JPH0713685B2 - Crossed-waveguide optical switch - Google Patents

Crossed-waveguide optical switch

Info

Publication number
JPH0713685B2
JPH0713685B2 JP59190931A JP19093184A JPH0713685B2 JP H0713685 B2 JPH0713685 B2 JP H0713685B2 JP 59190931 A JP59190931 A JP 59190931A JP 19093184 A JP19093184 A JP 19093184A JP H0713685 B2 JPH0713685 B2 JP H0713685B2
Authority
JP
Japan
Prior art keywords
waveguide
refractive index
crossed
optical switch
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59190931A
Other languages
Japanese (ja)
Other versions
JPS6167838A (en
Inventor
實 清野
一平 佐脇
啓幾 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59190931A priority Critical patent/JPH0713685B2/en
Publication of JPS6167838A publication Critical patent/JPS6167838A/en
Publication of JPH0713685B2 publication Critical patent/JPH0713685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光回路素子に係り、特に、交叉した導波路をも
つ光スイッチに関するものである。
TECHNICAL FIELD The present invention relates to an optical circuit element, and more particularly to an optical switch having crossed waveguides.

現在実用化されている光スイッチはミラーを動かすなど
の機械的な切り換え方式が一般的で、その小型化及び集
積化が困難であり、また、個別部品を高精度で組立,調
整する技術が必要となる。本発明者等は先に提案した電
気光学結晶に形成した交叉導波路型光スイッチが小型,
低電圧駆動が可能で、かつ消光比の良好なことを見出し
ている〔特開昭59−60425号光スイッチ〕。
Optical switches currently in practical use generally use a mechanical switching method such as moving a mirror, making it difficult to miniaturize and integrate them, and also require technology for assembling and adjusting individual parts with high precision. Becomes The inventors of the present invention have proposed that the crossed waveguide type optical switch formed on the electro-optic crystal is small in size,
It has been found that it can be driven at a low voltage and has a good extinction ratio [Japanese Patent Laid-Open No. 59-60425].

〔従来の技術〕[Conventional technology]

第5図は従来の交叉導波路型光スイッチの導波路の構造
を説明するための要部模式図で、例えばニオブ酸リチウ
ム(LiNbO3)等の電気光学結晶からなる基板1の表面に
帯状のチタン薄膜層2を直線的に交叉するように形成
し、これを例えば1040℃で5時間熱処理を行なうことに
より、チタン薄膜層2が基板1に拡散し、基板1より屈
折率が大で直線的に交叉した導波路3が形成される。
FIG. 5 is a schematic view of a main part for explaining the structure of a waveguide of a conventional crossed waveguide type optical switch. For example, a strip-shaped pattern is formed on the surface of a substrate 1 made of an electro-optic crystal such as lithium niobate (LiNbO 3 ). By forming the titanium thin film layer 2 so as to cross it linearly and subjecting it to heat treatment at, for example, 1040 ° C. for 5 hours, the titanium thin film layer 2 diffuses into the substrate 1 and has a larger refractive index than the substrate 1 and is linear. The waveguide 3 that intersects with is formed.

第6図は既に提案した交叉導波路型光スイッチの構造を
説明するための要部模式図で、2つの光導波路の交叉部
分に導波路の幅より狭い長方形の電極4が設けられ、そ
の長辺は2つの光導波路の光入射側部分31及び32の端辺
がなす交叉角頂点Pと光出射側部分33及び34の端辺がな
す交叉角頂点Qを結んだ線に対して平行で、かつ該線に
関して上下対称となっている。
FIG. 6 is a schematic view of a main part for explaining the structure of the crossed waveguide type optical switch already proposed, and a rectangular electrode 4 narrower than the width of the waveguide is provided at the crossing part of two optical waveguides, The side is parallel to the line connecting the intersection angle apex P formed by the edges of the light incident side portions 31 and 32 of the two optical waveguides and the intersection angle apex Q formed by the edges of the light emission side portions 33 and 34, Moreover, it is symmetrical with respect to the line.

上記構成の導波路型光スイッチでは、電極4に印加され
る電圧の極性と大きさに応じて、電極4に対向する屈折
率変化領域の屈折率は増加(+Δn効果)あるいは減少
(−Δn効果)する。
In the waveguide type optical switch having the above configuration, the refractive index of the refractive index change region facing the electrode 4 increases (+ Δn effect) or decreases (−Δn effect) depending on the polarity and magnitude of the voltage applied to the electrode 4. ) Do.

しかして光導波路上に伝播される光は、周知の如く導波
路上での光分布の状態が異なる0次(基本),1次,2次,3
次等各モードに分けられており、高次になるにしたがっ
て伝播速度も大となる。しかも各モード共にそのモード
の伝播を可能とする導波路上では形状を変化しながら伝
播し、かつ導波路上の各点では時間の変化にしたがって
位相も変化し、伝播速度の差により各モード間に位相差
が生じる。
Therefore, as is well known, the light propagated on the optical waveguide has 0th order (basic), 1st order, 2nd order, 3rd order with different light distribution states on the waveguide.
It is divided into each mode such as the next one, and the propagation velocity becomes higher as the order becomes higher. In addition, each mode propagates while changing its shape on the waveguide that enables the propagation of that mode, and at each point on the waveguide, the phase also changes with time, and due to the difference in propagation velocity A phase difference occurs.

そして交叉導波路における入射側の1本の導波路に、例
えば基本モードの光が入射されて出射側に伝播する場
合、導波路上におけるモードの形状は、交叉導波路の入
射側の2本の導波路に基本モードと1次モードの光を共
に入射し、出射側に伝播させる場合の合成波に相当す
る。
When, for example, light of the fundamental mode is incident on one of the waveguides on the incident side of the cross waveguide and propagates to the emission side, the shape of the mode on the waveguide is two on the incidence side of the cross waveguide. This corresponds to a composite wave when both the fundamental mode light and the primary mode light are incident on the waveguide and propagated to the exit side.

即ち出射側の1本の導波路では2つのモードの波形が同
一方向となれば相加され出射し、他の1本の導波路では
モードの波形が互いに逆方向であれば相殺され出射され
ない。
That is, in one waveguide on the emission side, if the waveforms of the two modes are in the same direction, they are added and emitted, and in the other one waveguide, if the waveforms of the modes are in opposite directions, they are canceled and are not emitted.

出射側の2本の導波路で2つのモードの波形が共に相加
されれば、いづれの導波路からも光出力が得られること
になる。
If the waveforms of the two modes are added together in the two waveguides on the output side, an optical output can be obtained from either of the waveguides.

そして第6図に示す交叉導波路型光スイッチでは、電極
4に印加される電圧の極性と大きさに応じて電極に対向
するす屈折率変化領域の屈折率は増加、あるいは減少す
ることは既述の通りであり、屈折率を変化すれば伝播速
度は変化し、これは各モードにおける位相変化の速さが
変わることになり、モード間の位相差も変化する。
In the crossed waveguide type optical switch shown in FIG. 6, the refractive index of the refractive index changing region facing the electrode has not been increased or decreased depending on the polarity and the magnitude of the voltage applied to the electrode 4. As described above, if the refractive index is changed, the propagation velocity changes, which means that the speed of phase change in each mode changes, and the phase difference between modes also changes.

従って第6図の如き交叉導波路型光スイッチでは、例え
ば無信号時には直進光出力と分岐光出力とは等しくな
り、屈折率を増加させるように信号電圧を印加すると、
正方向での、所定屈折率においては、分岐光出力が極大
となり、直進光出力は極小となる。
Therefore, in the crossed waveguide type optical switch as shown in FIG. 6, for example, when there is no signal, the straight light output and the branched light output become equal, and when a signal voltage is applied so as to increase the refractive index,
At a predetermined refractive index in the positive direction, the branched light output becomes maximum and the straight light output becomes minimum.

一方屈折率を減少させるように信号電圧を印加すると、
負方向での所定の屈折率では直進光出力は極大となり、
分岐光出力は極小となる。
On the other hand, if a signal voltage is applied to reduce the refractive index,
At a given refractive index in the negative direction, the straight light output becomes maximum,
The branched light output becomes a minimum.

このように導波路上では屈折率の増減によって光は位相
と共に正弦関数的に変化するので、交叉導波路型光スイ
ッチの動作原理からも明らかな如く、光導波路および電
極の設計条件,信号電圧の大きさ,その極性を種々異な
るように設定することによって、前述とは異なり0電圧
状態において直進出力状態とすることも、分岐出力状態
とすることも、あるいは無出力状態とすることも可能と
なり、このことは容易に理解されうることである。
In this way, the light changes sinusoidally with the phase on the waveguide due to the increase or decrease of the refractive index, so that it is clear from the operating principle of the crossed waveguide type optical switch that the design conditions of the optical waveguide and electrodes, the signal voltage By setting the size and the polarity differently, it becomes possible to set the output to a straight output state, the branch output state, or the non-output state in the 0 voltage state unlike the above. This can be easily understood.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら上記従来の交叉導波路型光スイッチにあっ
ては、通常それぞれミクロンメートルの単位となってい
る2つの光導波路の交叉部分に長方形の細い電極が、そ
の長辺を2つの光導波路の光入射側部分の端辺がなす交
叉角頂点Pと、光出射側部分の端辺がなす交叉角頂点Q
を結んだ線上に、入出力導波路の幅より細く設けられて
いるために、導波路の交叉部での電極の位置合わせに精
度を要し、導波路の幅が細い光スイッチでは、この様な
構造を達成することが困難である。
However, in the above-mentioned conventional crossed waveguide type optical switch, a rectangular thin electrode is provided at the crossing portion of two optical waveguides, each of which is usually in the unit of micrometer, and the long side of the electrode enters the two optical waveguides. Crossing angle apex P formed by the side edges of the side portion and crossing angle apex Q formed by the side edges of the light emitting side portion
Since it is provided thinner than the width of the input / output waveguide on the line connecting the two, it is necessary to align the electrodes at the intersection of the waveguides. Difficult to achieve.

特に交叉導波路型光スイッチでは、交叉導波路の位置で
交叉点の位置とその左右両側の各位置での導波路の幅が
それぞれ異なっているので、導波路内で電極のある部分
と電極外の位置とでは屈折率の変化が異なり、入射光と
出射光間の光進路の制御が複雑となる。
In particular, in a crossed waveguide type optical switch, the position of the crossed waveguide and the width of the waveguide at the positions on the left and right sides of the crossed waveguide are different from each other. The change in the refractive index is different from the position of, and the control of the light path between the incident light and the emitted light becomes complicated.

一方交叉部の形状に合わせて電極を配置することも考え
られるが、微細形状の導波路の交叉部のくびれ部分の電
極の位置合わせに多少でも位置ズレが生ずると、電極の
近傍は特に電界強度変化が大であるので、大きな特性変
動を起こすという問題がある。
On the other hand, it is possible to arrange the electrodes according to the shape of the intersection, but if there is a slight misalignment in the alignment of the electrodes in the constricted portion of the cross section of the fine-shaped waveguide, the electric field strength is especially high near the electrodes. Since the change is large, there is a problem that a large characteristic change occurs.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は本発明により、電気光学結晶よりなる基板
上で基板より屈折率が大である2本の導波路が直線的に
交叉する交叉導波路構成において、導波路及びその近傍
の基板を含む領域の屈折率変化制御用の信号電圧の印加
される電極が、交叉角頂点を結んだ線に対し平行な上下
対称形状を備え、かつその電極面が交叉部及びその近傍
から離れた位置で交叉部を含む基板上に配置されること
を特徴とする交叉導波路型光スイッチによって解決され
る。
According to the present invention, the above problem includes a waveguide and a substrate in the vicinity thereof in a cross waveguide structure in which two waveguides having a refractive index larger than that of the substrate are linearly crossed on a substrate made of an electro-optic crystal. The electrode to which the signal voltage for controlling the refractive index change of the region is applied has a vertically symmetrical shape parallel to the line connecting the intersection angle vertices, and the electrode surface intersects at a position apart from the intersection and its vicinity. A crossed waveguide type optical switch characterized in that it is arranged on a substrate including a portion.

〔作用〕[Action]

上記導波路型光スイッチにおいては、2つの光導波路の
交叉部及びその近傍を含む全体に屈折率変化を制御する
屈折率変化手段を設ける。
In the above-mentioned waveguide type optical switch, the refractive index changing means for controlling the refractive index change is provided in the whole including the intersection of the two optical waveguides and the vicinity thereof.

即ち交叉部の交叉角頂点を結んだ線に対し、上下対称で
導波路及びその近傍の基板を含む領域に電極を設け、電
界を印加するか、その領域の全体の温度を上昇させて屈
折率を変化させる電極が設けられるので、導波路の交叉
部での電極の位置合わせに高い精度を必要とせず、電極
に印加する電圧の極性と大きさを選択することにより、
入射光を直進あるいは分岐して出射できる。
That is, with respect to the line connecting the intersection angle vertices of the intersection, an electrode is provided vertically symmetrically in the region including the waveguide and the substrate in the vicinity thereof, and an electric field is applied, or the temperature of the entire region is raised to raise the refractive index. Since an electrode for changing the voltage is provided, high accuracy is not required for positioning the electrode at the intersection of the waveguides, and by selecting the polarity and magnitude of the voltage applied to the electrode,
Incident light can be emitted straight or branched.

しかも屈折率の変化でスイッチ動作を実現するものであ
り、通常一定電圧でスイッチし、屈折率の変化のばらつ
きの少ないことが重要となるので、入出力部を除いた電
極面が交叉部及びその近傍から離れるようにしている。
Moreover, since the switching operation is realized by the change of the refractive index, it is usually important to switch with a constant voltage, and it is important that the variation of the change of the refractive index is small. I try to move away from the neighborhood.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の電気光学効果を利用した交
叉導波路型光スイッチの構造を説明するための要部模式
図で、例えば、Y−Cutニオブ酸リチウム(LiNbO3)等
の電気光学結晶からなる基板1の表面に従来と同様の方
法で2つの直線的に交叉する、基板1より屈折率の高い
導波路3が形成され、その上に2つの光導波路の交叉部
及びその近傍を含む全体に屈折率変化制御用信号電圧に
よる電界が形成されるように交叉角頂点間を結んだ線に
対し、入出力部5′を除いて電極5が上下対称に設けら
れ、しかも入出力部5′を除いて電極面が交叉部及びそ
の近傍から離されている。
FIG. 1 is a schematic view of a main part for explaining the structure of a crossed waveguide type optical switch utilizing the electro-optic effect of one embodiment of the present invention. For example, Y-Cut lithium niobate (LiNbO 3 ) or the like is used. Two linearly intersecting waveguides 3 having a higher refractive index than the substrate 1 are formed on the surface of the substrate 1 made of an electro-optic crystal by a method similar to the conventional one, and the intersection of the two optical waveguides and the waveguide 3 are formed on the waveguide 3. Except for the input / output section 5 ', the electrodes 5 are provided symmetrically with respect to the line connecting the apexes of the crossing angles so that an electric field due to the refractive index change control signal voltage is formed in the entire area including the vicinity and Except for the output portion 5 ', the electrode surfaces are separated from the intersection and its vicinity.

かかる電極5に信号電圧を印加することにより、例えば
矢印X方向から入射する光は矢印Yの方向に直進、ある
いは矢印Zの方向に分岐され、信号電圧を印加しない場
合直進出射と同時に分岐出射とすることも出来る。
By applying a signal voltage to the electrode 5, for example, the light incident from the arrow X direction goes straight in the direction of the arrow Y or is branched in the direction of the arrow Z. When the signal voltage is not applied, the light goes straight ahead and branches at the same time. You can also do it.

熱光学効果を利用する場合、屈折率変化が上記電気光学
効果を利用した交叉導波路型光スイッチよりも大きくで
きるので、性能のよい交叉導波路型光スイッチが得られ
る。
When the thermo-optic effect is used, the change in the refractive index can be made larger than that of the cross-waveguide type optical switch using the electro-optic effect, so that a cross-waveguide type optical switch with good performance can be obtained.

第2図,第3図及び第4図は熱光学効果を利用した交叉
導波路型光スイッチの構造を説明するための要部平面図
と導波路交叉部A−A′の断面図、及び斜視図であり、
例えばSiの基板11上に熱酸化したSiO2膜12を形成し、そ
の上に、2つの導波路が直線的に交叉するようにTixSi
1-xO2の導波路13が設けられ、その上をSiO2膜14の保護
層が覆っている。さらにそのSiO2膜14上に交叉部及びそ
の近傍を含む全体を覆うように屈折率変化手段として抵
抗体(例えばTi)の電極15が形成され、入出力部15′に
接続されている。なお、SiO2膜14はTixSi1-xO2の導波路
13より屈折率が小さく導波効果を高めるとともに、上部
の電極15との光学的絶縁も兼ねている。
2, 3, and 4 are a plan view of a main part, a cross-sectional view of a waveguide crossing portion AA ', and a perspective view for explaining a structure of a crossing waveguide type optical switch utilizing a thermo-optic effect. Is a figure,
For example, a thermally oxidized SiO 2 film 12 is formed on a Si substrate 11, and TixSi is formed on the Si oxide film 12 so that the two waveguides linearly intersect each other.
A 1-x O 2 waveguide 13 is provided, and a protective layer of a SiO 2 film 14 covers the waveguide 13. Further, an electrode 15 of a resistor (for example, Ti) is formed as a refractive index changing means on the SiO 2 film 14 so as to cover the entire crossing portion and its vicinity and is connected to the input / output portion 15 '. The SiO 2 film 14 is a waveguide of TixSi 1-x O 2 .
It has a smaller refractive index than 13 and enhances the waveguiding effect, and also serves as optical insulation from the upper electrode 15.

電極15は交叉角頂点間を結んだ線に対し入出力部15′を
除いて上下対称で、しかも入出力部を除いて電極面は交
叉部及びその近傍から離されており、この電極に信号電
圧を印加することにより、電極15下の交叉部の温度が上
昇し、その結果屈折率変化領域(交叉部)の屈折率は増
加(+Δn効果)を示し、従って電極15に信号電圧を印
加することにより、矢印X方向から入射する光を矢印Y
の方向に直進、あるいは矢印Zの方向に分岐させる。
The electrode 15 is vertically symmetrical with respect to the line connecting the apexes of the intersecting corners except for the input / output portion 15 ', and the electrode surface is separated from the intersecting portion and its vicinity except for the input / output portion. By applying a voltage, the temperature of the crossing portion under the electrode 15 rises, and as a result, the refractive index of the refractive index changing region (crossing portion) shows an increase (+ Δn effect), and therefore a signal voltage is applied to the electrode 15. Therefore, the light incident from the direction of the arrow X is reflected by the arrow Y.
Go straight in the direction of or branch in the direction of arrow Z.

このように構成されたスイッチでは、交叉部の屈折率の
増加とともに直進側に出射する状態と、分岐側に出射す
る状態が交互に起きるため、温度の上昇を電流で制御す
ることにより良好なスイッチが構成できる。
In the switch configured as described above, the state of emitting light to the straight side and the state of emitting light to the branch side alternate with the increase of the refractive index of the crossing portion, so that a good switch can be obtained by controlling the temperature rise by the current. Can be configured.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、導波路において、
交叉部の交叉角頂点間を結んだ線に対し上下対称に、導
波路及びその近傍の基板を含む領域の屈折率変化を制御
する信号電圧の印加される電極が設けられ、交叉部及び
その近傍での屈折率変化にばらつきがないように、その
電極面は入出力部を除いて交叉部及び其の近傍から離さ
れている。
As described above, according to the present invention, in the waveguide,
Electrodes to which a signal voltage is applied to control the change in the refractive index of the waveguide and a region including the substrate in the vicinity thereof are provided vertically symmetrically with respect to the line connecting the apexes of the intersection and the intersection and its vicinity. The electrode surface is separated from the crossing portion and its vicinity except the input / output portion so that there is no variation in the change in the refractive index.

即ち交叉部及びその近傍を含む全体に電界を印加する
か、交叉部及びその近傍を含む全体の温度を上昇させて
屈折率を均等に変化させる電極を設けるようにしている
ので、交叉部と電極の位置合わせに高い精度を必要とせ
ず、従って小型,集積化された導波路型光スイッチが容
易に製作できる効果がある。
That is, since an electric field is applied to the entire area including the intersection and its vicinity or the temperature of the entire area including the intersection and its vicinity is increased, an electrode is provided to change the refractive index evenly. Therefore, there is an effect that a high precision is not required for the alignment, and thus a compact and integrated waveguide type optical switch can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の電気光学効果を利用した交
叉導波路型光スイッチの構造を説明するための要部模式
図、 第2図,第3図及び第4図は熱光学効果を利用した交叉
導波路型光スイッチの構造を説明するための要部平面図
と導波路交叉部の断面図及び斜視図、 第5図は従来の交叉導波路型光スイッチの導波路の構造
を説明するための要部模式図、 第6図は従来の交叉導波路型光スイッチの構造を説明す
るための要部模式図である。 図において、 1,11は基板、2はチタン薄膜層、3,13は光導波路、4,5,
15は電極、5′,15′は電極に対する入出力部、12,14は
SiO2膜、31,32は光入射側部分、33,34は光出射側部分、
PQは光導波路の交叉角頂点、 をそれぞれ示す。
FIG. 1 is a schematic view of a main part for explaining the structure of a crossed waveguide type optical switch utilizing the electro-optical effect of an embodiment of the present invention, and FIGS. 2, 3, and 4 are thermo-optical effects. FIG. 5 shows the structure of the waveguide of the conventional crossed waveguide type optical switch, and FIG. 5 shows a cross-sectional view and a perspective view of the crossing portion of the waveguide for explaining the structure of the crossed waveguide type optical switch. FIG. 6 is a schematic view of a main part for explaining, and FIG. 6 is a schematic view of a main part for explaining a structure of a conventional crossed waveguide type optical switch. In the figure, 1 and 11 are substrates, 2 is a titanium thin film layer, 3 and 13 are optical waveguides, and 4,5 and
15 is an electrode, 5 ', 15' is an input / output unit for the electrode, 12 and 14 are
SiO 2 film, 31 and 32 are light incident side portions, 33 and 34 are light emitting side portions,
PQ is the crossing vertex of the optical waveguide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 啓幾 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 昭53−96853(JP,A) 特開 昭58−95330(JP,A) 特開 昭59−93431(JP,A) 特開 昭58−142320(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keiichi Nakajima 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (56) References JP53-96853 (JP, A) JP58- 95330 (JP, A) JP 59-93431 (JP, A) JP 58-142320 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電気光学結晶よりなる基板上で基板より屈
折率が大である2本の導波路が直線的に交叉する交叉導
波路構成において、導波路及びその近傍の基板を含む領
域の屈折率変化制御用の信号電圧の印加される電極が、
交叉角頂点を結んだ線に対し平行な上下対称形状を備
え、かつその電極面が交叉部及びその近傍から離れた位
置で交叉部を含む基板上に配置されることを特徴とする
交叉導波路型光スイッチ。
1. In a crossed waveguide structure in which two waveguides having a refractive index larger than that of the substrate are linearly crossed on a substrate made of an electro-optic crystal, refraction of a region including the waveguide and the substrate in the vicinity thereof. The electrode to which the signal voltage for rate change control is applied is
A crossing waveguide having a vertically symmetrical shape parallel to a line connecting the crossing angle vertices and having its electrode surface arranged on a substrate including the crossing part at a position apart from the crossing part and its vicinity. Type optical switch.
JP59190931A 1984-09-11 1984-09-11 Crossed-waveguide optical switch Expired - Fee Related JPH0713685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59190931A JPH0713685B2 (en) 1984-09-11 1984-09-11 Crossed-waveguide optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59190931A JPH0713685B2 (en) 1984-09-11 1984-09-11 Crossed-waveguide optical switch

Publications (2)

Publication Number Publication Date
JPS6167838A JPS6167838A (en) 1986-04-08
JPH0713685B2 true JPH0713685B2 (en) 1995-02-15

Family

ID=16266063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59190931A Expired - Fee Related JPH0713685B2 (en) 1984-09-11 1984-09-11 Crossed-waveguide optical switch

Country Status (1)

Country Link
JP (1) JPH0713685B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270926A (en) * 1986-05-20 1987-11-25 Fujitsu Ltd Total reflection type optical modulation element
JPH0642547A (en) * 1992-06-12 1994-02-15 Murata Mach Ltd Torque limiter for slide fork motor
JP2003005232A (en) 2001-04-18 2003-01-08 Ngk Insulators Ltd Optical device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2379086A1 (en) * 1977-01-31 1978-08-25 Thomson Csf ELECTRICALLY CONTROLLED OPTICAL GUIDED TRANSMISSION DEVICE
JPS5895330A (en) * 1981-11-30 1983-06-06 Nippon Telegr & Teleph Corp <Ntt> Optical switch
JPS5993431A (en) * 1982-11-19 1984-05-29 Fujitsu Ltd Optical switch

Also Published As

Publication number Publication date
JPS6167838A (en) 1986-04-08

Similar Documents

Publication Publication Date Title
US7336854B2 (en) Optical switch, optical modulator and wavelength variable filter
CN112014983B (en) Electro-optical switch based on lithium niobate waveguide and manufacturing method thereof
JPH08166565A (en) Optical control device
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
JPH0713685B2 (en) Crossed-waveguide optical switch
JPH0375847B2 (en)
CN213092051U (en) Electro-optical switch based on lithium niobate waveguide
JP5467414B2 (en) Optical functional waveguide
JPH045174B2 (en)
JPS61231522A (en) Optical control type optical switch device
JP2739405B2 (en) Electric field sensor
JPH05297332A (en) Optical modulator
JP2566923B2 (en) Light switch
JPH0750284B2 (en) Optical path switch
JPH0361932B2 (en)
JPH0447805B2 (en)
JPH0760236B2 (en) Optical switch element
JPH063508B2 (en) Optical switch device
JPS63221306A (en) Light guide type optical control device
JPH0785152B2 (en) Waveguide optical switch
JPS6269247A (en) Optical switch
JPS6151775B2 (en)
JPS58121024A (en) Optical switch
JPS59214020A (en) Optical switch
JPH0576017B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees