JPH05216076A - Optical deflection device - Google Patents

Optical deflection device

Info

Publication number
JPH05216076A
JPH05216076A JP4017569A JP1756992A JPH05216076A JP H05216076 A JPH05216076 A JP H05216076A JP 4017569 A JP4017569 A JP 4017569A JP 1756992 A JP1756992 A JP 1756992A JP H05216076 A JPH05216076 A JP H05216076A
Authority
JP
Japan
Prior art keywords
signal light
liquid crystal
optical
sawtooth
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4017569A
Other languages
Japanese (ja)
Inventor
Masahiko Oka
正彦 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4017569A priority Critical patent/JPH05216076A/en
Publication of JPH05216076A publication Critical patent/JPH05216076A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide the optical deflection device which can be driven by a low voltage and can be made two-dimensional and small in size. CONSTITUTION:This deflection device is constituted of a polarization rotating device 13 capable of rotating the polarization of input signal light 12 which is linearly polarized light by 90 deg. according to control signals and the deflector 14 for changing over the output direction of the signal light according to the polarization state. The deflector 14 is constituted of three sheets of transparent substrates 15, 16, 17 and is formed with saw tooth-shaped grids 18, 19 facing opposite directions on both sides of the central transparent substrate 17. The saw tooth-shaped grids are formed of double refractive materials. Liquid crystals 20, 21 which are homogeneously oriented in parallel with inscribed lines and have double refractiveness are respectively held between the transparent substrates 15, 16, 17 so that the input signal light 12 is parallel shifted according to the control signal of the polarization rotating device 13 and the optical path of the output signal 22 is changed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光交換等に適用する光
の空間接続において、信号光の光路を切り替える光偏向
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical deflector for switching the optical path of signal light in a spatial connection of light applied to optical switching or the like.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】光の
非干渉性、並列性を利用して光の空間接続を実現する光
情報処理、光交換においては、光のスイッチングは、重
要な基本技術の一つである。
2. Description of the Related Art Optical switching is an important basic technique in optical information processing and optical switching for realizing optical spatial connection by utilizing incoherence and parallelism of light. one of.

【0003】この光スイッチングに要求される機能とし
ては、信号光の透過、遮断を制御するシャッタ機能とと
もに、光の進行方向を制御する光偏向技術、即ち光路変
換機能が挙げられる。ここで、光偏向技術における光路
の変更には、例えば信号光の出力角度を変化させる、あ
るいは光路を平行シフトさせる等の方法があり、システ
ム構成によって適宜選択される。
The functions required for this optical switching include a shutter function for controlling transmission and blocking of signal light, and an optical deflection technique for controlling the traveling direction of light, that is, an optical path changing function. Here, for changing the optical path in the optical deflection technique, there are methods such as changing the output angle of the signal light or shifting the optical path in parallel, which is appropriately selected depending on the system configuration.

【0004】この内、光路を平行シフトさせる技術とし
ては電気光学効果によるものが知られている。この電気
光学効果による電気光学偏向は、電気光学スイッチと複
屈折プリズム、あるいはミラー等を組み合わせることに
より実現される。ここで電気光学スイッチとは、液晶、
あるいはセラミックなどを用いて、電気入力により、光
の強度、角度、偏光方向などを変調するデバイスであ
り、いわゆる空間光変調器なども含まれる。電気光学偏
向では、この電気光学スイッチにより信号光の偏光方向
を変化させている。
Among these, as a technique for shifting the optical path in parallel, one based on the electro-optical effect is known. Electro-optical deflection by the electro-optical effect is realized by combining an electro-optical switch and a birefringent prism, a mirror or the like. Here, the electro-optical switch is a liquid crystal,
Alternatively, it is a device that uses ceramics or the like to modulate the intensity, angle, polarization direction, etc. of light by electrical input, and includes so-called spatial light modulators and the like. In electro-optical deflection, the polarization direction of signal light is changed by this electro-optical switch.

【0005】一方、複屈折プリズムではその複屈折作用
により入力光を常光、異常光に分離させることができ、
この常光、異常光は、複屈折プリズムを形成する材料の
リタデーション値できまる量だけ光路がずれることにな
る。そこで、直線偏光である信号光の偏光面を複屈折プ
リズムに対する常光、あるいは異常光に対応させ、電気
光学スイッチによって信号光の偏光方向をπ/2回転さ
せることで、常光、異常光を切り替えることにより、光
路シフト、即ち光路変換が可能となる。
On the other hand, in the birefringent prism, the input light can be separated into ordinary light and extraordinary light by its birefringent action.
The ordinary light and the extraordinary light have their optical paths deviated by an amount corresponding to the retardation value of the material forming the birefringent prism. Therefore, the polarization plane of the signal light, which is linearly polarized light, is made to correspond to the ordinary light or the extraordinary light with respect to the birefringent prism, and the polarization direction of the signal light is rotated by π / 2 by the electro-optical switch to switch between the ordinary light and the extraordinary light. This enables optical path shift, that is, optical path conversion.

【0006】このように、電気光学偏向とは、例えば方
解石などの複屈折性の材料を用いることにより、複屈折
分だけ光路をシフトする方式である。この方式は、原理
的に高速偏向が可能であるが、光路のシフト量は、複屈
折材料のリタデーション値によって決定される。一般的
に光学材料の複屈折性は小さく、大きな光路シフト量を
得るためには厚い複屈折材料が必要になるため、実装体
積が大きくなり、また、方解石などの材料費が高価にな
る等の欠点があった。
As described above, the electro-optical deflection is a method of shifting the optical path by the amount of birefringence by using a birefringent material such as calcite. This method allows high-speed deflection in principle, but the shift amount of the optical path is determined by the retardation value of the birefringent material. Generally, the birefringence of an optical material is small, and a thick birefringent material is required to obtain a large optical path shift amount. Therefore, the mounting volume becomes large and the material cost such as calcite becomes high. There was a flaw.

【0007】また、デバイス中に反射ミラーなどを形成
し、この反射ミラーを回転させることにより、信号光の
出射角を変化させる機械的な方法も検討されているが、
微小ミラー作成の困難さ、回転駆動部の信頼性等の点で
問題がある。
Further, a mechanical method has been studied in which a reflecting mirror or the like is formed in the device and the emitting angle of the signal light is changed by rotating the reflecting mirror.
There is a problem in that it is difficult to make a micro mirror and the reliability of the rotation drive unit.

【0008】本発明は上述の問題点を解決するためにな
されたもので、小型化、低価格化が可能な光偏向装置を
提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an optical deflecting device which can be reduced in size and cost.

【0009】[0009]

【課題を解決するための手段】前記目的を達成する本発
明に係る光偏向装置の構成は、入射した信号光の偏光方
向を回転させる偏光回転装置と、該偏光回転装置からの
入力光をその偏光方向に応じて平行シフトして出力させ
る偏向装置とを具備し、且つ当該偏向装置は中心に位置
する一枚の透明基板とその両側に配置された二枚の透明
基板とからなると共に当該中心の透明基板の両側には各
々反対方向を向く鋸歯状格子を有し、当該鋸歯状格子は
複屈折性材料から形成され、当該中心の透明基板と両側
の二枚の透明基板の各々はその間に液晶を保持してお
り、当該液晶はホモジニアス配向すると共に該液晶は複
屈折性を有し、その長軸あるいは短軸のいずれかの屈折
率が前記中心の透明基板の両側の鋸歯状格子を形成する
材料の光軸方向あるいは光軸と垂直方向の屈折率と一致
することを特徴とする。
The structure of an optical deflecting device according to the present invention that achieves the above object is a polarization rotating device for rotating the polarization direction of incident signal light, and an input light from the polarization rotating device. A deflecting device for parallel-shifting and outputting according to the polarization direction is provided, and the deflecting device is composed of one transparent substrate located at the center and two transparent substrates arranged on both sides of the transparent substrate, and On both sides of the transparent substrate, the sawtooth gratings facing in opposite directions, the sawtooth gratings are made of a birefringent material, and the transparent substrate at the center and the two transparent substrates on both sides are in between. It holds a liquid crystal, the liquid crystal is homogeneously aligned, and the liquid crystal has birefringence, and the refractive index of either the major axis or the minor axis thereof forms a sawtooth grating on both sides of the central transparent substrate. The optical axis direction of the material Characterized in that it coincides with the optical axis and the vertical refractive index.

【0010】[0010]

【作用】前記構成の光偏向装置においては、入力信号の
偏光状態を制御することにより、信号光を平行シフトす
ることが出来る。
In the optical deflector having the above structure, the signal light can be parallel-shifted by controlling the polarization state of the input signal.

【0011】[0011]

【実施例】以下、本発明の好適な一実施例を図面を参照
して説明する。図1は本実施例にかかる光偏向装置の概
略図、図2は図1の要部拡大を示し、鋸歯状格子での信
号光の偏向状態を示す動作図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of an optical deflecting device according to the present embodiment, and FIG. 2 is an enlarged view of a main part of FIG. 1, and is an operation diagram showing a deflected state of signal light in a sawtooth grating.

【0012】これらの図に示すように、本実施例に係る
光偏向装置11は、制御信号に応じて、直線偏光である
入力信号光12の偏光を90°回転させうる偏光回転装
置13と、その偏光状態に応じて信号光の出力方向を切
り替える偏向装置14から構成されている。上記偏向装
置14は、3枚の透明基板15,16,17から構成さ
れ、中心の透明基板17の両側面には反対方向を向く鋸
歯状の鋸歯状格子18、19が形成されている。
As shown in these figures, the optical deflecting device 11 according to this embodiment includes a polarization rotating device 13 capable of rotating the polarization of the input signal light 12 which is a linearly polarized light by 90 ° in accordance with a control signal. The deflecting device 14 is configured to switch the output direction of the signal light according to the polarization state. The deflecting device 14 is composed of three transparent substrates 15, 16 and 17, and saw-tooth saw-toothed gratings 18 and 19 facing in opposite directions are formed on both side surfaces of the central transparent substrate 17.

【0013】この鋸歯状格子18、19は同一材料で形
成され、ピッチ、テーパ角など形状特性は同一であり、
その向きだけが逆である。図1においては、鋸歯状格子
18、19は紙面に垂直方向に刻まれている。この鋸歯
状格子18、19は複屈折性を有する1軸性配向材料か
ら構成され、その光軸方向の屈折率は光軸と垂直方向の
屈折率より小さく、鋸歯状格子18、19の刻線方向
は、構成材料の光軸方向と等しくする。
The sawtooth gratings 18 and 19 are made of the same material and have the same shape characteristics such as pitch and taper angle.
Only that direction is reversed. In FIG. 1, the sawtooth gratings 18 and 19 are inscribed in the direction perpendicular to the paper surface. The saw-toothed gratings 18 and 19 are made of a uniaxially oriented material having birefringence, and the refractive index in the optical axis direction is smaller than the refractive index in the direction perpendicular to the optical axis. The direction is the same as the optical axis direction of the constituent material.

【0014】3枚の透明基板15、16、17の各々の
間には液晶20、21が保持されている。液晶20、2
1は鋸歯状格子18、19の刻線に平行にホモジニアス
配向されており、液晶20、21の配向方向は同じで、
鋸歯状格子18、19の刻線方向と同じである。
Liquid crystals 20 and 21 are held between each of the three transparent substrates 15, 16 and 17. Liquid crystal 20, 2
1 is homogeneously aligned parallel to the scribe lines of the sawtooth gratings 18 and 19, and the alignment directions of the liquid crystals 20 and 21 are the same.
It is the same as the ruled line direction of the sawtooth gratings 18 and 19.

【0015】また、液晶20、21は光学特性が同一で
あり、複屈折性を有し、長軸方向の屈折率は短軸方向の
屈折率よりも大きい。この液晶20、21の長軸方向の
屈折率は、鋸歯状格子18、19の光軸方向の屈折率と
同じになるように、液晶20、21あるいは鋸歯状格子
18、19の材料を選択する。
The liquid crystals 20 and 21 have the same optical characteristics and have birefringence, and the refractive index in the major axis direction is larger than the refractive index in the minor axis direction. The materials of the liquid crystals 20 and 21 or the sawtooth gratings 18 and 19 are selected so that the refractive indices of the liquid crystals 20 and 21 in the long axis direction are the same as the refractive indexes of the sawtooth gratings 18 and 19 in the optical axis direction. ..

【0016】また、液晶20、21の配向方向と直線偏
光である入力信号光12の偏光方向とは同じとなるよう
に偏向装置14を配置する。この時、入力信号光12の
偏光方向は鋸歯状格子18、19の刻線方向と等しく、
鋸歯状格子18、19を構成する材料の光軸方向とも等
しくなる。
Further, the deflecting device 14 is arranged so that the alignment directions of the liquid crystals 20 and 21 are the same as the polarization direction of the input signal light 12 which is linearly polarized light. At this time, the polarization direction of the input signal light 12 is equal to the ruled line direction of the sawtooth gratings 18 and 19,
It is also equal to the optical axis direction of the material forming the saw-toothed gratings 18, 19.

【0017】図2は、図1における偏向装置14の鋸歯
状格子の一部分を示している。また、図3は、液晶分子
20aが鋸歯状格子19と並行に配向している様子を示
している。
FIG. 2 shows a portion of the sawtooth grid of the deflection device 14 in FIG. Further, FIG. 3 shows a state in which the liquid crystal molecules 20 a are aligned in parallel with the sawtooth lattice 19.

【0018】以下、図2を用いて本発明による光偏向装
置の動作を説明する。液晶20を通って鋸歯状格子19
に入射した入力信号光12は、鋸歯状格子のテーパによ
って、一般的に下記(1)式で表される条件で鋸歯状格
子19中に屈折する。 n1 ・sinθ1 =n2 ・sinθ2 …… (1)
The operation of the optical deflector according to the present invention will be described below with reference to FIG. Sawtooth grating 19 through liquid crystal 20
Due to the taper of the sawtooth grating, the input signal light 12 incident on is refracted into the sawtooth grating 19 under the condition generally expressed by the following equation (1). n 1 · sin θ 1 = n 2 · sin θ 2 (1)

【0019】ここで(1)式において、n1 は液晶20
の実効的な屈折率であり、n2 は鋸歯状格子19を形成
する材料の屈折率である。また、θ1 は鋸歯状格子19
に対する入力信号光12の入射角度であり、これは鋸歯
状格子19のテーパ角度と等しい。
In the equation (1), n 1 is the liquid crystal 20.
Is the effective refractive index of n, and n 2 is the refractive index of the material forming the sawtooth grating 19. Further, θ 1 is a sawtooth grid 19
Is the incident angle of the input signal light 12 with respect to, which is equal to the taper angle of the sawtooth grating 19.

【0020】θ2 は鋸歯状格子19のテーパ垂線に対す
る入力信号光12の出射角度である。一方、鋸歯状格子
19から透明基板17の中を通って鋸歯状格子18から
出射する信号光は(2)式で表される条件で液晶21中
に屈折する。 n3 ・sinθ3 =n4 ・sinθ4 …… (2)
Θ 2 is the emission angle of the input signal light 12 with respect to the taper normal of the sawtooth grating 19. On the other hand, the signal light emitted from the saw-toothed grating 18 through the transparent substrate 17 and emitted from the saw-toothed grating 18 is refracted into the liquid crystal 21 under the condition represented by the equation (2). n 3 · sin θ 3 = n 4 · sin θ 4 (2)

【0021】上記(2)式において、n3 は鋸歯状格子
18を形成する材料の屈折率であり、n4 は液晶21の
実効的な屈折率である。また、θ3 は鋸歯状格子18に
対する信号光の入射角度であり、θ4 は鋸歯状格子のテ
ーパ垂線に対する信号光の出射角度である。ここで、2
つの鋸歯状格子18、19の形状(断面形状、ピッチ
等)が同じであり、その材質および配向方向が同一であ
るから、n2 =n3 であり、また、液晶20、21の光
学特性、および配向方向は同一であるから、n1=n4
となる。
In the above equation (2), n 3 is the refractive index of the material forming the sawtooth grating 18, and n 4 is the effective refractive index of the liquid crystal 21. Further, θ 3 is the incident angle of the signal light with respect to the sawtooth grating 18, and θ 4 is the outgoing angle of the signal light with respect to the taper perpendicular of the sawtooth grating. Where 2
Since the two saw-toothed gratings 18 and 19 have the same shape (cross-sectional shape, pitch, etc.) and have the same material and orientation direction, n 2 = n 3 , and the optical characteristics of the liquid crystals 20 and 21, And the orientation directions are the same, n 1 = n 4
Becomes

【0022】本発明による光偏光装置の目的は、制御信
号に応じて信号光の光路を変更することにあり、その切
り替えは直線偏光である入力信号光の偏光面を回転させ
るか(90°回転)、させないか、により制御する。
An object of the optical polarization device according to the present invention is to change the optical path of the signal light according to the control signal, and the switching is performed by rotating the polarization plane of the input signal light which is linearly polarized light (rotation by 90 °). ), Do not allow or control.

【0023】まず、偏光回転装置13により入力信号光
12の偏光面を回転させない場合を考える。この場合に
は前述したように信号光12の偏光方向と液晶20の配
向は一致するため、信号光12の感ずる液晶20の屈折
率n1 は、当該液晶20の長軸方向の屈折率n1 ‖とな
る。また、信号光12の感ずる鋸歯状格子19の屈折率
は、鋸歯状格子19を構成する材料の光軸方向の屈折率
2 ‖となる。
First, consider a case where the polarization plane of the input signal light 12 is not rotated by the polarization rotation device 13. For this purpose when the orientation of the polarization direction and the liquid crystal 20 of the signal light 12 as described above matches the refractive index n 1 of the liquid crystal 20 feels the signal light 12, the refractive index n 1 long axis direction of the liquid crystal 20 ‖ The refractive index of the saw-toothed grating 19 that the signal light 12 feels is the refractive index n 2 ∥ of the material forming the saw-toothed grating 19 in the optical axis direction.

【0024】ここで、液晶20の長軸方向の屈折率n1
‖と鋸歯状格子19の光軸方向の屈折率n2 ‖とは一致
するように液晶20、あるいは鋸歯状格子19の材料を
設定しているため、この場合にはn1 ‖=n2 ‖、即
ち、n1 =n2 となる。そのため、入力信号光12にと
ってはあたかも鋸歯状格子19が無いと同じことにな
り、入力信号光12は直進する。
Here, the refractive index n 1 of the liquid crystal 20 in the major axis direction
Since the material of the liquid crystal 20 or the sawtooth grating 19 is set so that ‖ and the refractive index n 2 ‖ of the sawtooth grating 19 in the optical axis direction are matched, in this case, n 1 ‖ = n 2 ‖ That is, n 1 = n 2 . Therefore, the input signal light 12 is the same as if the sawtooth grating 19 were not present, and the input signal light 12 goes straight.

【0025】さらに、同じことが、鋸歯状格子18と液
晶21の界面でも成立つため、鋸歯状格子18から出力
される出力信号光22は直進する直進信号光23とな
る。
Furthermore, since the same thing is established at the interface between the sawtooth grating 18 and the liquid crystal 21, the output signal light 22 output from the sawtooth grating 18 becomes a straight signal light 23 that travels straight.

【0026】一方、偏光回転装置により入力信号光の偏
光状態を90°回転させた場合には、入力信号12の偏
光方向は液晶20の短軸方向と並行になるため、鋸歯状
格子19と液晶20との境界において入力信号光12の
感ずる液晶20の屈折率n1は短軸方向の屈折率n1
になる。
On the other hand, when the polarization state of the input signal light is rotated by 90 ° by the polarization rotation device, the polarization direction of the input signal 12 is parallel to the minor axis direction of the liquid crystal 20, so that the sawtooth grating 19 and the liquid crystal are aligned. At the boundary with 20, the refractive index n 1 of the liquid crystal 20 which the input signal light 12 feels is the refractive index n 1 ⊥ in the minor axis direction.
become.

【0027】液晶20は屈折率異方性を有しているた
め、n1 ‖≠n1 ⊥、でn1 ‖>n1⊥であり、前記信
号光の偏光面が回転しない場合に比べて、液晶20の屈
折率異方性Δn1 (n1 ‖−n1 ⊥)の分だけ実効的な
屈折率は低下する。一方、入力信号光12の感ずる鋸歯
状格子19の実効的屈折率は光軸方向と垂直方向の屈折
率n2 ⊥であり、鋸歯状格子材料は複屈折性を有してい
るため光軸方向の屈折率n2 ‖とn2 ⊥は異なり、n2
‖≠n2 ⊥でn2 ‖<n2 ⊥であるため、前記信号光の
偏光面が回転しない場合に比べて、入力信号光12の感
ずる屈折率はΔn2 (n2 ⊥−n2 ‖)だけ増加する。
Since the liquid crystal 20 has a refractive index anisotropy, n 1 ‖ ≠ n 1 ⊥, and n 1 ‖> n 1 ⊥, so that the polarization plane of the signal light does not rotate. , The effective refractive index is reduced by the refractive index anisotropy Δn 1 (n 1 ‖-n 1 ⊥) of the liquid crystal 20. On the other hand, the effective refractive index of the sawtooth grating 19 which the input signal light 12 feels is the refractive index n 2 ⊥ in the direction perpendicular to the optical axis direction, and since the sawtooth grating material has birefringence, it is in the optical axis direction. N 2 ‖ and n 2 ⊥ are different from each other.
Since ‖ ≠ n 2 ⊥ and n 2 ‖ <n 2 ⊥, the refractive index sensed by the input signal light 12 is Δn 2 (n 2 ⊥-n 2 ‖ compared to when the polarization plane of the signal light is not rotated. ) Only increase.

【0028】以上から入力信号光12は、液晶20と鋸
歯状格子19の界面で〔Δn1 +Δn2 〕という大きな
屈折率差で決まる角度θ2 (≠θ1 )に偏向されること
になる。この偏向された信号光は、鋸歯状格子18と液
晶21の界面において再び屈折されるが、この場合に
は、n2 =n3 、n1 =n4 であり、鋸歯状格子18、
19のテーパ角は同じであるため、θ2 =θ3 、および
θ1 =θ4 となり、出力信号光22は直進信号光23に
対して平行にシフトしている偏向信号光24となって出
力する。
From the above, the input signal light 12 is deflected at the interface between the liquid crystal 20 and the saw-toothed grating 19 to an angle θ 2 (≠ θ 1 ) which is determined by a large difference in refractive index [Δn 1 + Δn 2 ]. The deflected signal light is refracted again at the interface between the sawtooth grating 18 and the liquid crystal 21. In this case, n 2 = n 3 and n 1 = n 4 , and the sawtooth grating 18 and
Since the taper angles of 19 are the same, θ 2 = θ 3 and θ 1 = θ 4 , and the output signal light 22 is output as the deflection signal light 24 that is shifted in parallel with the straight traveling signal light 23. To do.

【0029】このように、偏光回転装置13により制御
信号に応じて入力信号光12の偏光方向を回転させるこ
とにより、入力信号光12の出力角度を変化させること
が可能になり、出力信号光22の光路の変更が可能とな
る。
In this way, by rotating the polarization direction of the input signal light 12 according to the control signal by the polarization rotation device 13, it becomes possible to change the output angle of the input signal light 12, and the output signal light 22. It is possible to change the optical path of.

【0030】出力信号光のシフト量は主としてテーパ角
度θ1 と液晶の屈折率n‖、n⊥(ne 、n0 )、鋸歯
状格子の屈折率n‖、n⊥等で決定され、出力シフト量
の要求値に合わせて各々を選定すれば良い。
The shift amount of the output signal light is mainly determined by the taper angle θ 1 and the refractive indices n‖ and n⊥ (n e , n 0 ) of the liquid crystal, and the refractive indices n‖ and n⊥ of the sawtooth grating, and the output. Each may be selected according to the required value of the shift amount.

【0031】例えば、方解石などの複屈折材料を用いた
電気光学偏向の場合にはシフト量が複屈折材料のリタデ
ーション値で決まるため、大きなシフト量を得るために
は大きな屈折率異方性を持つ材料を用いるか、複屈折材
料の厚さを厚くしていく必要があり、方解石などの良好
な結晶性の材料を得る困難さが増すとともに、実装体積
が大きくなる、高価になる等の問題が顕在化してくる。
For example, in the case of electro-optical deflection using a birefringent material such as calcite, the shift amount is determined by the retardation value of the birefringent material, and therefore a large refractive index anisotropy is required to obtain a large shift amount. It is necessary to use a material or to increase the thickness of the birefringent material, which increases the difficulty of obtaining a material with good crystallinity such as calcite, and causes problems such as an increase in mounting volume and an increase in cost. It becomes apparent.

【0032】本発明による光偏向装置では、液晶と鋸歯
状格子材料双方の屈折率異方性を加算して有効に利用で
きるため、実効的に大きな屈折率差を実現でき、大きな
シフト量を得ることが出来る。同程度のシフト量ならば
偏向装置の厚さを方解石と同程度か、薄くすることも可
能であり、従来の方解石等の複屈折材料を用いた光路変
更装置に比べて小型化、低価格化が可能となる。
In the optical deflector according to the present invention, the refractive index anisotropies of both the liquid crystal and the saw-toothed grating material can be added and effectively used, so that a large difference in refractive index can be effectively realized and a large shift amount can be obtained. You can If the amount of shift is the same, it is possible to make the thickness of the deflecting device the same as or thinner than that of calcite, making it smaller and less expensive than conventional optical path changing devices that use birefringent materials such as calcite. Is possible.

【0033】図2において、液晶20、21と鋸歯状格
子18、19構成材料の屈折率異方性は、液晶20、2
1ではn‖>n⊥、鋸歯状格子18、19ではn‖<n
⊥で説明した。しかし、液晶20、21と鋸歯状格子1
8、19での屈折率異方性の極性は、以下の関係を満足
すれば良く、本発明による光偏向装置は上記関係に限定
されるものではない。 液晶の長軸方向の屈折率が短軸方向の屈折率より大き
く、鋸歯状格子構成材料の光軸方向と格子の刻線方向が
一致しており、格子構成材料の光軸方向の屈折率が光軸
に垂直な方向の屈折率より小さい。(上記説明) 液晶の長軸方向の屈折率が短軸方向の屈折率より小さ
く、鋸歯状格子構成材料の光軸方向と格子の刻線方向が
一致しており、格子構成材料の光軸方向の屈折率が光軸
に垂直な方向の屈折率より大きい。 液晶の長軸方向の屈折率が短軸方向の屈折率より大き
く、鋸歯状格子構成材料の光軸方向と格子の刻線方向が
直交しており、格子構成材料の光軸方向の屈折率が光軸
に垂直な方向の屈折率より大きい。 液晶の長軸方向の屈折率が短軸方向の屈折率より小さ
く、鋸歯状格子構成材料の光軸方向と格子の刻線方向が
直交しており、格子構成材料の光軸方向の屈折率が光軸
に垂直な方向の屈折率より小さい。
In FIG. 2, the refractive index anisotropies of the liquid crystals 20 and 21 and the sawtooth gratings 18 and 19 are shown by the liquid crystal 20 and 2.
1 is n‖> n⊥, and sawtooth gratings 18 and 19 are n‖ <n
I explained in ⊥. However, the liquid crystals 20, 21 and the sawtooth grating 1
The polarities of the refractive index anisotropies in 8 and 19 may satisfy the following relationships, and the optical deflector according to the present invention is not limited to the above relationships. The refractive index in the major axis direction of the liquid crystal is larger than the refractive index in the minor axis direction, the optical axis direction of the sawtooth lattice-constituting material coincides with the direction of the ruled line of the grating, and the refractive index of the lattice-constituting material in the optical axis direction is It is smaller than the refractive index in the direction perpendicular to the optical axis. (The above description) The refractive index of the liquid crystal in the major axis direction is smaller than the refractive index in the minor axis direction, and the optical axis direction of the sawtooth lattice-constituting material coincides with the ruled line direction of the lattice. Has a refractive index greater than that in the direction perpendicular to the optical axis. The refractive index of the liquid crystal in the major axis direction is larger than the refractive index in the minor axis direction, the optical axis direction of the saw-toothed grating constituent material is orthogonal to the grating line direction, and the refractive index of the grating constituent material in the optical axis direction is It is larger than the refractive index in the direction perpendicular to the optical axis. The refractive index of the liquid crystal in the major axis direction is smaller than the refractive index in the minor axis direction, and the optical axis direction of the sawtooth lattice constituent material and the direction of the ruled line of the grating are orthogonal to each other, and the refractive index of the lattice constituent material in the optical axis direction is It is smaller than the refractive index in the direction perpendicular to the optical axis.

【0034】上述したように、出力信号光のシフト量
は、本装置を構成する鋸歯状格子等の形状パラメータ、
および液晶等の特性パラメータ等により決定される。
As described above, the shift amount of the output signal light is determined by the shape parameter of the sawtooth grating or the like which constitutes this device,
And the characteristic parameters of the liquid crystal and the like.

【0035】しかし、鋸歯状格子17の形状寸法が小さ
い場合には解析効果が顕著になり、いわゆる高次光が発
生するために、解析効果の低下、クロストークの発生等
が問題となる。
However, when the shape of the sawtooth grating 17 is small, the analysis effect becomes remarkable, and so-called high-order light is generated, so that the analysis effect is reduced and crosstalk occurs.

【0036】そこで、特定方向に入力信号光12をブレ
ーズドするために、形成する鋸歯状格子をブレーズド回
折格子とするとよい。このブレーズド回折格子のブレー
ズド条件は下記(3)式で表される。 d・sin(θ2 −θ1 )=m・λ (m=1、2……) ……(3)
Therefore, in order to blazed the input signal light 12 in a specific direction, the saw-toothed grating to be formed may be a blazed diffraction grating. The blazed condition of this blazed diffraction grating is represented by the following equation (3). d · sin (θ 2 −θ 1 ) = m · λ (m = 1, 2 ...) (3)

【0037】ここで、dはブレーズド回折格子のピッチ
であり、λは信号光の波長、mは次数である。入力信号
光12の波長λに対して(1)式、(2)式及び(3)
式を満足することで、所望量だけシフトしたブレーズド
光が出力されることになる。
Here, d is the pitch of the blazed diffraction grating, λ is the wavelength of the signal light, and m is the order. Expressions (1), (2) and (3) for the wavelength λ of the input signal light 12
By satisfying the formula, the blazed light shifted by a desired amount is output.

【0038】このように、前記形状、特性パラメータに
加え、格子ピッチdをも最適化することで、回折効率の
高く、クロストークの無い出力光を得ることが可能にな
る。
As described above, by optimizing the grating pitch d in addition to the shape and characteristic parameters, it is possible to obtain output light with high diffraction efficiency and no crosstalk.

【0039】本発明の光偏向装置に用いる液晶として
は、液晶ディスプレイなどに用いられる例えばネマティ
ック液晶などがその代表的であるが、複屈折性を示し、
ホモジニアス配向が可能ならばその種類は問わず、例え
ば強誘電性液晶などを用いても良い。
Typical examples of the liquid crystal used in the light deflecting device of the present invention include nematic liquid crystal used in liquid crystal displays and the like, which exhibit birefringence.
There is no limitation on the kind as long as homogeneous alignment is possible, and for example, ferroelectric liquid crystal may be used.

【0040】又、液晶に限らず、複屈折性を有する材料
で1軸配向構造で鋸歯状格子、ブレーズド格子上に形成
できるならばその種類は問わない。
The material is not limited to liquid crystal, and any type of birefringent material can be used as long as it can be formed on a sawtooth grating or a blazed grating in a uniaxially oriented structure.

【0041】なお、図1において、鋸歯状格子18、1
9は中心の透明基板17と別構成に示してあるが、当該
透明基板17を直接鋸歯状に加工しても良く、また、酸
化シリコン等を積層した後に鋸歯状に加工する、あるい
は、鋸歯状に加工した板を重ねても良い。
In FIG. 1, saw-toothed gratings 18, 1
Although 9 is shown as a structure different from that of the central transparent substrate 17, the transparent substrate 17 may be directly processed into a sawtooth shape, or may be processed into a sawtooth shape after laminating silicon oxide or the like, or a sawtooth shape. It is also possible to stack the processed plates.

【0042】鋸歯状格子18、19と透明基板17が別
構成の場合、互いの屈折率は一致していることが望まし
いが、一致していない場合でも鋸歯状格子19から鋸歯
状格子18へ入力する場合に信号光が平行シフトするの
みであり、特に問題はない。
When the saw-toothed gratings 18 and 19 and the transparent substrate 17 have different configurations, it is desirable that the refractive indices of the two are the same, but even if they do not match, the saw-toothed grating 19 inputs to the saw-toothed grating 18. In that case, the signal light is only parallel-shifted, and there is no particular problem.

【0043】鋸歯状格子の材料としては、例えば、Li
NbO3 、水晶などの複屈折性基板材料など、あるいは
有機ポリマー系材料などが挙げられるが、用いる液晶の
屈折率との整合性、加工性等を考慮して選択すれば良
い。
As the material of the sawtooth lattice, for example, Li
Examples include birefringent substrate materials such as NbO 3 and quartz, organic polymer materials, and the like, which may be selected in consideration of matching with the refractive index of the liquid crystal used, workability, and the like.

【0044】偏光回転装置13としては、制御信号に応
じて、入力信号光の偏光を90°回転させる機能を有す
ればよくその構成は問わないが、例えば構成例として、
90°ツイストさせたTN型液晶セルを用いた構成があ
る。この場合には、電圧の無印加時には入力信号の偏光
面が90°回転し、電圧印加時には偏光面が回転せず、
所望の偏光回転装置が構成できる。
The polarization rotation device 13 may have any function as long as it has a function of rotating the polarization of the input signal light by 90 ° in accordance with the control signal. For example, as a configuration example,
There is a configuration using a TN type liquid crystal cell twisted by 90 °. In this case, the polarization plane of the input signal rotates 90 ° when no voltage is applied, and the polarization plane does not rotate when voltage is applied.
A desired polarization rotation device can be constructed.

【0045】液晶として強誘電性液晶を用いても偏光面
の回転機能を実現でき、特にこの場合にはメモリ性があ
るために常時電圧を印加しつづける必要がないという利
点をもつ。
Even if a ferroelectric liquid crystal is used as the liquid crystal, the function of rotating the polarization plane can be realized, and in particular, in this case, there is an advantage that it is not necessary to continuously apply the voltage because of the memory property.

【0046】[0046]

【発明の効果】以上説明したように、本発明の光偏向装
置では、特に電気的あるいは機械的な可動部分を設ける
ことなく、また、方解石などの複屈折材料を用いること
なく簡単な構成で出力信号光を平行シフトするこが可能
になり、光スイッチの小型化、低価格化が可能となる。
また、偏光回転装置に液晶装置を用いることにより、全
体の低電圧化が可能となり、光スイッチ実現におてその
効果は大きい。
As described above, in the optical deflecting device of the present invention, an output is made with a simple structure without providing an electrically or mechanically movable part, and without using a birefringent material such as calcite. Since the signal light can be parallel-shifted, the optical switch can be downsized and the cost can be reduced.
Further, by using the liquid crystal device as the polarization rotation device, it is possible to reduce the entire voltage, and the effect is great in realizing the optical switch.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係る光偏向装置の概略図である。FIG. 1 is a schematic diagram of an optical deflecting device according to an embodiment.

【図2】鋸歯状格子部での信号光の偏向状態を示す動作
図である。
FIG. 2 is an operation diagram showing a deflected state of signal light in a sawtooth grating portion.

【図3】鋸歯状格子と液晶分子との配向状態図である。FIG. 3 is an alignment state diagram of a sawtooth lattice and liquid crystal molecules.

【符号の説明】[Explanation of symbols]

11 光偏向装置 12 入力信号光 13 偏光回転装置 14 偏向装置 15,16、17 透明基板 18,19 鋸歯状格子 20、21 液晶 20a 液晶分子 22 出力信号光 23 直進信号光 24 偏向信号光 11 Optical Deflection Device 12 Input Signal Light 13 Polarization Rotation Device 14 Deflection Device 15, 16, 17 Transparent Substrate 18, 19 Sawtooth Grating 20, 21 Liquid Crystal 20a Liquid Crystal Molecule 22 Output Signal Light 23 Linear Signal Light 24 Deflection Signal Light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 入射した信号光の偏光方向を回転させる
偏光回転装置と、該偏光回転装置からの入力光をその偏
光方向に応じて平行シフトして出力させる偏向装置とを
具備し、且つ当該偏向装置は中心に位置する一枚の透明
基板とその両側に配置された二枚の透明基板とからなる
と共に当該中心の透明基板の両側には各々反対方向を向
く鋸歯状格子を有し、当該鋸歯状格子は複屈折性材料か
ら形成され、当該中心の透明基板と両側の二枚の透明基
板の各々はその間に液晶を保持しており、当該液晶はホ
モジニアス配向すると共に該液晶は複屈折性を有し、そ
の長軸あるいは短軸のいずれかの屈折率が前記中心の透
明基板の両側の鋸歯状格子を形成する材料の光軸方向あ
るいは光軸と垂直方向の屈折率と一致することを特徴と
する光偏向装置。
1. A polarization rotation device for rotating the polarization direction of incident signal light, and a deflection device for parallelly shifting and outputting the input light from the polarization rotation device according to the polarization direction, and The deflecting device is composed of one transparent substrate located at the center and two transparent substrates arranged on both sides of the transparent substrate, and on both sides of the central transparent substrate, there are saw-toothed gratings facing in opposite directions. The sawtooth grating is formed of a birefringent material, and the central transparent substrate and the two transparent substrates on both sides each hold a liquid crystal therebetween, and the liquid crystal is homogeneously aligned and the liquid crystal is birefringent. And the refractive index of either the major axis or the minor axis thereof matches the refractive index of the material forming the sawtooth gratings on both sides of the central transparent substrate in the optical axis direction or in the direction perpendicular to the optical axis. Characteristic light deflection device.
【請求項2】 請求項1記載の光偏向装置において、上
記鋸歯状格子がブレーズド回折格子であることを特徴と
する光偏向装置。
2. The optical deflector according to claim 1, wherein the sawtooth grating is a blazed diffraction grating.
JP4017569A 1992-02-03 1992-02-03 Optical deflection device Withdrawn JPH05216076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4017569A JPH05216076A (en) 1992-02-03 1992-02-03 Optical deflection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4017569A JPH05216076A (en) 1992-02-03 1992-02-03 Optical deflection device

Publications (1)

Publication Number Publication Date
JPH05216076A true JPH05216076A (en) 1993-08-27

Family

ID=11947552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4017569A Withdrawn JPH05216076A (en) 1992-02-03 1992-02-03 Optical deflection device

Country Status (1)

Country Link
JP (1) JPH05216076A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648859A (en) * 1993-07-28 1997-07-15 Nippon Telephone & Telegraph Corp. Liquid crystal microprism array, free-space optical interconnector, and optical switch
US7706040B2 (en) 2002-03-15 2010-04-27 Ricoh Company, Ltd. Optical scanning apparatus, illuminant apparatus and image forming apparatus
WO2017094215A1 (en) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 Optical device
WO2018150673A1 (en) * 2017-02-20 2018-08-23 パナソニックIpマネジメント株式会社 Optical device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648859A (en) * 1993-07-28 1997-07-15 Nippon Telephone & Telegraph Corp. Liquid crystal microprism array, free-space optical interconnector, and optical switch
US7706040B2 (en) 2002-03-15 2010-04-27 Ricoh Company, Ltd. Optical scanning apparatus, illuminant apparatus and image forming apparatus
WO2017094215A1 (en) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 Optical device
JPWO2017094215A1 (en) * 2015-11-30 2018-05-17 パナソニックIpマネジメント株式会社 Optical device
WO2018150673A1 (en) * 2017-02-20 2018-08-23 パナソニックIpマネジメント株式会社 Optical device

Similar Documents

Publication Publication Date Title
US7764354B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
US3938878A (en) Light modulator
US7167230B2 (en) Liquid crystal variable wavelength filter unit, and driving method thereof
US6137619A (en) High-speed electro-optic modulator
JPS6152632A (en) Liquid crystal cell
JP6719763B2 (en) High speed optical switching engine
US7565040B2 (en) Optical device using variable polarization element
JPH05216075A (en) Optical deflection device
JPH09133904A (en) Optical deflection switch
JPH05204001A (en) Light deflecting device
JP4269788B2 (en) Reflective light modulator and variable optical attenuator
WO2018173813A1 (en) Liquid-crystal phase panel, and optical switch and optical shutter using same
JPH05216076A (en) Optical deflection device
GB2277808A (en) Optical filter
JP3139486B2 (en) Liquid crystal light modulation element, color filter using the same, and display device
JPH09133931A (en) Optical deflector
JPH05323265A (en) Polarization non-dependency type wavelength variable filter
JPH0750284B2 (en) Optical path switch
JP2004004194A (en) Optical deflection element using 90 degree polarization interface
JPH06347836A (en) Optical switch
JP4786841B2 (en) Liquid crystal optical switch and driving method thereof
JP2980996B2 (en) Light switch
JPS60247228A (en) Optical fiber switch
JP2015215581A (en) Optical attenuator and multi-channel optical attenuator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518