JPH0750284B2 - Optical path switch - Google Patents

Optical path switch

Info

Publication number
JPH0750284B2
JPH0750284B2 JP29275385A JP29275385A JPH0750284B2 JP H0750284 B2 JPH0750284 B2 JP H0750284B2 JP 29275385 A JP29275385 A JP 29275385A JP 29275385 A JP29275385 A JP 29275385A JP H0750284 B2 JPH0750284 B2 JP H0750284B2
Authority
JP
Japan
Prior art keywords
liquid crystal
optical path
switching device
path switching
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29275385A
Other languages
Japanese (ja)
Other versions
JPS62153837A (en
Inventor
康弘 郡司
定五 岡田
正人 磯貝
克己 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29275385A priority Critical patent/JPH0750284B2/en
Priority to EP86116694A priority patent/EP0229287B1/en
Priority to DE8686116694T priority patent/DE3674757D1/en
Priority to US06/940,491 priority patent/US4836657A/en
Priority to CA000524967A priority patent/CA1277521C/en
Publication of JPS62153837A publication Critical patent/JPS62153837A/en
Publication of JPH0750284B2 publication Critical patent/JPH0750284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶を用いた光路切換器に係り、特に構造の簡
略化及び性能の向上に好適な光路切換器に関する。
Description: TECHNICAL FIELD The present invention relates to an optical path switcher using a liquid crystal, and more particularly to an optical path switcher suitable for simplifying the structure and improving performance.

〔従来の技術〕[Conventional technology]

一般に光フアイバを用いた光伝送、光通信システムにお
いて光伝送路の切換器やバイパス用としての光路切換器
が必要である。
Generally, in optical transmission and optical communication systems using an optical fiber, an optical transmission line switching device and an optical path switching device for bypass are required.

従来の液晶式光路切換器は、例えば文献オプテイクスレ
ターズ,5巻,4,(1980年)第147頁から第149頁(Optics
Letters,Vol15,No.4(1980)PP147-149)において、R.
A.SorefとD.H.McMahonが発表した「4ポートの電気光学
式液晶デバイスによる無偏光フアイバ光の全スイツチン
グ」の論文に見られる。この従来の光路切換器は、2つ
のガラスプリズムの間にネマチツク液晶を組込み、対向
するプリズムの両面に設けられた透明電極間に交流電界
を印加することにより液晶分子の配向を変化させること
により屈折率を変化させ、入射光を2方向に切換えるも
のである。
The conventional liquid crystal optical path switching device is disclosed in, for example, the literature Optics Letters, Volume 5, 4, (1980), pages 147 to 149 (Optics.
Letters, Vol15, No. 4 (1980) PP147-149).
It can be seen in the paper "A total switching of unpolarized fiber light by a 4-port electro-optical liquid crystal device" published by A. Soref and DHM McMahon. This conventional optical path switching device incorporates a nematic liquid crystal between two glass prisms, and applies an AC electric field between transparent electrodes provided on both sides of the opposing prisms to change the orientation of liquid crystal molecules, thereby refracting light. The incident light is switched in two directions by changing the ratio.

従来の液晶式光路切換器に使用されているネマチツク液
晶分子の動作を第2図で説明する。1はネマチツク液晶
層、1′はネマチツク液晶分子である。2は透明基板
(図示せず)に設けられた透明電極である。3は交流電
源で、4は回路の途中に設けた電気スイツチである。
(a)は電極2間に電界を印加しない(OFF)場合で、
液晶分子1′が平行に並んでいる。(b)は電界を印加
した場合で、液晶分子1′は大部分電界方向に配向する
が、上下の界面付近の分子はOFF状態の電極に平行なま
ま残存する。このため、ネマチツク液晶を用いると次の
様な問題点が生じる。即ち、 (1) 界面付近の分子が電界に応答しにくいため、透
過又は反射率が低下し、光路切換器としてのクロストー
ク(漏話)を小さくすることが難しい。
The operation of nematic liquid crystal molecules used in the conventional liquid crystal optical path switching device will be described with reference to FIG. Reference numeral 1 is a nematic liquid crystal layer, and 1'is a nematic liquid crystal molecule. Reference numeral 2 is a transparent electrode provided on a transparent substrate (not shown). 3 is an AC power supply, and 4 is an electric switch provided in the middle of the circuit.
(A) is a case where no electric field is applied between the electrodes 2 (OFF),
Liquid crystal molecules 1'are arranged in parallel. In (b), when an electric field is applied, the liquid crystal molecules 1'are mostly aligned in the direction of the electric field, but the molecules near the upper and lower interfaces remain parallel to the electrodes in the OFF state. Therefore, the use of the nematic liquid crystal causes the following problems. That is, (1) Since the molecules near the interface do not easily respond to the electric field, the transmittance or reflectance is reduced, and it is difficult to reduce crosstalk (crosstalk) as an optical path switch.

(2) 上記の現象を改善するためには、電圧を増加さ
せなければならず、高い駆動電圧を必要とする。
(2) In order to improve the above phenomenon, the voltage must be increased and a high driving voltage is required.

(3) ネマチツク液晶分子は電界切換え時の、特に電
界を除去した時の応答速度が遅い。
(3) The response speed of nematic liquid crystal molecules is slow when the electric field is switched, particularly when the electric field is removed.

この様な欠点のため、ネマチツク液晶を用いた光路切換
器は未だに実用化に至つていない。
Due to such drawbacks, the optical path switching device using nematic liquid crystal has not yet been put to practical use.

上記欠点を改善するためには、液晶材料自体を高性能な
ものに変える必要がある。発明者等は、上記欠点を改善
する基本特性を有する強誘電性液晶を用い、この液晶を
透明電極ではさみ込み、電極間に直流又はパルス電圧を
印加することにより、光路を切換えることを提案した。
In order to improve the above drawbacks, it is necessary to change the liquid crystal material itself to a high performance one. The inventors have proposed to switch the optical path by using a ferroelectric liquid crystal having basic characteristics for improving the above-mentioned drawbacks, sandwiching this liquid crystal with transparent electrodes, and applying a direct current or a pulse voltage between the electrodes. .

この光路切換の素子としての強誘電性液晶を次に説明す
る。第3図にその動作の概念図を示す。11′は強誘電性
液晶分子で、12はら旋軸である。13及び13′は第3図
(a)と(c)の様に、前記ら旋軸に垂直な方向に印加
した電界である。
A ferroelectric liquid crystal as an element for switching the optical path will be described below. FIG. 3 shows a conceptual diagram of the operation. 11 'is a ferroelectric liquid crystal molecule, and 12 is a spiral axis. Reference numerals 13 and 13 'denote electric fields applied in the direction perpendicular to the spiral axis as shown in FIGS. 3 (a) and 3 (c).

強誘電性液晶の場合、自発分極の方向はら旋軸と液晶分
子11′の長軸とによつてできる平面に垂直である。又、
第3図(b)に示すように、電界E=0の場合には、強
誘電性液晶分子11′は、ら旋軸12に対してθtの角度を
有してら旋状に配向している。この様に配向した強誘電
性液晶分子11′にあるしきい値電界Ec以上の電界E13を
印加すると、第3図(a)に示すように、強誘電性液晶
分子11′は、電界E13の方向と垂直な平面(即ち、図の
紙面)上にら旋軸12に対してθtの角度を有して配向す
る。又、第3図(a)の電界Eの極性を反転させると、
同図(c)に示す様に強誘電性液晶分子11′は、電界E1
3′の方向に垂直な平面(紙面)上にら旋軸に対してθt
の角度を有して配向する。この様に、電界Eを反転させ
ることによつて、ら旋軸との傾き角θtの2倍まで分子
配向を変化させることが出来る。
In the case of ferroelectric liquid crystals, the direction of spontaneous polarization is perpendicular to the plane formed by the spiral axis and the long axis of the liquid crystal molecules 11 '. or,
As shown in FIG. 3 (b), when the electric field E = 0, the ferroelectric liquid crystal molecules 11 ′ are oriented in a spiral with an angle θ t with respect to the spiral axis 12. There is. When an electric field E13 equal to or higher than the threshold electric field E c is applied to the ferroelectric liquid crystal molecules 11 ′ oriented in this way, the ferroelectric liquid crystal molecules 11 ′ are converted into the electric field E13 as shown in FIG. 3 (a). Orientation is made at an angle of θ t with respect to the spiral axis 12 on a plane perpendicular to the direction (ie, the paper surface of the figure). When the polarity of the electric field E in FIG. 3 (a) is reversed,
As shown in FIG. 7C, the ferroelectric liquid crystal molecule 11 'has an electric field E1.
Respect et旋軸on the vertical plane (paper surface) in the direction of 3 'theta t
Have an angle of. In this way, by reversing the electric field E, the molecular orientation can be changed up to twice the tilt angle θ t with the spiral axis.

さらに又、この強誘電性液晶を第2図と同様な構成で駆
動させた場合、液晶層厚を薄く(例えば1.5μm)し、
且つ液晶界面及び液晶組成を適宜調整することにより、
分子配向にメモリー性をもたせることが出来る。この状
態に於いては、強誘電性液晶の界面近傍の分子まで完全
にスイツチングし、マネチツク液晶に於ける問題点
(1),(2)を解決する。尚、交番する電界を与え続
けるネマチツク液晶に比べ、液晶分子のメモリー効果を
利用して、パルス状の印加電界のみでスイツチングする
ことも可能であり、より一層の低電力化をはかることが
出来る。
Furthermore, when this ferroelectric liquid crystal is driven in the same configuration as in FIG. 2, the liquid crystal layer thickness is reduced (for example, 1.5 μm),
And by adjusting the liquid crystal interface and liquid crystal composition appropriately,
It is possible to give the memory property to the molecular orientation. In this state, the molecules in the vicinity of the interface of the ferroelectric liquid crystal are completely switched to solve the problems (1) and (2) in the liquid crystal for liquid crystal. It should be noted that, compared with a nematic liquid crystal that continuously gives an alternating electric field, it is possible to use only the pulsed applied electric field for switching by utilizing the memory effect of liquid crystal molecules, and it is possible to further reduce the power consumption.

分子配向の応答速度に関しては、強誘電性液晶の場合
は、絶対値として等しい正及び負の電界を印加する駆動
モードとなるため、ネマチツク液晶の場合の様な電界除
去時に極端に応答速度が遅くなる様な状態は生じず、ど
ちらのスイツチング動作もネマチツク液晶に於ける電界
引加時と同程度もしくはそれ以上の応答速度を示す。
Regarding the response speed of the molecular orientation, in the case of a ferroelectric liquid crystal, the drive mode is to apply positive and negative electric fields that are equal in absolute value, so the response speed is extremely slow when removing the electric field as in the case of nematic liquid crystal. Such a state does not occur, and both switching operations show a response speed equal to or higher than that at the time of applying an electric field in the nematic liquid crystal.

以上の様に、ネマチツク液晶の光路スイツチング素子と
しての3つの問題点は、液晶に強誘電性液晶を用いるこ
とにより著しく改善出来ることが明らかである。
As described above, it is clear that the three problems of the nematic liquid crystal as the optical path switching element can be remarkably improved by using the ferroelectric liquid crystal as the liquid crystal.

第4図及び第5図は、強誘電性液晶を用いた光路スイツ
チングの原理の1例を示す。第4図は素子の基本構成を
示し、第5図は2種の電圧印加による強誘電性液晶の分
子配向状態及び結果として生じる光路(透過又は全反
射)を示す。ここで、入射光23は、入射面(図の紙面)
に垂直な電界成分のみの光を考えるものとする。
4 and 5 show an example of the principle of optical path switching using a ferroelectric liquid crystal. FIG. 4 shows the basic structure of the device, and FIG. 5 shows the molecular alignment state of the ferroelectric liquid crystal by applying two kinds of voltage and the resulting optical path (transmission or total reflection). Here, the incident light 23 is the incident surface (paper surface of the figure)
Light having only an electric field component perpendicular to is considered.

第4図において、基本構成は強誘電性液晶11とそれをは
さみ込み基板となる上下の透明基板21、そして、強誘電
性液晶11に面する透明基板境界面に設けられた透明なべ
た電極2及び直流電源22より成る。又、電圧印加時に第
5図の様な所要の分子配向を得るため、予め、液晶分子
11′を所定の方向に配向させておく必要があり、実際に
は、強誘電性液晶11との境界面、即ち電極面には配向膜
が設けてあるが、ここでは図面が煩雑になるのを避ける
ため省略した。
In FIG. 4, the basic structure is the ferroelectric liquid crystal 11, the upper and lower transparent substrates 21 sandwiching the ferroelectric liquid crystal 11, and the transparent solid electrode 2 provided on the boundary surface of the transparent substrate facing the ferroelectric liquid crystal 11. And a DC power supply 22. In addition, in order to obtain the required molecular orientation as shown in FIG.
It is necessary to orient 11 'in a predetermined direction. In reality, an alignment film is provided on the boundary surface with the ferroelectric liquid crystal 11, that is, the electrode surface, but here the drawing becomes complicated. Omitted to avoid.

一般に液晶の様な光学的に一軸性の物質に直線偏光を入
射した場合、入射方向と光軸とのなす角度が変わること
により屈折率が変化する。第5図は電界印加により分子
長軸方向、即ち光軸方向を変えることで入射光の屈折率
を変えることができ、その結果、典型的な例として、入
射光を全反射させたり、透過させたりできることを示
す。
Generally, when linearly polarized light is incident on an optically uniaxial substance such as liquid crystal, the refractive index is changed by changing the angle formed by the incident direction and the optical axis. FIG. 5 shows that the refractive index of incident light can be changed by changing the molecular long axis direction, that is, the optical axis direction by applying an electric field. As a result, as a typical example, the incident light is totally reflected or transmitted. Indicates that you can

なお、第5図(a)及び(b)に示す分子配向の変化
は、第3図に示した(a)又は(c)に対応しており、
従つて、分子の長軸はべた電極2による電界の方向に常
に垂直となる。即ち、分子配向は透明電極2に常に変行
であり、この点においてネマチツク液晶を用いた光路切
換器と全く異なる。分子配向の角度変化は、前述した如
くら旋軸からの傾き角θtの2倍に等しい。ここで仮に
典型的な例として、θt=45°、即ち、角度変化が90°
とし、第5図の様に入射面(図の紙面)に垂直及び平行
の配向状態を想定すれば、(a)の液晶層11の屈折率は
異常光屈折率neに、又、(b)の液晶層11の屈折率は常
光屈折率noに等しくなる(ne>no)。従つて、この場
合、前述した条件を満足する入射角θの範囲は次式で表
される。
The changes in the molecular orientation shown in FIGS. 5 (a) and 5 (b) correspond to (a) or (c) shown in FIG.
Therefore, the long axis of the molecule is always perpendicular to the direction of the electric field generated by the solid electrode 2. That is, the molecular orientation is always changed in the transparent electrode 2, which is completely different from the optical path switching device using nematic liquid crystal. The angle change of the molecular orientation is equal to twice the tilt angle θ t from the helix axis as described above. Here, as a typical example, θ t = 45 °, that is, the angle change is 90 °.
Assuming an alignment state perpendicular to and parallel to the incident surface (paper surface of the drawing) as shown in FIG. 5, the refractive index of the liquid crystal layer 11 in (a) becomes the extraordinary light refractive index ne, and (b) The liquid crystal layer 11 has a refractive index equal to the ordinary light refractive index no (ne> no). Therefore, in this case, the range of the incident angle θ that satisfies the above-mentioned condition is expressed by the following equation.

ng:透明基板の屈折率 例えば、透明基板21の材料としてSF10を用いた場合の一
例として、ng=1.8,ne=1.7,no=1.5であり、入射角θ
=56.4〜70.8となり、14.4°の余裕がある。
ng: Refractive index of transparent substrate For example, as an example of using SF10 as the material of the transparent substrate 21, ng = 1.8, ne = 1.7, no = 1.5 and the incident angle θ
= 56.4 to 70.8, with a margin of 14.4 °.

しかしながら、今まで述べた液晶層の厚さ方向にのみ電
界を印加する方式の光路切換器においては、入射面に垂
直な成分は光(S偏光)しか切換えることができない。
従つて、最近急速にニーズが高まりつつあるFAやOAなど
の光LANに使われる無偏光の性質をもつたLEDなどの光源
には適用できないという欠点がある。そこで、無偏光
(多モード光)をスイツチングするためには、まず、入
射面に平行な電界振動をもつP偏光をスイツチングさせ
なければならない。そのための条件を述べる。
However, in the optical path switcher of the type that applies an electric field only in the thickness direction of the liquid crystal layer described above, only the light (S-polarized light) can be switched as the component perpendicular to the incident surface.
Therefore, it has a drawback that it cannot be applied to light sources such as LEDs having a non-polarized property used in optical LANs such as FA and OA, which have recently been rapidly in demand. Therefore, in order to switch non-polarized light (multimode light), first, P-polarized light having electric field oscillation parallel to the incident surface must be switched. The conditions for that will be described.

第5図の分子配向状態においては、P偏光が臨界角で入
射した場合(光は液晶中を界面と平行に走る)を考える
と、(a)及び(b)の両方の分子配向状態とも、液晶
の屈折率はno(偏波面が分子長軸と直角に交わる)とな
り、屈折率変化が生じず、透過及び全反射のスイツチン
グは出来ない。このことからわかる様に、P偏光のスイ
ッチングは、分子長軸の液晶界面内変化だけでは起こら
ず、界面に対し斜めに配向することが必要条件となる。
In the molecular orientation state of FIG. 5, considering the case where P-polarized light is incident at a critical angle (light travels in the liquid crystal in parallel with the interface), both molecular orientation states of (a) and (b) The refractive index of the liquid crystal is no (the plane of polarization intersects the long axis of the molecule at right angles), the refractive index does not change, and transmission and total reflection cannot be switched. As can be seen from this, the switching of P-polarized light does not occur only by the change of the molecular long axis in the liquid crystal interface, and it is a necessary condition that the liquid crystal is aligned obliquely with respect to the interface.

この条件を満足させるためには、第3図(b)からわか
る様に、(a)及び(c)以外の電界印加方向ならばよ
く、その内でも界面との交さ角が最も大きいのは液晶界
面と平行な方向に電界を印加した場合である。従つて、
この電界状態を液晶セルの中に作ればP偏光もスイツチ
ング可能となる。
In order to satisfy this condition, as can be seen from FIG. 3 (b), any electric field application direction other than (a) and (c) may be used, and among them, the angle of intersection with the interface is the largest. This is a case where an electric field is applied in a direction parallel to the liquid crystal interface. Therefore,
If this electric field state is created in the liquid crystal cell, P polarized light can be switched.

次に、S偏光のスイツチングも含めて強誘電性液晶のら
旋軸と入射光の最適な初期配置を求める。ここで、入射
角θを大きく選び、ほぼ界面と平行方向に光が入射する
場合を考える。第6図からわかる様に、液晶分子35の動
く円錐軌道34上の2状態で、S偏光とP偏光の両方に対
して屈折率差が最大となるのは、強誘電性液晶のら旋軸
33を入射面31に一致させた場合で、しかも、液晶分子35
が液晶界面と平行な面32に含まれた位置35a及び入射面3
1に含まれた位置35bにある場合である。
Next, the optimum initial arrangement of the helix axis of the ferroelectric liquid crystal and the incident light, including the switching of S-polarized light, is obtained. Here, consider a case in which the incident angle θ is largely selected and light is incident in a direction substantially parallel to the interface. As can be seen from FIG. 6, in the two states on the conical orbit 34 in which the liquid crystal molecules 35 move, the maximum difference in the refractive index for both S-polarized light and P-polarized light is that the helical axis of the ferroelectric liquid crystal.
When 33 is aligned with the incident surface 31, the liquid crystal molecules 35
Is included in a plane 32 parallel to the liquid crystal interface and the position 35a and the incidence plane 3
This is the case at the position 35b included in 1.

この35aと35bの2状態でS偏光及びP偏光に対し各々屈
折率差を与え、光路を切換えるわけである。この原理を
用いた無偏光の光路切換器の一構成例を第7図に示す。
この構造は、2つの台形プリズム101で強誘電性液晶11
をはさみ、図示した様に光を2度液晶層に通す(2クツ
シヨン)ものである。1度目の通過部分に相当する左半
分には、第4図に示したようなべた電極2を設け(即
ち、液晶分子を第6図の35aの状態に配向させる)、光
をS偏光(透過光)とP偏光(反射光)に分ける。残り
の2度目の通過部分を含む右半分には、第6図に示した
液晶分子の35aと35bの2状態を切り換えることのできる
電極構造(この構造は本発明の電極構造と共通するの
で、後で説明する)を設け、S偏光とP偏光を35aの配
向状態で92bのポートへ、また、35bの配向状態で92dの
ポートへ各々合流させるようにする。
In the two states of 35a and 35b, a difference in refractive index is given to the S-polarized light and the P-polarized light, and the optical paths are switched. FIG. 7 shows an example of the configuration of a non-polarized light path switching device using this principle.
This structure consists of two trapezoidal prisms 101 and a ferroelectric liquid crystal 11
And the light is passed through the liquid crystal layer twice as shown in the figure (two cushions). A solid electrode 2 as shown in FIG. 4 is provided on the left half corresponding to the first passage portion (that is, liquid crystal molecules are aligned in the state of 35a in FIG. 6), and light is S-polarized (transmitted). Light) and P-polarized light (reflected light). In the right half including the remaining second passage portion, an electrode structure capable of switching the two states of liquid crystal molecules 35a and 35b shown in FIG. 6 (since this structure is common to the electrode structure of the present invention, (Described later) is provided so that the S-polarized light and the P-polarized light merge with the port of 92b in the orientation state of 35a and to the port of 92d with the orientation state of 35b.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術においては、光路を形成しているプリズム
面の面積度及び角度精度などに高い精度が要求される。
特に、第7図のような台形状のプリズムでは、プリズム
への光の入射面及び出射面、並びに液晶をはさみ、全反
射及び透過を切換える台形の下底面に加え、台形の上底
面の全反射を生じさせる面についても高い精度が要求さ
れる。また、上側及び下側の台形プリズムに分離した光
を再び結合させる方式であるため、上下の台形プリズム
の寸法精度の悪化は、直接、再結合部での光軸ずれとな
つて損失及びクロストークを増大させる。このように、
台形プリズムを用いたこの方式は、面精度、角度精度及
び寸法精度の点でより高精度になり、従つてこの方式は
材料自体が高価となる上、その組立ても高精度を要し、
困難を極める。また、単純にプリズム内の伝搬光路を比
較しても、台形プリズムを用いた方式は光路が長くな
り、伝搬損失が大きくなるのは避けられない。
In the above-mentioned prior art, high accuracy is required for the degree of area and the angle accuracy of the prism surface forming the optical path.
In particular, in a trapezoidal prism as shown in Fig. 7, in addition to the trapezoidal bottom face that switches between total reflection and transmission by sandwiching the incident and exit faces of light to the prism and liquid crystal, the total reflection of the trapezoidal top face is performed. High precision is also required for the surface that causes In addition, since it is a method of re-combining the separated light into the upper and lower trapezoidal prisms, the deterioration of the dimensional accuracy of the upper and lower trapezoidal prisms directly results in optical axis shift at the recombining portion, resulting in loss and crosstalk. Increase. in this way,
This method using a trapezoidal prism has higher accuracy in terms of surface accuracy, angle accuracy, and dimensional accuracy. Therefore, this method requires high accuracy in assembling the material itself,
Be extremely difficult. Further, even if the propagation optical paths in the prism are simply compared, it is inevitable that the method using the trapezoidal prism has a long optical path and a large propagation loss.

本発明の目的は、強誘電性液晶を用い、上記問題点を改
善すべく、構成の簡単な多モード光にも使用できる光路
切換器を提供することにある。
An object of the present invention is to provide an optical path switcher which uses a ferroelectric liquid crystal and can be used for multimode light having a simple structure in order to improve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、対向配置された2枚の透明基板と該透明基
板の対向面の各々に設けられた電極の間に、強誘電性液
晶を介在させたものにおいて、該強誘電性液晶の分子の
ら旋軸が光の入射面とS偏光及びP偏光の両偏光に対し
て最大の屈折率変化を与えるような角度(およそ強誘電
性液晶のもつチルト角)をもつて交わるように初期配向
させ、強誘電性液晶の分子長軸を液晶界面にほぼ平行と
なる第1の配向と該液晶層界面との角度がS偏光とP偏
光の両偏光に対して最大の屈折率変化を与えるような角
度となる第2の配向の2つの配向状態の間を切換えるこ
とにより達成される。
The above-mentioned object is that in which a ferroelectric liquid crystal is interposed between two transparent substrates arranged to face each other and electrodes provided on each of the facing surfaces of the transparent substrate, the molecules of the ferroelectric liquid crystal are Initially align the helix axis so that it intersects with the plane of incidence of light and the angle that gives the maximum change in refractive index for both S-polarized light and P-polarized light (approximately the tilt angle of the ferroelectric liquid crystal). , The angle between the first orientation in which the molecular long axis of the ferroelectric liquid crystal is substantially parallel to the liquid crystal interface and the interface with the liquid crystal layer gives the maximum change in refractive index for both S-polarized light and P-polarized light. This is achieved by switching between the two orientation states of the angular second orientation.

〔作用〕[Action]

第8図に上記強誘電性液晶分子の動作状態を示す。この
図は、第6図に示した液晶分子のら旋軸12′を、界面32
上でチルト角θtだけ回転させた状態に相当する。
FIG. 8 shows the operating state of the ferroelectric liquid crystal molecules. In this figure, the helical axis 12 'of the liquid crystal molecule shown in FIG.
This corresponds to the state of being rotated by the tilt angle θ t above.

上記強誘電性液晶の一方の分子長軸35a′は、液晶層の
厚さ方向の電界37a′で液晶層界面に平行な位置に配向
する。また、他方の分子長軸35b′は、液晶層界面に平
行方向の電界37b′で液晶層界面に平行でない位置に配
向する。強誘電性液晶分子のら旋軸12′は、光の入射面
31とおよそ液晶材料のもつチルト角θt分だけずらして
初期配向してあるため、液晶層界面に平行な分子配向状
態35a′では、光はほぼ液晶分子の長軸方向、即ち、光
軸方向に入射することとなり、例えば正の誘電異方性を
もつ液晶の場合、S偏光及びP偏光は共に常光線の屈折
率no(最小)になる。もう一つの状態である液晶層界面
に平行でない分子配向状態35b′では、液晶の分子長軸
は、S偏光方向及びP偏光方向の両方向に対し斜めに配
向するため、S偏光及びP偏光共同時に屈折率を増加さ
せることができる。
One molecular long axis 35a 'of the ferroelectric liquid crystal is oriented in a position parallel to the liquid crystal layer interface by an electric field 37a' in the thickness direction of the liquid crystal layer. The other molecular long axis 35b 'is oriented at a position not parallel to the liquid crystal layer interface by an electric field 37b' parallel to the liquid crystal layer interface. The spiral axis 12 'of the ferroelectric liquid crystal molecule is the plane of incidence of light.
Since the initial alignment is offset from the tilt angle θ t of the liquid crystal material by 31, the light is almost in the long axis direction of the liquid crystal molecules, that is, in the optical axis direction in the molecular alignment state 35a ′ parallel to the liquid crystal layer interface. For example, in the case of a liquid crystal having a positive dielectric anisotropy, both S-polarized light and P-polarized light have the ordinary refractive index no (minimum). In the other molecular alignment state 35b ′ which is not parallel to the liquid crystal layer interface, the liquid crystal molecular long axis is aligned obliquely with respect to both the S polarization direction and the P polarization direction. The refractive index can be increased.

前者の低屈折率状態35a′を全反射モードに設定してお
き、後者の高屈折率状態35b′を透過モードにすれば、
S偏光及びP偏光即ち、多モード光を一度にスイツチン
グすることが可能となる。
If the former low refractive index state 35a 'is set to the total reflection mode and the latter high refractive index state 35b' is set to the transmission mode,
It becomes possible to switch S-polarized light and P-polarized light, that is, multimode light at a time.

〔実施例〕〔Example〕

以下、本発明の第1の実施例を第1図により説明する。
第1図(c)は、光の入射面31と強誘電性液晶分子のら
旋軸12′(くし形電極長手方向)との交差状態を、第1
図(a)及び(b)をそのまま上から見て描いたもので
ある。
The first embodiment of the present invention will be described below with reference to FIG.
FIG. 1 (c) shows the crossing state of the light incident surface 31 and the spiral axis 12 '(longitudinal direction of the comb-shaped electrode) of the ferroelectric liquid crystal molecules.
The drawings (a) and (b) are drawn as they are from above.

上記交差角θcは、今までほぼθtに等しいと考えてきた
が、実際には、屈折率変化が最大となる最適値はある角
度Δθだけずれたところに存在し、最適な交差角θcは θc=θt+Δθ ……(2) (但し、θt…強誘電性液晶分子のチルト角)で表さ
れ、この時のΔθをθt=35°の場合を例にあげてここ
で求めておく。計算の簡単化のために、液晶層中の光線
は液晶界面に平行に進むと近似し、強誘電性液晶分子の
常光屈折率noを1.5、異常光屈折率neを1.7、強誘電性液
晶分子のチルト角θtを35°とおくと屈折率楕円体の式
から第9図のような結果が得られる。グラフ中の(a)
及び(b)は、第8図における液晶分子配向状態a及び
bと各々対応している。このグラフから、S偏光及びP
偏光の両偏光に対して最大の屈折率変化を与えるのは、
Δθ≒10°であることがわかり、(2)式よりθc=35
+10=45°が最適値となる。
It has been considered that the crossing angle θ c is almost equal to θ t until now, but in reality, the optimum value at which the change in the refractive index is maximum exists at a position shifted by a certain angle Δθ, and the optimum crossing angle θ c c is represented by θ c = θ t + Δθ (2) (where θ t is the tilt angle of the ferroelectric liquid crystal molecule), and Δθ at this time is taken as an example when θ t = 35 °. I will ask for it. For simplification of calculation, it is approximated that the light rays in the liquid crystal layer travel parallel to the liquid crystal interface, and the ordinary refractive index no of the ferroelectric liquid crystal molecule is 1.5, the extraordinary refractive index ne is 1.7, and the ferroelectric liquid crystal molecule is When the tilt angle θ t of is set to 35 °, the result as shown in FIG. 9 is obtained from the formula of the index ellipsoid. (A) in the graph
8A and 8B correspond to the liquid crystal molecule alignment states a and b in FIG. 8, respectively. From this graph, S polarization and P
The maximum change in refractive index for both polarized light is
It was found that Δθ ≈ 10 °, and from equation (2), θ c = 35
+ 10 = 45 ° is the optimum value.

このようにして求められた最適な交差角θcだけ光の入
射面から回転させた方向に、強誘電性液晶分子のら旋軸
を向けて初期配向させ、また同じ方向にくし形電極を配
列させることになる。
The helical axis of the ferroelectric liquid crystal molecules is initially oriented in the direction rotated from the light incident surface by the optimum crossing angle θ c thus obtained, and the comb-shaped electrodes are arranged in the same direction. I will let you.

前述したように、強誘電性液晶分子の2状態、即ち第8
図の第1の配向35a′及び第2の配向35b′を切換えるこ
とにより、多モード光の光路切換が液晶層への一度の入
射で達成される。以下、第1,10,11,12図では、第8図37
a′及び37b′の電界状態を作り出すための電極構造の実
施例を示す。これらの図は、全て第1図(c)に示した
ように、光の入射面31からθcだけ回転させた方向から
見た断面図であり、また第8図35a′の状態を(a)に3
5b′の状態を(b)に各々示している。
As described above, the two states of the ferroelectric liquid crystal molecule, that is, the eighth state
By switching the first orientation 35a 'and the second orientation 35b' in the figure, the optical path switching of the multi-mode light is achieved by a single incidence on the liquid crystal layer. Hereinafter, in FIGS. 1, 10, 11, and 12, FIG.
An example of an electrode structure for creating a'and 37b 'electric field states is shown. As shown in FIG. 1 (c), all of these figures are sectional views seen from the direction in which the light incident surface 31 is rotated by θ c , and the state of FIG. ) To 3
The states of 5b 'are shown in (b).

まず第1図は、透明基板21にくし形透明電極42とくし状
のすき間を蛇行させた透明電極43を設け、その上に強誘
電性液晶分子の初期配向を決める配向膜(煩雑になるた
め図には省略した)を形成させたものを2つ対向させ
て、間に強誘電性液晶11を介在させている。
First, FIG. 1 shows that a transparent substrate 21 is provided with a comb-shaped transparent electrode 42 and a transparent electrode 43 in which a comb-shaped gap is meandered, and an alignment film for determining the initial alignment of the ferroelectric liquid crystal molecules is formed on the transparent electrode 43. 2 are formed opposite to each other, and the ferroelectric liquid crystal 11 is interposed therebetween.

第1図(a)は、上下のくし形透明電極42及び蛇行した
透明電極43の両電極により液晶層の厚さ方向(37a′)
に電界を印加し、第8図35a′の分子配向を得ており、
第1図(b)は、くし形電極42のみにより、37b′の方
向に電界を印加し、35b′の分子配向を得ている。
FIG. 1 (a) shows the liquid crystal layer thickness direction (37a ') due to the upper and lower comb-shaped transparent electrodes 42 and the meandering transparent electrode 43.
An electric field is applied to the film, and the molecular orientation shown in Fig. 35a 'is obtained.
In FIG. 1 (b), an electric field is applied in the direction of 37b 'by only the comb-shaped electrode 42 to obtain the molecular orientation of 35b'.

ここで問題となるのは、第1図(b)においては隣り合
うくし形電極間では反対の極性の電界になつていること
である。このため隣り合う電極間で液晶分子が上下に向
いてしまい、光線が2つ以上の電極間に入射する場合
は、各々の電極間で屈折率が異つて光線方向がばらつく
恐れがある。しかし、強誘電性液晶層11での屈折角は透
明基板21の屈折率ngとの兼ね合いでほとんど水平に液晶
層中を通過させることができる。従つて、液晶分子は上
下に向いていても、上下対称になつていることから屈折
率はあまり変化しないと考えられる。その上、強誘電性
液晶層11の厚さは1〜5μmと非常に薄いため、その間
での屈折率変化に基づく光線方向のばらつきはほんど無
視出来る程度のものと考えられる。
The problem here is that in Fig. 1 (b), the electric fields of opposite polarities are generated between the adjacent comb-shaped electrodes. For this reason, liquid crystal molecules are vertically oriented between adjacent electrodes, and when a light ray is incident between two or more electrodes, the refractive index may differ between the respective electrodes and the light ray direction may vary. However, the refraction angle in the ferroelectric liquid crystal layer 11 can pass through the liquid crystal layer almost horizontally in consideration of the refraction index ng of the transparent substrate 21. Therefore, it is considered that the refractive index does not change so much even though the liquid crystal molecules are oriented vertically, because they are vertically symmetrical. In addition, since the thickness of the ferroelectric liquid crystal layer 11 is as thin as 1 to 5 μm, it is considered that the variation in the light beam direction due to the change in the refractive index between them is negligible.

この実施例は、パターンは複雑であるが、一層の電極構
造のみで(a)及び(b)の電界状態が得られることが
特徴である。
This embodiment has a complicated pattern, but is characterized in that the electric field states of (a) and (b) can be obtained only with a single-layer electrode structure.

次に電極を二層構造にした第2の実施例を第10図に示
す。構造は、透明基板21に透明なべた電極2を蒸着さ
せ、その上に強誘電性液晶分子の初期配向を決める配向
膜41(絶縁膜の役割も兼ねる)を形成させ、その上に
又、くし形の電極42を形成させたものを2つ対向させ
て、間に強誘電性液晶を入れている。
Next, FIG. 10 shows a second embodiment in which the electrode has a two-layer structure. The structure is such that a transparent solid electrode 2 is vapor-deposited on a transparent substrate 21, and an alignment film 41 (which also serves as an insulating film) that determines the initial alignment of ferroelectric liquid crystal molecules is formed on the transparent solid electrode 2 and the comb is formed thereon. Two liquid crystal-shaped electrodes 42 are opposed to each other, and a ferroelectric liquid crystal is inserted therebetween.

即ち、第10(a)においては、べた電極2により液晶層
の厚さ方向(37a′)に電界を印加し、35a′の分子配向
を得ており、第10図(b)は、くし形電極42により37
b′の方向に電界を印加し、35b′の分子配向を得てい
る。
That is, in 10 (a), an electric field is applied by the solid electrode 2 in the thickness direction (37a ') of the liquid crystal layer to obtain a molecular orientation of 35a', and FIG. 10 (b) shows a comb shape. 37 by electrode 42
An electric field is applied in the b'direction to obtain a 35b 'molecular orientation.

最後に、この第1,10図(b)の様なくし形の電極では、
印加電界は第8図37b′の様に曲線状になり、それによ
り、35b′の分子配向状態が不完全になる恐れがある。
これを防止する方法として、第11図及び第12図に示した
実施例を以下説明する。
Finally, with the comb-shaped electrodes shown in Fig. 1 and 10 (b),
The applied electric field has a curved shape as shown in FIG. 37b ', which may result in incomplete molecular orientation of 35b'.
As a method for preventing this, the embodiment shown in FIGS. 11 and 12 will be described below.

第11図に示した実施例は、第12図のくし形電極42だけを
透明基板間に渡した帯状電極51に置き換えたものであ
る。製法としては、配向膜41の上に導電膜を形成させ、
その後イオンミーリングなどで所定の形状の帯状電極以
外の部分を削りとる方法が考えられるが、くし形電極の
製法と比較して難しいと言える。しかし、印加電界は
(b)に示す様に直線的にかかり、35b′の完全な分子
配向状態が期待出来る。
In the embodiment shown in FIG. 11, only the comb-shaped electrode 42 of FIG. 12 is replaced with a strip electrode 51 provided between transparent substrates. As a manufacturing method, a conductive film is formed on the alignment film 41,
Then, a method of removing the portion other than the strip-shaped electrode having a predetermined shape by ion milling or the like can be considered, but it can be said that it is more difficult than the method of manufacturing the comb-shaped electrode. However, the applied electric field is linearly applied as shown in (b), and a perfect molecular orientation state of 35b 'can be expected.

第12図に示した実施例は、より簡単に35b′の完全な分
子配向状態を実現するためのものである。即ち、第10図
のくし形電極及び第11図の帯状電極の代わりに、非常に
細い(例えば2μm程度)導電線を所定の間隔で平行配
列させたものである。この構造により、第12図に示す様
な2つの完全な分子配向状態がより簡単に実現できる。
The embodiment shown in FIG. 12 is intended to more easily realize the perfect molecular orientation state of 35b '. That is, instead of the comb-shaped electrodes of FIG. 10 and the strip electrodes of FIG. 11, very thin (for example, about 2 μm) conductive lines are arranged in parallel at a predetermined interval. With this structure, two perfect molecular orientation states as shown in FIG. 12 can be more easily realized.

次に、このような原理的なスイツチング素子を用いたよ
り実用的な多モード用光路切換器の構成例を第13図及び
第14図に示す。第13図に示す光路切換器は、一般にバル
ク型と呼ばれるもので、第1,10,11,12図に示した液晶セ
ル構造75′を2つのガラスプリズム711と712ではさんだ
構成である。この時、第1図(c)に示したように、光
の入射面31と液晶のら旋軸12′は(2)式のθcで交わ
るようにセツトする。また、入出射ポートとして、レン
ズ74a〜dを備えた多モード光フアイバ73a〜dが取付け
られている。ここで液晶層11の厚さは5μm程度にする
必要があり、そのスペースを保つ役割と液晶層11の閉じ
込めのために、液晶11が入る部分を打ちぬいた薄い膜、
例えばマイラフイルム72などをはさみ込む。また底面に
は液晶層11に入射する際の反射損失を最低限に抑えるた
めに無反射コーテイング(図示せず)を施す。
Next, FIG. 13 and FIG. 14 show a configuration example of a more practical multi-mode optical path switching device using such a principle switching element. The optical path changer shown in FIG. 13 is generally called a bulk type, and has a structure in which the liquid crystal cell structure 75 'shown in FIGS. 1, 10, 11, and 12 is sandwiched by two glass prisms 711 and 712. At this time, as shown in FIG. 1 (c), the light incident surface 31 and the spiral axis 12 'of the liquid crystal are set so as to intersect with each other at θ c in the equation (2). Further, multi-mode optical fibers 73a to 73d having lenses 74a to 74d are attached as input / output ports. Here, the thickness of the liquid crystal layer 11 needs to be about 5 μm, and in order to keep the space and to confine the liquid crystal layer 11, a thin film punching out a portion where the liquid crystal 11 enters,
For example, insert Myrafilm 72. Further, a non-reflective coating (not shown) is applied to the bottom surface to minimize reflection loss when entering the liquid crystal layer 11.

今、例えば73aを入射ポートとして動作例を説明する。
単一モード光かもしくは多モード光が多モード光フアイ
バ73aから入射すると、レンズ74aにおいてそれは平行光
に変換され、プリズム71内へ投入される。そして、第9
図に示したような屈折率変化に対応して、透過及び全反
射を切換えることができる入射角θで強誘電性液晶層11
に入射し、印加電界により、74dへ透過したり、74bへ全
反射したりすることになる。出射光は74b及び74dのレン
ズで集光され、各々73b及び73dの出射ポートへ出る。こ
こで4つのポート73a〜dは、各々入射または出射ポー
トのいずれにでも用いることができ、従つて、双方向の
スイツチングが可能であることは言うまでもない。
Now, an operation example will be described with 73a as the incident port.
When single-mode light or multi-mode light enters from the multi-mode light fiber 73a, it is converted into parallel light in the lens 74a and is input into the prism 71. And the ninth
The ferroelectric liquid crystal layer 11 with an incident angle θ that can switch between transmission and total reflection according to the change in the refractive index as shown in the figure.
And is transmitted to 74d or totally reflected to 74b depending on the applied electric field. The emitted light is condensed by the lenses 74b and 74d and output to the emission ports 73b and 73d, respectively. Here, it goes without saying that the four ports 73a to 73d can be used as either the entrance port or the exit port, and thus bidirectional switching is possible.

第14図に他の実施例として、バルク型と比較して集積化
可能な光導波路型の光路切換器を示す。同図(a)は平
面図、同図(b)は側面図である。基本構造は、第13図
のバルク型と同様で、2×2の光導波路の交差部に第1,
10,11,12図のような液晶セル75′を埋め込んだ形をとつ
ている。即ち、第13図のプリズム71及びポート部73,74
が、基板81上の光導波路82a〜dに置換された形になつ
ており、第13図で説明したのと同様な原理により、光ス
イツチングできる。
FIG. 14 shows, as another embodiment, an optical waveguide type optical path switching device that can be integrated as compared with a bulk type. The figure (a) is a top view and the figure (b) is a side view. The basic structure is similar to that of the bulk type shown in FIG.
It has a form in which a liquid crystal cell 75 'is embedded as shown in Figs. That is, the prism 71 and the port portions 73 and 74 of FIG.
However, the optical waveguides 82a to 82d on the substrate 81 are replaced, and optical switching can be performed according to the same principle as described with reference to FIG.

現在の強誘電性液晶材料を実用的な低電圧レベルで駆動
させようとすると、第1,10,11,12図に示した界面方向
(37b′)に印加するための電極の印加方向間隔を入射
光のビーム径より大きく出来ない。従つて、入射光は電
極部分にかかり、それにより漏話が増大する可能性があ
る。しかし、今後、液晶材料の電界に対する感度が増大
して、入射光のビーム径より電極間隔を大きく出来るよ
うになれば、第1,10,11,12図に示した電極の1ピツチの
簡単な電極構造で低クロストークの光路切換器が構成出
来る。
When it is attempted to drive a current ferroelectric liquid crystal material at a practically low voltage level, the electrode application direction interval for applying in the interface direction (37b ′) shown in FIGS. 1, 10, 11, 12 is set. It cannot be larger than the beam diameter of the incident light. Therefore, incident light may hit the electrode portions, which may increase crosstalk. However, if the sensitivity of the liquid crystal material to the electric field increases in the future and the electrode spacing can be made larger than the beam diameter of the incident light, a simple 1-pitch electrode shown in FIGS. 1, 10, 11, and 12 can be used. An optical path switcher with low crosstalk can be constructed with an electrode structure.

〔実施例の効果〕[Effect of Example]

この改善された実際の性能値を第1表に示す。使用した
強誘電性液晶の組成及び相変化を第17図に示し、また、
強誘電性液晶分子のら旋ピツチと傾き角の温度依存性を
第15図に示す。
The improved actual performance values are shown in Table 1. The composition and phase change of the ferroelectric liquid crystal used is shown in FIG.
Figure 15 shows the temperature dependence of the helical pitch and tilt angle of the ferroelectric liquid crystal molecules.

表1に示したネマチツク液晶(2クツシヨン)は、従来
例のところで説明したSorefらのデータであり、第7図
のような台形プリズムを用いた2クツシヨン方式であ
る。また強誘電性液晶(2クツシヨン)は第7図で説明
したそのもののデータであり、1クツシヨンの方は、本
発明の第13図のプリズム構成に第1図の液晶セルを組込
んだもののデータである。
The nematic liquid crystal (two-cushion) shown in Table 1 is the data of Soref et al. Explained in the conventional example, which is a two-cushion system using a trapezoidal prism as shown in FIG. The ferroelectric liquid crystal (2 cushions) is the same data as described in FIG. 7. The 1 cushion data is the data obtained by incorporating the liquid crystal cell of FIG. 1 into the prism structure of FIG. 13 of the present invention. Is.

第1表に示したように、強誘電性液晶を用いたことによ
り、駆動電圧をネマチツク液晶使用時の半分にしても、
ネマチツク液晶における電圧除去時のスイツチング時間
(τoff)の著しい遅延に相当するような現象は生じ
ず、2つのスイツチング状態ともネマチツク液晶におけ
る電圧印加時のスイツチング時間(τon)の半分程度の
0.05mSという高速で切換えることができる。
As shown in Table 1, by using the ferroelectric liquid crystal, the driving voltage can be reduced to half that of the nematic liquid crystal,
There is no phenomenon corresponding to a significant delay in the switching time (τ off ) when the voltage is removed in the nematic liquid crystal, and the two switching states are about half the switching time (τ on ) when the voltage is applied in the nematic liquid crystal.
It can be switched at a high speed of 0.05 mS.

クロストークについては、液晶材料の性能の違いに加え
て、素子構成の簡単化(1クツシヨン)による効果が顕
著に表れている。
Regarding the crosstalk, in addition to the difference in the performance of the liquid crystal material, the effect due to the simplification (one cushion) of the device structure is remarkably exhibited.

伝搬損失に関しても同様であり、1クツシヨン化による
光路の短縮の効果は顕著に表れている。
The same applies to the propagation loss, and the effect of shortening the optical path due to the one-cushioning is remarkable.

また、これらの改善されたデータに用いた駆動電圧は、
強誘電性液晶のメモリー性を利用したパルス状(5mS)
の電圧であり、ネマチツク液晶を用いた場合より駆動電
力の面でも著しい改善がなされている。そのパルス状電
圧によるスイツチング動作状態を第16図に示す。
Also, the drive voltage used for these improved data is
Pulsed (5mS) utilizing the memory property of ferroelectric liquid crystal
This is a significant improvement in terms of driving power as compared with the case where nematic liquid crystal is used. FIG. 16 shows the switching operation state by the pulse voltage.

〔発明の効果〕 以上説明したように、本発明によれば、ネマチツク液晶
に比較して優れた性質をもつ強誘電性液晶を2枚の透明
基板ではさみ、光の入射面に体して所定の角度方向に液
晶のら旋軸を初期配向させ、電極構造を工夫することに
より、単一モード光はもちろん多モード光をも、より簡
単な素子構成で低クロストーク及び低損失の光スイツチ
動作が達成でき、しかも強誘電性液晶が本来もつている
高速性、低電圧駆動性を損なうことなくスイツチングさ
せることができる。
[Effects of the Invention] As described above, according to the present invention, a ferroelectric liquid crystal having superior properties as compared with a nematic liquid crystal is sandwiched between two transparent substrates, and the ferroelectric liquid crystal is put on a light incident surface to be predetermined. By aligning the helix axis of the liquid crystal in the direction of the angle and devising the electrode structure, both single mode light and multimode light can be operated with a simpler device structure with low crosstalk and low loss. In addition, the switching can be achieved without impairing the high speed and low voltage drivability originally possessed by the ferroelectric liquid crystal.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のくし形電極を設けた光路切
換器の断面図((a),(b))及び強誘電性液晶分子
の初期配向方向を示す図((c))、第2図は従来のネ
マチツク液晶の分子配向状態を示す概念図、第3図は本
発明に使用する強誘電性液晶の種々の電界に対する分子
配向状態を示す概念図、第4図は強誘電性液晶による単
一モード光の光路切換原理図、第5図は第4図の詳細な
説明図、第6図は従来の光路切換器に用いる強誘電性液
晶分子の2つの配向状態を示す図、第7図は強誘電性液
晶を用いた従来の方法による多モード光用光路切換器の
構成例を示す図、第8図は本発明の光路切換器に用いる
強誘電性液晶分子の2つの配向状態を示す図、第9図は
本発明の方式で生じる屈折率変化の計算例を示す図、第
10図は本発明の第2の実施例であるくし形電極とべた電
極を備えた光路切換器の断面図、第11図は本発明の第3
の実施例である帯状電極を設けた光路切換器の断面図、
第12図は本発明の第4の実施例である細い導電線を電極
に用いた光路切換器の断面図、第13図は本発明の電極構
造を実装したバルク形の光路切換器構成図、第14図は本
発明の電極構造を実装した光導波路形の光路切換器構成
図、第15図は実際に使用した強誘電性液晶の分子のら旋
ピツチと傾き角の温度依存性を示す図、第16図はパルス
状電圧によるスイツチング動作状態を示す図、第17図は
本発明に使用する強誘電性液晶の組成及び相変化を示す
図である。 2……べた電極、11……強誘電性液晶、11′……強誘電
性液晶分子、12……強誘電性液晶のら旋軸、21……透明
基板、31……光の入射面、35……強誘電性液晶分子のら
旋軸、37……電界、41……絶縁膜(配向膜)、42……く
し形電極、43……蛇行した電極、51……帯状電極、61…
…細い導電線の電極、93……多モード光。
FIG. 1 is a sectional view ((a), (b)) of an optical path switching device provided with a comb-shaped electrode according to an embodiment of the present invention and a view showing an initial orientation direction of ferroelectric liquid crystal molecules ((c)). 2, FIG. 2 is a conceptual diagram showing a molecular alignment state of a conventional nematic liquid crystal, FIG. 3 is a conceptual diagram showing a molecular alignment state of a ferroelectric liquid crystal used in the present invention with respect to various electric fields, and FIG. Of the principle of optical path switching of single-mode light by a liquid crystal, FIG. 5 is a detailed explanatory view of FIG. 4, and FIG. 6 is a view showing two alignment states of ferroelectric liquid crystal molecules used in a conventional optical path switch. FIG. 7 is a diagram showing a configuration example of an optical path switcher for multimode light by a conventional method using a ferroelectric liquid crystal, and FIG. 8 is a view showing two ferroelectric liquid crystal molecules used in the optical path switcher of the present invention. FIG. 9 is a diagram showing an orientation state, FIG. 9 is a diagram showing a calculation example of a refractive index change caused by the method of the present invention, FIG.
FIG. 10 is a sectional view of an optical path switching device having a comb-shaped electrode and a solid electrode according to a second embodiment of the present invention, and FIG. 11 is a third embodiment of the present invention.
Sectional view of an optical path switching device provided with a strip electrode is an example of
FIG. 12 is a cross-sectional view of an optical path switching device using a thin conductive wire as an electrode according to a fourth embodiment of the present invention, and FIG. 13 is a block diagram of a bulk type optical path switching device mounting the electrode structure of the present invention, FIG. 14 is a configuration diagram of an optical waveguide type optical path switch mounted with the electrode structure of the present invention, and FIG. 15 is a diagram showing the temperature dependence of the tilting angle and the tilt angle of the molecules of the ferroelectric liquid crystal actually used. FIG. 16 is a diagram showing a switching operation state by a pulsed voltage, and FIG. 17 is a diagram showing a composition and a phase change of a ferroelectric liquid crystal used in the present invention. 2 ... Solid electrode, 11 ... Ferroelectric liquid crystal, 11 '... Ferroelectric liquid crystal molecule, 12 ... Helical axis of ferroelectric liquid crystal, 21 ... Transparent substrate, 31 ... Light incident surface, 35 ... Helix axis of ferroelectric liquid crystal molecule, 37 ... Electric field, 41 ... Insulating film (alignment film), 42 ... Comb-shaped electrode, 43 ... Meandering electrode, 51 ... Strip electrode, 61 ...
… Thin conductive wire electrodes, 93… Multimode light.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】対向配置された2枚の透明基板と該透明基
板の対向面の各々に設けられた電極の間に、強誘電性液
晶を介在させ、該透明基板の液晶に対接する光路の屈折
率を、該強誘電性液晶のもつ外部より切換えうる2つの
屈折率の内、少なくとも1つより大きく選んだ光路切換
器において、該強誘電性液晶の分子のら旋軸を光の入射
面とS偏光及びP偏光の両偏光に対して最大の屈折率変
化を与えるような角度をもって交わるように設定する手
段と、該強誘電性液晶の分子長軸を、該強誘電性液晶層
界面にほぼ平行となる第1の配向と該液晶層界面との角
度がS偏光とP偏光の両偏光に対して最大の屈折率変化
を与えるような角度となる第2の配向の2つの配向状態
間に切換える手段とを備えたことを特徴とする光路切換
器。
1. A ferroelectric liquid crystal is interposed between two transparent substrates that are arranged to face each other and electrodes provided on each of the facing surfaces of the transparent substrate, and an optical path that contacts the liquid crystal of the transparent substrate is provided. In the optical path switching device, the refractive index of which is selected to be larger than at least one of the two refractive indexes of the ferroelectric liquid crystal which can be switched from the outside, and the helical axis of the molecules of the ferroelectric liquid crystal is used as the light incident surface. And a means for setting such that they intersect at an angle that gives the maximum change in the refractive index for both S-polarized light and P-polarized light, and the molecular long axis of the ferroelectric liquid crystal is at the interface of the ferroelectric liquid crystal layer. Between the two alignment states of the second alignment in which the angle between the first alignment that is substantially parallel and the interface of the liquid crystal layer is the angle that gives the maximum change in refractive index for both S-polarized light and P-polarized light. And an optical path switching device.
【請求項2】2つの該配向状態の内、少なくとも一方
は、該透明基板間に設けられた電極により生じる電界に
より配向させられることを特徴とする特許請求の範囲第
1項記載の光路切換器。
2. The optical path switching device according to claim 1, wherein at least one of the two alignment states is aligned by an electric field generated by electrodes provided between the transparent substrates. .
【請求項3】上記ら旋軸と入射面との角度を、上記液晶
によって切るら旋軸と分子長軸との角度以上に設定した
第1項記載の光路切換器。
3. The optical path switching device according to claim 1, wherein the angle between the helix axis and the incident surface is set to be equal to or greater than the angle between the helix axis and the molecular long axis cut by the liquid crystal.
【請求項4】2つの上記配向状態の内、少なくとも一方
は、上記透明基板間に設けられた電極により生じる電界
により配向させられることを特徴とする第1項記載の光
路切換器。
4. The optical path switching device according to claim 1, wherein at least one of the two alignment states is aligned by an electric field generated by electrodes provided between the transparent substrates.
【請求項5】上記透明基板の対向面の一方に設けられた
電極は、くし形状の電極であることを特徴とする第1項
記載の光路切換器。
5. The optical path switching device according to claim 1, wherein the electrode provided on one of the facing surfaces of the transparent substrate is a comb-shaped electrode.
【請求項6】上記電極は、上記透明基板の対向面の各々
に設けられた均一な厚さの膜状の透明電極と、該透明電
極の少なくとも一方の上に絶縁膜をはさんで、くし形の
電極を設けた構造であることを特徴とする第1項記載の
光路切換器。
6. The electrode comprises a film-like transparent electrode having a uniform thickness provided on each of the opposing surfaces of the transparent substrate, and an insulating film sandwiched between at least one of the transparent electrodes. 2. The optical path switching device according to claim 1, wherein the optical path switching device has a structure in which a shaped electrode is provided.
【請求項7】上記電極は、上記透明基板の対向面の各々
に設けられた均一な厚さの膜状の透明電極と、各々の透
明電極の上に絶縁膜を設け、対向する絶縁膜間に、帯状
電極を所定の間隔で複数本平行に渡して挟持した構造で
あることを特徴とする第1項記載の光路切換器。
7. The electrode comprises a film-like transparent electrode having a uniform thickness provided on each of the opposing surfaces of the transparent substrate, and an insulating film provided on each transparent electrode, and between the opposing insulating films. 2. The optical path switching device according to claim 1, wherein the optical path switching device has a structure in which a plurality of strip electrodes are arranged in parallel at predetermined intervals and sandwiched.
【請求項8】上記電極は、上記透明基板の対向面の各々
に設けられた均一な厚さの膜状の透明電極と、各々の透
明電極の上に絶縁膜を設け、対向する絶縁膜間に、細い
導電線を所定の間隔で複数本平行に配列して挟持した構
造であることを特徴とする第1項記載の光路切換器。
8. The electrode comprises a film-like transparent electrode having a uniform thickness provided on each of the opposing surfaces of the transparent substrate, and an insulating film provided on each transparent electrode, and between the opposing insulating films. 2. The optical path switching device according to claim 1, wherein a plurality of thin conductive wires are arranged in parallel at a predetermined interval and sandwiched therebetween.
JP29275385A 1985-12-12 1985-12-27 Optical path switch Expired - Lifetime JPH0750284B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29275385A JPH0750284B2 (en) 1985-12-27 1985-12-27 Optical path switch
EP86116694A EP0229287B1 (en) 1985-12-12 1986-12-01 Optical change-over switch
DE8686116694T DE3674757D1 (en) 1985-12-12 1986-12-01 OPTICAL SWITCH.
US06/940,491 US4836657A (en) 1985-12-12 1986-12-10 Optical change-over switch utilizing ferroelectric liquid crystal material
CA000524967A CA1277521C (en) 1985-12-12 1986-12-10 Optical change-over switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29275385A JPH0750284B2 (en) 1985-12-27 1985-12-27 Optical path switch

Publications (2)

Publication Number Publication Date
JPS62153837A JPS62153837A (en) 1987-07-08
JPH0750284B2 true JPH0750284B2 (en) 1995-05-31

Family

ID=17785889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29275385A Expired - Lifetime JPH0750284B2 (en) 1985-12-12 1985-12-27 Optical path switch

Country Status (1)

Country Link
JP (1) JPH0750284B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813771A (en) * 1987-10-15 1989-03-21 Displaytech Incorporated Electro-optic switching devices using ferroelectric liquid crystals
EP0457998B1 (en) * 1990-05-25 1994-01-26 International Business Machines Corporation Method and apparatus for batch cleaving semiconductor wafers and for coating the cleaved facets
TW293841B (en) * 1992-12-11 1996-12-21 Sharp Kk
JP2579426B2 (en) * 1993-09-29 1997-02-05 インターナショナル・ビジネス・マシーンズ・コーポレイション Liquid crystal electro-optical element
JP4785023B2 (en) * 2001-09-25 2011-10-05 株式会社リコー Optical path switching element, spatial light modulator, and image display device
JP4574428B2 (en) * 2004-04-30 2010-11-04 株式会社リコー Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection apparatus, optical path deflection apparatus, and image display apparatus

Also Published As

Publication number Publication date
JPS62153837A (en) 1987-07-08

Similar Documents

Publication Publication Date Title
US20210356838A1 (en) Non-moving optical beam steering using non-pixelated liquid crystal optical phased arrays
US4385799A (en) Dual array fiber liquid crystal optical switches
US6297899B1 (en) Discrete element light modulating microstructure devices
US6111633A (en) Polarization independent optical switching device
JPS5849917A (en) Optical switching device
US5317429A (en) Trilayer nematic liquid crystal optical switching device
JP2003172912A (en) Liquid crystal variable wavelength filter device and driving method therefor
EP0229287B1 (en) Optical change-over switch
EP0015139B1 (en) Electro-optical switching matrix
CN110869836B (en) High-speed optical switch engine
US4792212A (en) Liquid crystal switching device
JPH0750284B2 (en) Optical path switch
US6944363B2 (en) Miniature magneto-optic fiber optical switch
US6563973B1 (en) Low-index waveguide liquid crystal cross-connect
CA1075388A (en) Electro-optic matrix display
US20040126056A1 (en) Optical switches having a common waveguide for improved switch performance
JPH05249506A (en) Optical switch
JPH05249507A (en) Optical switch and optical path switching method
JPS62138837A (en) Optical path change-over switch
JPS60247228A (en) Optical fiber switch
JPH0228852B2 (en)
JPH05216076A (en) Optical deflection device
JPH08254719A (en) Optical switch
JPH01114830A (en) Optical circuit element applying electro-optical effect
JP4786841B2 (en) Liquid crystal optical switch and driving method thereof