JPH03163534A - Optical deflecting element - Google Patents
Optical deflecting elementInfo
- Publication number
- JPH03163534A JPH03163534A JP30441289A JP30441289A JPH03163534A JP H03163534 A JPH03163534 A JP H03163534A JP 30441289 A JP30441289 A JP 30441289A JP 30441289 A JP30441289 A JP 30441289A JP H03163534 A JPH03163534 A JP H03163534A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electro
- electrooptical
- optical
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 46
- 239000010409 thin film Substances 0.000 claims abstract description 14
- 239000010408 film Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 11
- 238000010030 laminating Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 8
- 239000013307 optical fiber Substances 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 3
- 230000010365 information processing Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は電気光学効果を利用して光路切替等を行なう光
偏向素子に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical deflection element that performs optical path switching using electro-optic effects.
従来の技術
近年、光偏向素子としては音響光学効果を利用するもの
やプリズムや光ファイバを機械的に駆動するものなどが
提案された。だが、これらの機構では高速な光偏向の実
現が困難であるため、電気光学効果を利用して光偏向を
行なうことが考えられている。BACKGROUND OF THE INVENTION In recent years, optical deflection elements that utilize an acousto-optic effect and mechanically drive prisms or optical fibers have been proposed. However, since it is difficult to achieve high-speed optical deflection with these mechanisms, it is being considered to utilize electro-optic effects to perform optical deflection.
そこで、このような光偏向素子の従来例として、特開昭
60−192926号公報に開示されている装置を第5
図及び第6図に基づいて説明する。この光偏向素子lは
、互いに光学軸の方向が逆で各々三角柱状に形成された
二個の電気光学素子2,3を一体的に接合することで直
方体状の素子対4を形成し、この素子対4の各素子2,
3端面に相当する対向面に光伝送路を形成する光ファイ
バ5〜8を接続し、前記素子対4の各素子2,3間の境
界部を有する対向面には電極層9,10を形成して駆動
電源11を接続したものである。なお、前記光ファイバ
5〜8は、光軸が一致した一対5,7と、これらに各々
隣接したもの6,8とよりなる。Therefore, as a conventional example of such a light deflection element, the device disclosed in Japanese Patent Application Laid-open No. 192926/1983 is
This will be explained based on the diagram and FIG. This optical deflection element 1 is formed by integrally joining two electro-optic elements 2 and 3, each of which has a triangular prism shape and whose optical axes are opposite to each other, to form a rectangular parallelepiped element pair 4. Each element 2 of element pair 4,
Optical fibers 5 to 8 forming an optical transmission path are connected to opposing surfaces corresponding to the third end surface, and electrode layers 9 and 10 are formed on the opposing surfaces having the boundary between each element 2 and 3 of the element pair 4. The drive power source 11 is connected to the drive power source 11. The optical fibers 5 to 8 are composed of a pair 5, 7 whose optical axes coincide with each other, and fibers 6, 8 adjacent to these, respectively.
このような構成において、この光偏向素子1は、第6図
(a)に例示するように、駆動電源l1から電極層9,
10間に電圧が印加されない場合、各電気光学素子2.
3の屈折率が同等なので、光ファイバ5から素子対4内
に出射された光は光軸が一致した光ファイバ7に入射す
る。そして、第6図(b)に例示するように、駆動電源
l1から電極層9.10間に電圧が印加された場合、光
学軸の方向が異なる電気光学素子2.3間の屈折率が変
化するため、光ファイバ5,6から素子対4内に出射さ
れた光は各電気光学素子2.3間の境界面で屈折されて
各々光ファイバ8,7に入射することになる。In such a configuration, the optical deflection element 1 is connected to the electrode layer 9,
When no voltage is applied between each electro-optical element 2.
3 have the same refractive index, the light emitted from the optical fiber 5 into the element pair 4 enters the optical fiber 7 with the same optical axis. As illustrated in FIG. 6(b), when a voltage is applied between the electrode layers 9 and 10 from the drive power supply l1, the refractive index between the electro-optic elements 2 and 3 whose optical axes are in different directions changes. Therefore, the light emitted from the optical fibers 5 and 6 into the element pair 4 is refracted at the interface between the electro-optic elements 2.3 and enters the optical fibers 8 and 7, respectively.
発明が解決しようとする課題
上述した光偏向素子lは、電気光学効果を利用すること
で駆動電源11のオンオフで光伝送路の切替えを可能と
しており、光情報処理装置(図示せず)の機能部品等に
利用することができる。Problems to be Solved by the Invention The above-mentioned optical deflection element l makes it possible to switch the optical transmission path by turning on and off the drive power supply 11 by utilizing the electro-optic effect, and the function of the optical information processing device (not shown) is improved. It can be used for parts, etc.
ここで、上述のような光偏向素子lの性能を決定するパ
ラメータのーっとして解像点数がある。Here, the number of resolution points is one of the parameters that determines the performance of the optical deflection element l as described above.
この解像点数Nは、偏向角φとビーム先の光軸に対する
拡開角θとにより、
N=φ/θ ・・・■
として表され、これが大きいほど光偏向素子lの性能は
良好である。また、ビーム光の拡開角θは、ビーム光の
波長λとビーム径ωにより、θ=ελ/ω ・・
・■
として表される。なお、上式のεはビーム形状と強度分
布とに依存する定数で1に近似しており、例えば、ビー
ム形状が円形で強度分布が吸引ならばε=1.22であ
る。そして、上述の■,■式から自明であるように、解
像点数Nを向上させるためには、偏向角φに対してビー
ム光の拡開角θを減少させる必要があり、このためには
ビーム径ωを拡大すればよい。This number of resolution points N is expressed by the deflection angle φ and the spread angle θ with respect to the optical axis of the beam destination, as N=φ/θ...■ The larger this number is, the better the performance of the optical deflection element l is. . Also, the spread angle θ of the beam light is determined by the wavelength λ of the beam light and the beam diameter ω, as follows: θ=ελ/ω ・・
・Represented as ■. Note that ε in the above equation is a constant that depends on the beam shape and intensity distribution and is approximated to 1. For example, if the beam shape is circular and the intensity distribution is suction, ε=1.22. As is obvious from the above formulas (■) and (■), in order to improve the number of resolution points N, it is necessary to decrease the spread angle θ of the beam light with respect to the deflection angle φ. The beam diameter ω may be expanded.
つまり、上述のような構造の光偏向素子1の解像点数N
を向上させるためには、素子対4の厚みを増してビーム
径ωを拡大する必要があるが、これでは印加電圧に比例
して電極間距離に反比例する電気光学素子2,3間の屈
折率が低下することになり、必要な偏向角を確保するた
めには駆動電源l1の容量を増大する必要が生じるなど
して実際的でない。In other words, the number of resolution points N of the optical deflection element 1 having the structure as described above is
In order to improve this, it is necessary to increase the thickness of the element pair 4 to enlarge the beam diameter ω, but this would result in the refractive index between the electro-optical elements 2 and 3 being proportional to the applied voltage and inversely proportional to the distance between the electrodes. Therefore, in order to secure the necessary deflection angle, it becomes necessary to increase the capacity of the drive power source l1, which is not practical.
課題を解決するための手段
平板状の電気光学層の相対向する外面に入射光の光軸に
対して傾斜した縁部を介して隣接する電極層と絶縁層と
からなる薄膜層を各々形威した単位基材を設け、複数個
の単位基材を一体的に膜厚方向に積層形成し、電気光学
層に電圧を印加する駆動電源を電極層に接続する。Means for Solving the Problem A thin film layer consisting of an electrode layer and an insulating layer is formed on opposing outer surfaces of a flat electro-optic layer, each of which is adjacent to the other through an edge inclined with respect to the optical axis of the incident light. A plurality of unit base materials are integrally laminated in the film thickness direction, and a driving power source for applying a voltage to the electro-optic layer is connected to the electrode layer.
作用
平板状の電気光学層の相対向する外面に入射光の光軸に
対して傾斜した縁部を介して隣接する電極層と絶縁層と
からなる薄膜層を各々形威した単位基材を設け、複数個
の単位基材を一体的に膜厚方向に積層形成し、電気光学
層に電圧を印加する駆動電源を電極層に接続したことに
より、印加電圧に比例して電極間距離に反比例する電気
光学層の屈折率が上昇するので、印加電圧に比して大き
な偏向角を得ることができ、装置の厚みを増してビーム
径を拡大することで解像点数を向上させることもできる
。Unit substrates each having a thin film layer formed of an electrode layer and an insulating layer adjacent to each other via edges inclined with respect to the optical axis of incident light are provided on opposing outer surfaces of the electro-optical layer in the form of a plate. , by integrally laminating multiple unit substrates in the film thickness direction and connecting a driving power source that applies voltage to the electro-optic layer to the electrode layer, the voltage is proportional to the applied voltage and inversely proportional to the distance between the electrodes. Since the refractive index of the electro-optic layer increases, a larger deflection angle can be obtained compared to the applied voltage, and the number of resolution points can also be improved by increasing the thickness of the device and expanding the beam diameter.
実施例
本発明の実施例を第1図ないし第4図に基づいて説明す
る。なお、前述の従来例と同一の部分は同一の名称及び
符号を用いて説明も省略する。まず、本実施例の光偏向
素子l2は、前述の光偏向素子1と同様に機能する単位
基材13を膜厚方向に複数積層したものであり、これら
の単位基材l3は、平板状の電気光学素子からなる電気
光学層14の相対向する外面に、入射光の光軸に対して
傾斜した縁部を介して隣接した電極層l5と#l!l縁
層16とからなる薄膜層17を各々形成した構造となっ
ている。そして、この光偏向素子12では、各々前記電
気光学層l4を介して相対向した前記電極層15に駆動
電源(図示せず)が接続されている。Embodiment An embodiment of the present invention will be explained based on FIGS. 1 to 4. Note that the same parts as in the conventional example described above are given the same names and numerals, and explanations thereof will be omitted. First, the optical deflection element l2 of this embodiment is a plurality of unit base materials 13 that function in the same way as the optical deflection element 1 described above and are laminated in the film thickness direction. Electrode layers l5 and #l! are adjacent to each other on opposing outer surfaces of the electro-optic layer 14, which is an electro-optical element, through edges inclined with respect to the optical axis of incident light. It has a structure in which thin film layers 17 each consisting of an edge layer 16 are formed. In this optical deflection element 12, a drive power source (not shown) is connected to the electrode layers 15 facing each other via the electro-optic layer l4.
また、第3図等に例示するように、各単位基材13の薄
膜層17は各々電気光学層14間で一体化されており、
各電気光学層l4の光学軸方向は交互に逆向きになって
いる。Further, as illustrated in FIG. 3 etc., the thin film layer 17 of each unit base material 13 is integrated between the electro-optic layers 14,
The optical axis directions of the electro-optic layers l4 are alternately opposite.
このような構成において、この光偏向素子12は、第3
図に例示するように、駆動電源がオフ状態で電極層15
に電圧が印加されない場合、電気光学層14の屈折率が
均一なので、光偏向素子l2に入射した光は内部を直進
することになる。In such a configuration, this optical deflection element 12
As illustrated in the figure, when the driving power source is off, the electrode layer 15
When no voltage is applied to the electro-optic layer 14, the refractive index of the electro-optic layer 14 is uniform, so that the light incident on the optical deflection element l2 travels straight inside.
つぎに、駆動電源がオン状態となって電極層l5から各
電気光学層14間に電圧が印加されると、各電気光学層
l4は電気光学効果により電極層15間に位置する部分
と絶縁層l6間に位置する部分とで屈折率が異なる状態
となり、この境界部で光偏向素子l2に入射した光は屈
折することになる。Next, when the driving power source is turned on and a voltage is applied between the electrode layer l5 and each electro-optic layer 14, each electro-optic layer l4 is connected to the portion located between the electrode layers 15 and the insulating layer due to the electro-optic effect. The refractive index will be different between the portion located between 16 and 16, and the light incident on the optical deflection element 12 will be refracted at this boundary.
なお、この光偏向素子l2は、前述のように単位基材l
3間の薄膜層17が一体化されて各電気光学層l4への
通電方向が交互に逆であるが、これら電気光学層l4の
光学軸方向も交互に逆向きなので透過光の屈折方向は同
一である。Note that this optical deflection element l2 is made of a unit base l as described above.
The thin film layers 17 between the three electro-optic layers 17 are integrated, and the direction of current flow to each electro-optic layer 14 is alternately reversed. However, since the optical axes of these electro-optical layers 14 are also alternately oriented in opposite directions, the refraction direction of the transmitted light is the same. It is.
つまり、この光偏向素子l2は、駆動電源のオンオフで
光伝送路を切替えることができ、光情報処理装置(図示
せず)の機能部品等に利用することが可能である。In other words, the optical deflection element l2 can switch the optical transmission path by turning on and off the driving power supply, and can be used as a functional component of an optical information processing device (not shown).
そこで、上述のような構造の光偏向素子l2の作用等を
、IT○(インジウムーシンーオキサイド)の透明薄M
電極からなる電極層l5とSio,の薄膜からなる絶縁
層l6及びLiNbO.からなる電気光学層14で形成
した単位基材13をm個積層した場合を例に説明する。Therefore, the effect of the optical deflection element l2 with the above-mentioned structure was changed using a transparent thin M of IT○ (indium-thin-oxide).
An electrode layer 15 made of an electrode, an insulating layer 16 made of a thin film of Sio, and a LiNbO. An example will be explained in which m unit base materials 13 each made of an electro-optic layer 14 are laminated.
まず、第3図に例示するように、各電気光学層l4の厚
さがdで印加電圧がV.の場合、薄膜積層方向の屈折率
がneで電気光学係数がrssとすると、この電気光学
層14の屈折率の変化量△nは、
2d
となる。ここで、この光偏向素子l2は、電気光学層l
4に比して薄膜層17の厚さが極度に薄く形威されるの
で、全体の厚さをDとすると各電気光学層14の厚さは
約D/mである。そこで、上記■式は、
2 D
となる。First, as illustrated in FIG. 3, the thickness of each electro-optic layer l4 is d and the applied voltage is V. In this case, if the refractive index in the thin film stacking direction is ne and the electro-optic coefficient is rss, then the amount of change Δn in the refractive index of the electro-optic layer 14 is 2d. Here, this optical deflection element l2 is an electro-optic layer l2.
Since the thickness of the thin film layer 17 is extremely thin compared to the thickness of the electro-optic layer 14, the thickness of each electro-optic layer 14 is approximately D/m, assuming that the total thickness is D. Therefore, the above formula (■) becomes 2D.
ここで、従来装置の屈折率の変化量Δnは、上記■式の
定数mを1とした場合に相当することが自明である。つ
まり、この光偏向素子12は、屈折率の変化量Δnが従
来装置の約m倍になっておリ、印加電圧に比して大きな
偏向角を得ることができることになる。Here, it is obvious that the amount of change Δn in the refractive index of the conventional device corresponds to the case where the constant m in the above equation (2) is set to 1. In other words, in this optical deflection element 12, the amount of change Δn in the refractive index is approximately m times that of the conventional device, and a large deflection angle can be obtained compared to the applied voltage.
従って、この光偏向素子12は、全体の厚さDを増して
ビーム径ωを拡大することで解像点数Nを向上させるこ
とが容易であり、消費電力が小さく偏向角が大きい高性
能な光偏向素子l2を得ることができる。Therefore, this optical deflection element 12 can easily improve the number of resolution points N by increasing the overall thickness D and expanding the beam diameter ω, and can provide high-performance light with low power consumption and a large deflection angle. A deflection element l2 can be obtained.
なお、上述のような構造の光偏向素子l2は、スパッタ
リング法や金属蒸着及びフォトエッチングなどの既存の
薄膜技術で容易に製作できる。Note that the optical deflection element l2 having the above-described structure can be easily manufactured using existing thin film techniques such as sputtering, metal vapor deposition, and photoetching.
また、本発明の光偏向素子12の各層に使用される素材
等は本実施例に限定されるものではなく、例えば、電気
光学層l4としてPLZTのような二次の電気光学効果
を生じる素材を採用することも可能である。Furthermore, the materials used for each layer of the optical deflection element 12 of the present invention are not limited to those in this embodiment. For example, a material that produces a secondary electro-optic effect such as PLZT may be used as the electro-optic layer l4. It is also possible to adopt
発明の効果
本発明は上述のように、平板状の電気光学層の相対向す
る外面に入射光の光軸に対して傾斜した縁部を介して隣
接する電極層と絶縁層とからなる薄膜層を各々形威した
単位基材を設け、複数個の単位基材を一体的に膜厚方向
に積層形成し、電気光学層に電圧を印加する駆動電源を
電極層に接続したことにより、印加電圧に比例して電極
間距離に反比例する電気光学層の屈折率が上昇すること
になるので、印加電圧に比して大きな偏向角を得ること
ができると共に、装置の厚みを増してビーム径を拡大す
ることで解像点数を向上させることもでき、消費電力が
小さく偏向角が大きい高性能な光偏向素子を得ることが
できる等の効果を有するものである。Effects of the Invention As described above, the present invention provides a thin film layer consisting of an electrode layer and an insulating layer that are adjacent to each other through edges inclined with respect to the optical axis of incident light on opposing outer surfaces of a flat electro-optic layer. By providing unit base materials each having a shape of The refractive index of the electro-optic layer, which is inversely proportional to the distance between the electrodes, increases in proportion to the distance between the electrodes, so it is possible to obtain a large deflection angle compared to the applied voltage, and the beam diameter can be expanded by increasing the thickness of the device. By doing so, the number of resolution points can be improved, and a high-performance optical deflection element with low power consumption and a large deflection angle can be obtained.
第1図ないし第3図は本発明の実施例を示す斜視図、第
4図は平面図、第5図は従来例を示す斜視図、第6図は
平面図である。
l2・・・光偏向素子、l3・・・単位基材、l4・・
・電気光学層、
l
5
・・電極層、
■
6・・・絶縁層、
l
7・・・
薄膜層
出
願
人
株式会社
ノコー
3
U
図1 to 3 are perspective views showing an embodiment of the present invention, FIG. 4 is a plan view, FIG. 5 is a perspective view showing a conventional example, and FIG. 6 is a plan view. l2... Light deflection element, l3... Unit base material, l4...
・Electro-optical layer, l 5 ・Electrode layer, ■ 6... Insulating layer, l 7... Thin film layer Applicant Noko Co., Ltd. 3U Figure
Claims (1)
対して傾斜した縁部を介して隣接する電極層と絶縁層と
からなる薄膜層を各々形成した単位基材を設け、複数個
の前記単位基材を膜厚方向に一体的に積層形成し、前記
電気光学層に電圧を印加する駆動電源を前記電極層に接
続したことを特徴とする光偏向素子。A plurality of unit substrates each having a thin film layer formed of an electrode layer and an insulating layer adjacent to each other via edges inclined with respect to the optical axis of incident light are provided on opposing outer surfaces of a flat electro-optic layer, and a plurality of unit substrates are provided. An optical deflection element, characterized in that the unit substrates are integrally laminated in the film thickness direction, and a driving power source for applying a voltage to the electro-optic layer is connected to the electrode layer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30441289A JPH03163534A (en) | 1989-11-22 | 1989-11-22 | Optical deflecting element |
US07/558,440 US5071232A (en) | 1989-08-01 | 1990-07-27 | Optical deflection element and space optical matrix switching device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30441289A JPH03163534A (en) | 1989-11-22 | 1989-11-22 | Optical deflecting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03163534A true JPH03163534A (en) | 1991-07-15 |
Family
ID=17932692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30441289A Pending JPH03163534A (en) | 1989-08-01 | 1989-11-22 | Optical deflecting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03163534A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009276625A (en) * | 2008-05-15 | 2009-11-26 | Nippon Telegr & Teleph Corp <Ntt> | Synthetic aperture light deflection element |
WO2011040918A1 (en) * | 2009-09-30 | 2011-04-07 | Hewlett-Packard Development Company, L.P | Display device |
US8462412B2 (en) | 2009-09-18 | 2013-06-11 | Ricoh Company, Ltd. | Optical scanner |
WO2013121966A1 (en) * | 2012-02-17 | 2013-08-22 | 株式会社ブイ・テクノロジー | Optical deflection element |
-
1989
- 1989-11-22 JP JP30441289A patent/JPH03163534A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009276625A (en) * | 2008-05-15 | 2009-11-26 | Nippon Telegr & Teleph Corp <Ntt> | Synthetic aperture light deflection element |
US8462412B2 (en) | 2009-09-18 | 2013-06-11 | Ricoh Company, Ltd. | Optical scanner |
WO2011040918A1 (en) * | 2009-09-30 | 2011-04-07 | Hewlett-Packard Development Company, L.P | Display device |
WO2013121966A1 (en) * | 2012-02-17 | 2013-08-22 | 株式会社ブイ・テクノロジー | Optical deflection element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003172912A5 (en) | ||
EP0078454B1 (en) | Interferometric multimode fiber optic switch and modulator | |
US8400703B2 (en) | Optical switch | |
EP0105693B1 (en) | Bipolar voltage controlled optical switch using intersecting waveguide | |
JPH03163534A (en) | Optical deflecting element | |
JPH0357460B2 (en) | ||
JPH042172B2 (en) | ||
JPH0721597B2 (en) | Optical switch | |
JPH0827447B2 (en) | Optical waveguide device | |
JPH0750284B2 (en) | Optical path switch | |
JP2661968B2 (en) | Light switch | |
JPS61231522A (en) | Optical control type optical switch device | |
JPS63221306A (en) | Light guide type optical control device | |
JPS5944607B2 (en) | thin film optical switch array | |
JPS61240227A (en) | Optical switch device | |
JPH0659289A (en) | Waveguide type optical function device | |
JPH0323430A (en) | Optical switch | |
JPH01201628A (en) | Optical switch | |
JP2014085398A (en) | Optical modulator and optical deflector | |
JPH0713685B2 (en) | Crossed-waveguide optical switch | |
JP2837511B2 (en) | Optical switch array | |
JPH0377493B2 (en) | ||
JPH0682842A (en) | Optical deflector | |
JPS5934890Y2 (en) | light switch | |
JPH0467128A (en) | Optical deflecting element |