一定以上の光が入力すると利得飽和を起こし、キャ
リアが減少する。この時、図2(c)に示すように、キ
ャリアの減少に伴いプラズマ効果により屈折率が増大す
るため位相が変調され、周波数変動(∂φIII /∂t)
すなわち波長変動が起こる。図示するように、この効果
は、図2(b)に示した電界吸収型光変調器において起
こる位相変調とは逆位相であるため、変調器の位相変調
による周波数変動(∂φIII /∂t)を打ち消し、さら
にレーザの注入電流を増大し光出力を増大させるか、ま
たは半導体増幅器の注入電流を減少し飽和パワーを減少
させることで逆位相の位相変調を生じさせることもでき
る。
A constant optical output can be obtained by injecting a constant current in the forward direction to the semiconductor distributed feedback laser of I. II
When an electric field is applied to the electro-absorption type optical modulator, the absorptance of the semiconductor layer 1 changes, and the input light can be modulated. For example, the encoded light output is obtained by applying the encoded voltage in the opposite direction. Here, in order to increase the transparency in the absence of an electric field, the band gap of the semiconductor layer 1 in the region (II) may be made larger than the band gaps of the semiconductor layers 2 and 3 in the regions (I, III) at both ends. For example, the semiconductor layer 1 is made of InGaAsP having a composition of 1.55 μm, and the semiconductor layers 2 and 3 are made of 1.48 μm.
The composition is InGaAsP. A constant current is injected into the semiconductor amplifier of III. A large optical output can be obtained by increasing the current of the semiconductor distributed feedback laser of I. III
In the semiconductor amplifier of, when light above a certain level is input, gain saturation occurs, carriers decrease and the refractive index increases due to the plasma effect, which causes phase modulation. This effect is similar to the phase modulation that occurs in an electroabsorption optical modulator. Since is the opposite phase, it is possible to cancel the phase modulation and further generate the opposite phase modulation. FIG. 2 is a diagram for explaining it, and (a) shows an example of the output waveform of the optical modulator (II). (B) is the frequency variation of light in the optical modulator (∂φ II
An example of time change of / ∂t) is shown. The refractive index fluctuates when the electric field applied to the optical modulator rises and falls, so that phase modulation occurs, which causes frequency fluctuations. (C) shows an example of frequency fluctuation (∂φ III / ∂t) in the semiconductor optical amplifier (III). In a semiconductor amplifier, when a certain amount of light or more is input, gain saturation occurs and carriers are reduced. At this time, as shown in FIG. 2C, the phase is modulated due to the increase in the refractive index due to the plasma effect as the carriers decrease, and the frequency fluctuation (∂φ III / ∂t)
That is, wavelength variation occurs. As shown in the figure, this effect has a phase opposite to that of the phase modulation that occurs in the electro-absorption optical modulator shown in FIG. 2B, and therefore frequency fluctuations due to the phase modulation of the modulator (∂φ III / ∂t ) Is further canceled and the injection current of the laser is increased to increase the optical output, or the injection current of the semiconductor amplifier is decreased to decrease the saturation power, so that the opposite phase modulation can be generated.

【0014】図3に示すように、光変調器および半導体
光増幅器の半導体層2,3上に半導体光導波路層11を
形成してもよい。これによって光の伝達損失を小さくす
ることができる。
As shown in FIG. 3, a semiconductor optical waveguide layer 11 may be formed on the semiconductor layers 2 and 3 of the optical modulator and the semiconductor optical amplifier. This can reduce the transmission loss of light.

【0015】さらに、図1または図3に示した光装置に
おいて、半導体層1,2,3を量子井戸または多重量子
井戸構造としても同様の動作が可能であり、さらに導波
路の低損失化および光変調器の電気光吸収効果の増大が
可能となる。量子井戸または多重量子井戸構造を採用す
る場合、光変調器部の井戸のバンドギャップを両側のバ
ンドギャップより大きくするとよい。
Further, in the optical device shown in FIG. 1 or FIG. 3, the semiconductor layer 1, 2, 3 may have a quantum well structure or a multiple quantum well structure, and the same operation can be performed. It is possible to increase the electro-optical absorption effect of the optical modulator. When the quantum well or the multiple quantum well structure is adopted, the band gap of the well of the optical modulator section may be larger than the band gaps on both sides.

【0016】また、分布帰還型レーザの光変調器と反対
側の端部に直接に、または同一基板上に形成された光導
波路層を介して受光素子を接続することもできる。こう
することによってレーザの出力をモニタし、所定の発振
条件で装置を動作させることができる。
It is also possible to connect the light receiving element directly to the end of the distributed feedback laser opposite to the optical modulator or via an optical waveguide layer formed on the same substrate. By doing so, the output of the laser can be monitored and the device can be operated under predetermined oscillation conditions.

【0017】[0017]

【発明の効果】以上説明したように、本発明では半導体
光増幅器ではある一定以上の光が入力すると利得飽和を
起こし、キャリアが減少しプラズマ効果により屈折率が
増大するため位相変調を起こることを利用する。この効
果は、電界吸収型光変調器において起こる位相変調とは
逆位相であるため、位相変調を打ち消し、さらに逆位相
の位相変調を生じさせることもできる。このため、本発
明によれば高速動作が可能で発振波長の安定性に優れた
半導体光源が実現できる。
As described above, in the present invention, in the semiconductor optical amplifier, when a certain amount of light or more is input, gain saturation occurs, carriers are decreased, and the refractive index is increased by the plasma effect, so that phase modulation occurs. To use. Since this effect has a phase opposite to that of the phase modulation that occurs in the electro-absorption optical modulator, it is possible to cancel the phase modulation and generate a phase modulation having an opposite phase. Therefore, according to the present invention, it is possible to realize a semiconductor light source which can operate at high speed and is excellent in stability of oscillation wavelength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す模式的断面図である。FIG. 1 is a schematic sectional view showing an embodiment of the present invention.

【図2】位相変調を説明する図である。FIG. 2 is a diagram illustrating phase modulation.

【図3】本発明の他の実施例を示す模式的断面図であ
る。
FIG. 3 is a schematic cross-sectional view showing another embodiment of the present invention.

【図4】従来の変調器付き半導体レーザを示す模式的断
面図である。
FIG. 4 is a schematic sectional view showing a conventional semiconductor laser with a modulator.

【符号の説明】[Explanation of symbols]

1 光変調器を構成する半導体層 2 半導体レーザを構成する半導体層 3 半導体光増幅器を構成する半導体層 4 p型半導体層 5 n型半導体層 6 回折格子 7 変調器電極 8 レーザ電極 9 増幅器電極 10 共通グランド電極 11 光導波路層 DESCRIPTION OF SYMBOLS 1 Semiconductor layer which comprises an optical modulator 2 Semiconductor layer which comprises a semiconductor laser 3 Semiconductor layer which comprises a semiconductor optical amplifier 4 p-type semiconductor layer 5 n-type semiconductor layer 6 Diffraction grating 7 Modulator electrode 8 Laser electrode 9 Amplifier electrode 10 Common ground electrode 11 Optical waveguide layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成された共通の活性層
部を有し、かつ順次光学的に結合された発光素子、光変
調器および半導体光増幅器の三つの領域を有することを
特徴とする半導体光装置。
1. A light emitting device, a light modulator, and a semiconductor optical amplifier, each of which has a common active layer portion formed on a semiconductor substrate and which is optically coupled sequentially. Semiconductor optical device.
【請求項2】 半導体基板上に形成した半導体多層膜を
積層した活性層部を共通とする発光素子と光変調器と半
導体光増幅器とを複合した半導体光装置であって、前記
光変調器において前記発光素子からの発光出力を電界光
吸収変調し、前記半導体光増幅器で該変調器での発光出
力の位相変調と逆の位相変調を行うことを特徴とする半
導体光装置。
2. A semiconductor optical device comprising a composite of a light emitting element, an optical modulator, and a semiconductor optical amplifier, which have a common active layer portion formed by laminating semiconductor multilayer films formed on a semiconductor substrate, wherein the optical modulator A semiconductor optical device characterized in that the light emission output from the light emitting element is subjected to electro-optical absorption modulation, and the semiconductor optical amplifier performs phase modulation opposite to the phase modulation of the light emission output from the modulator.
【請求項3】 前記発光素子は回折格子を有するレーザ
であり、前記光変調器は逆方向に加えられた電界により
光吸収係数を制御する電界光吸収型変調器であり、かつ
前記半導体光増幅器は順方向に電流が注入され利得飽和
レベルに設定されていることを特徴とする請求項1また
は2に記載の半導体光装置。
3. The light emitting element is a laser having a diffraction grating, the optical modulator is an electro-optical absorption type modulator that controls an optical absorption coefficient by an electric field applied in the opposite direction, and the semiconductor optical amplifier. 3. The semiconductor optical device according to claim 1, wherein a current is injected in the forward direction to set the gain saturation level.
【請求項4】 前記共通の活性層が量子井戸構造を有す
る半導体多層膜からなることを特徴とする請求項1,2
または3に記載の半導体光装置。
4. The common active layer is formed of a semiconductor multilayer film having a quantum well structure.
Or the semiconductor optical device described in 3.
【請求項5】 前記光変調器の活性層部および前記半導
体光増幅器の活性層部上に半導体光導波路が設けられて
いることを特徴とする請求項1から4のいずれかに記載
の半導体光装置。
5. The semiconductor optical device according to claim 1, wherein a semiconductor optical waveguide is provided on the active layer portion of the optical modulator and the active layer portion of the semiconductor optical amplifier. apparatus.
【請求項6】 前記発光素子の前記光変調器の反対側の
端部に直接または前記半導体基板上に形成された光導波
路を介して受光素子が設けられていることを特徴とする
請求項1から5のいずれかの項に記載の半導体光装置。
6. A light receiving element is provided at an end of the light emitting element opposite to the optical modulator, either directly or through an optical waveguide formed on the semiconductor substrate. 6. The semiconductor optical device according to any one of items 5 to 5.
【請求項7】 前記光変調器の活性層部のバンドギャッ
プが前記発光素子および前記半導体光増幅器の活性層部
のバンドギャップより大きいことを特徴とする請求項1
から6のいずれかに記載の半導体光装置。
7. The band gap of the active layer portion of the optical modulator is larger than the band gaps of the active layer portion of the light emitting element and the semiconductor optical amplifier.
7. The semiconductor optical device according to any one of 1 to 6.
【請求項8】 同一の半導体基板上に形成され光学的に
順次結合されている第1,第2および第3の半導体素子
を有する半導体装置であって、それぞれの半導体素子は
バンドギャップの小さい半導体層をp型半導体とn型半
導体で挾んだ接合を有し、前記バンドギャップの小さい
半導体層は光の走行方向に沿って前記三つの半導体素子
に対応する三つの領域に分かれ、中央の領域のバンドギ
ャップが両端の領域のバンドギャップより大きく、かつ
前記第1および第3の半導体装置のいずれか一方の前記
バンドギャップの小さい半導体層に回折格子が形成され
ていることを特徴とする半導体光装置。
8. A semiconductor device having first, second and third semiconductor elements formed on the same semiconductor substrate and optically coupled to each other, each semiconductor element having a small band gap. The semiconductor layer having a junction between layers of a p-type semiconductor and an n-type semiconductor and having a small bandgap is divided into three regions corresponding to the three semiconductor elements along the traveling direction of light, and a central region is formed. Of the semiconductor light having a band gap larger than the band gaps of both end regions and having a small band gap in one of the first and third semiconductor devices. apparatus.
【請求項9】 半導体基板上に形成された活性層部を共
通とする第1および第2の半導体素子を複合した半導体
光装置であって、前記第1の半導体素子は入力光を電界
光吸収変調する光変調器であり、前記第2の半導体素子
は該変調器での発光出力の位相変調と逆位相の変調を行
う半導体光増幅器であることを特徴とする半導体光装
置。
9. A semiconductor optical device in which first and second semiconductor elements having a common active layer portion formed on a semiconductor substrate are combined, wherein the first semiconductor element absorbs input light by electric field light absorption. A semiconductor optical device, which is an optical modulator for modulation, wherein the second semiconductor element is a semiconductor optical amplifier that performs phase modulation of a light emission output of the modulator and a phase opposite thereto.
JP2121994A 1994-02-18 1994-02-18 Semiconductor optical device Pending JPH07231132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2121994A JPH07231132A (en) 1994-02-18 1994-02-18 Semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2121994A JPH07231132A (en) 1994-02-18 1994-02-18 Semiconductor optical device

Publications (1)

Publication Number Publication Date
JPH07231132A true JPH07231132A (en) 1995-08-29

Family

ID=12048909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2121994A Pending JPH07231132A (en) 1994-02-18 1994-02-18 Semiconductor optical device

Country Status (1)

Country Link
JP (1) JPH07231132A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124541A (en) * 1998-10-21 2000-04-28 Hitachi Ltd Semiconductor laser and module thereof
KR100753814B1 (en) * 2004-12-14 2007-08-31 한국전자통신연구원 Monolithic intergrated semiconductor modulator-SOA-LED broad band light source and method of fabrication the same
JP2013149949A (en) * 2011-12-21 2013-08-01 Sumitomo Electric Device Innovations Inc Method for controlling and measuring semiconductor optical amplifier, and semiconductor optical amplifier
JP2018060974A (en) * 2016-10-07 2018-04-12 日本電信電話株式会社 Semiconductor optical integrated element
JP2018078203A (en) * 2016-11-10 2018-05-17 日本電信電話株式会社 Optical transmitter
CN108879321A (en) * 2018-09-12 2018-11-23 成都微泰光芯技术有限公司 A kind of EML chip of integrated SOA
JP2019192918A (en) * 2019-05-27 2019-10-31 三菱電機株式会社 Semiconductor optical integrated element
JPWO2019207624A1 (en) * 2018-04-23 2020-04-30 三菱電機株式会社 Semiconductor optical integrated device
WO2020166530A1 (en) * 2019-02-12 2020-08-20 日本電信電話株式会社 High-output direct modulation laser

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124541A (en) * 1998-10-21 2000-04-28 Hitachi Ltd Semiconductor laser and module thereof
KR100753814B1 (en) * 2004-12-14 2007-08-31 한국전자통신연구원 Monolithic intergrated semiconductor modulator-SOA-LED broad band light source and method of fabrication the same
JP2013149949A (en) * 2011-12-21 2013-08-01 Sumitomo Electric Device Innovations Inc Method for controlling and measuring semiconductor optical amplifier, and semiconductor optical amplifier
JP2018060974A (en) * 2016-10-07 2018-04-12 日本電信電話株式会社 Semiconductor optical integrated element
JP2018078203A (en) * 2016-11-10 2018-05-17 日本電信電話株式会社 Optical transmitter
JPWO2019207624A1 (en) * 2018-04-23 2020-04-30 三菱電機株式会社 Semiconductor optical integrated device
CN108879321A (en) * 2018-09-12 2018-11-23 成都微泰光芯技术有限公司 A kind of EML chip of integrated SOA
WO2020166530A1 (en) * 2019-02-12 2020-08-20 日本電信電話株式会社 High-output direct modulation laser
JP2020129643A (en) * 2019-02-12 2020-08-27 日本電信電話株式会社 High-output direct modulation type laser
JP2019192918A (en) * 2019-05-27 2019-10-31 三菱電機株式会社 Semiconductor optical integrated element

Similar Documents

Publication Publication Date Title
US7133576B2 (en) Traveling-wave optoelectronic wavelength converter
JP2973943B2 (en) Mode-locked semiconductor laser and method of driving the same
JP2809124B2 (en) Optical semiconductor integrated device and method of manufacturing the same
US6281030B1 (en) Fabrication of semiconductor Mach-Zehnder modulator
JP3839710B2 (en) Semiconductor optical modulator, Mach-Zehnder optical modulator, and optical modulator integrated semiconductor laser
JPH08162716A (en) Semiconductor laser and drive method therefor, optical communication method and node, and optical communication system
JPH07231132A (en) Semiconductor optical device
JP2019008179A (en) Semiconductor optical element
JP6939411B2 (en) Semiconductor optical device
JPH0732279B2 (en) Semiconductor light emitting element
JPH069280B2 (en) Semiconductor laser device
US4811353A (en) Semiconductor optical modulator
JP2011181789A (en) Semiconductor light source
JPH02149818A (en) Optical modulating element
CA2267018C (en) Optical wavelength converter with active waveguide
JPS63186210A (en) Semiconductor integrated light modulating element
JP2760276B2 (en) Selectively grown waveguide type optical control device
WO2023228346A1 (en) Semiconductor optical integrated element and method of production
WO2022113153A1 (en) Semiconductor optical element
JP2018060975A (en) Direct modulation laser
JPH03291617A (en) Integrated type optical modulator
JPH0886988A (en) Optical semiconductor element
JPH07202338A (en) Optical semiconductor device
JPH05335551A (en) Optical semiconductor device
JP3719623B2 (en) Electroabsorption optical modulator