JP4269788B2 - Reflective light modulator and variable optical attenuator - Google Patents

Reflective light modulator and variable optical attenuator Download PDF

Info

Publication number
JP4269788B2
JP4269788B2 JP2003164668A JP2003164668A JP4269788B2 JP 4269788 B2 JP4269788 B2 JP 4269788B2 JP 2003164668 A JP2003164668 A JP 2003164668A JP 2003164668 A JP2003164668 A JP 2003164668A JP 4269788 B2 JP4269788 B2 JP 4269788B2
Authority
JP
Japan
Prior art keywords
light
diffraction grating
liquid crystal
reflective
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003164668A
Other languages
Japanese (ja)
Other versions
JP2005003758A (en
Inventor
好晴 大井
弘昌 佐藤
龍一郎 清水
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003164668A priority Critical patent/JP4269788B2/en
Publication of JP2005003758A publication Critical patent/JP2005003758A/en
Application granted granted Critical
Publication of JP4269788B2 publication Critical patent/JP4269788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、反射型光変調素子および可変光減衰器に関し、さらに詳しくは反射型光変調素子は反射型偏光回折格子と液晶素子とを備え、液晶分子の配向状態を電圧印加により制御する制御手段を用いて液晶素子の透過光の偏光状態を変化させ、反射型偏光回折格子による回折状態を変化させる反射型光変調素子に関する。また、可変光減衰器は反射型光変調素子による回折光非回折光のうちいずれか一方を分別手段により受光し、印加電圧の大きさに応じて受光光量が変化するものである。
【0002】
【従来の技術】
液晶を利用した光変調素子は液晶ディスプレイとして商品化されているとともに、液晶層に印加する電圧を変化させて透過光を制御する可変光減衰器や光スイッチなどの各種光デバイスに使用されている。例えば、特開2003−66450には位相板を液晶セルに一体化し、印加電圧の大きさに応じて透過光量が変化する可変光減衰器が開示されている。また、同じ特開2003−66450において、偏光回折型の偏光子をさらに一体化することにより、高強度の光が入射しても液晶層の温度上昇が少ないとともに安定した消光比が得られる構成例が開示されている。この従来の透過型光変調素子の構成例を図8に示す。位相板付き液晶セル50に偏光回折型偏光子60が一体化され可変光減衰器300としている。Y軸方向の直線偏光は液晶層へ印加する電圧に応じて位相板付き液晶セル50を透過後の偏光状態が変化し、偏光回折型偏光子60によりY軸方向の直線偏光成分は回折され、X軸方向の直線偏光成分は直進透過する。回折光と直進透過光とを分離し直進透過光のみを取りだすことにより電圧による可変減衰器となる。
【0003】
また、同じ特開2003−66450には、液晶セル内の一方の電極を反射電極とすることにより、液晶層の厚さを半分にできるため低駆動電圧化および高速応答化につながることが開示されている。
【0004】
波長多重光通信ネットワークにおいて、外部制御信号により波長多重信号に対し所定の波長の光を通過または通過を阻止する光スイッチが必要であり、阻止時と通過時との光量比Ioff/Ionとして−40dB以上の高い消光比が求められる。
【0005】
図8に示す従来の可変減衰器は、印加電圧の大きさに応じて消光比を調整する用途には適しているが、−40dB以上の高い消光比が得られる印加電圧範囲は狭いため、安定して高い消光比を維持する光スイッチとして使用するためにはIoffレベルの低い電圧領域を拡大する必要があった。
【0006】
消光比向上策として、可変光減衰器300を直列に2個配置することが有効であるが、電圧印加配線が複雑化するとともに大型化を招く問題があった。特に、波長多重信号における所定の波長の光を通過または阻止する光スイッチや可変光減衰器とするために、液晶層に電圧を印加する電極を波長ごとに分割した画素電極構造として各画素を独立に外部制御信号によりスイッチングする必要があり、可変光減衰器の大型化を招くことなく2個の可変光減衰器間の画素電極を位置調整することは困難であった。
【0007】
また、透過型の可変光減衰器300の光出射側に反射ミラーを設けることにより可変光減衰器300を直列に2個配置したのと同様の構成が単一の可変光減衰器300を用いて実現する。しかし、偏光回折型の偏光子を用いる場合、往路で回折された光が反射ミラーで反射された後復路でも回折され、回折されない直進透過光に重畳するため高い阻止量が得られない問題があった。
【0008】
【特許文献1】
特開2003−66450号公報
【0009】
【発明が解決しようとする課題】
本発明は上述の実情に鑑み、量産性に優れた小型で安定して高い阻止量が得られる反射型光変調素子および反射型光変調素子を用いた可変光減衰器を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、入射光を反射させ、出射する光量を制御する反射型光変調素子であって、前記反射型光変調素子は、前記入射光が入射する順に、透明電極が形成された一対の透光性基板と液晶層からなる液晶素子と、反射型偏光回折格子と、を備え、前記反射型偏光回折格子は、複屈折性を有する複屈折材料の断面が鋸歯形状で格子ピッチPを有するブレーズ型回折格子または、前記ブレーズ型回折格子の前記鋸歯形状の斜辺部分を階段状に近似した形状を有する疑似のブレーズ型回折格子と、前記入射する光を反射する反射ミラーと、を備え、前記入射光は波長がλで、前記反射ミラーの面の法線方向を基準にゼロより大きい入射角θ(θ>0)で入射し、前記液晶素子は、前記透明電極を介して前記液晶層に印加する電圧の大きさによって、前記反射型偏光回折格子に入射する前記入射光の偏光状態を変化させ、前記反射型偏光回折格子は、前記格子ピッチPが、
P=λ/(2×sinθ)、
を満足し、さらに、入射する前記入射光のうち、第1の偏光方向を有する第1直線偏光を回折せずに前記反射ミラーで反射するとともに、前記第1の偏光方向と直交する偏光方向を有する第2直線偏光を回折し、前記反射ミラーで反射した前記第2直線偏光の進行方向は、反射した前記第1直線偏光の進行方向と異なる方向でかつ、前記反射ミラー側に向かう前記入射光と同じ経路を辿ることを特徴とする反射型光変調素子を提供する。
【0011】
また、前記反射型偏光回折格子は、前記ブレーズ型回折格子の凹部または前記疑似ブレーズ型回折格子の凹部に屈折率n の透明接着材を有し、前記屈折率n は、前記複屈折材料の常光屈折率n と略等しい上記の反射型光変調素子を提供する。また、前記複屈折材料高分子液晶からなる上記の反射型光変調素子を提供する。
【0012】
また、前記液晶素子と前記反射型偏光回折格子との間に、複屈折性を有する透過型偏光回折格子が配置され、前記透過型偏光回折格子は、前記入射光のうち、前記第1直線偏光を回折しかつ、前記第2直線偏光を直進透過する上記の反射型光変調素子を提供する。
【0013】
また、前記透過型回折格子は、高分子液晶からなり、断面が鋸歯または、鋸歯形状の斜辺部分を階段状に近似した形状を有し、前記反射型偏光回折格子の長手方向と前記透過型回折格子の長手方向とが直交する上記の反射型光変調素子を提供する。
【0014】
さらに、所定の波長帯の光を出射し、前記光の出射方向と同じ方向に反射されて進行する戻り光を信号光として受光するとともに、前記光の出射方向と異なる方向に反射されて進行する戻り光を受光しない光学系と、前記光学系から出射された前記光の光路中に、交流電源を通して電圧を印加する制御手段に接続される上記の反射型光変調素子と、を備える可変光減衰器であって、印加する前記電圧の大きさに応じて受光する前記信号光の光量が調整されることを特徴とする可変光減衰器を提供する。
【0015】
【発明の実施の形態】
[第1の実施態様]
図1は本発明の第1の実施態様の反射型光変調素子の構成例を示す側面図である。
透光性基板5と6の片面にそれぞれ透明電極8と9が形成され、さらにその上に同一方向に配向処理された配向膜(図示せず)が形成され、シール材10を用いてセル化されている。ここで、配向膜の配向処理はXY面内でX軸に対して45度の角度をなす。さらに、セル内に常光屈折率n(LC)および異常光屈折率n(LC)(n(LC)<n(LC))のネマティック液晶が注入されて液晶層7とし、透光性基板と平行でかつX軸に対して45度の角度をなす方向に液晶分子の配向方向すなわち異常光屈折率n(LC)が揃った液晶素子30が得られる。
【0016】
また、片面に反射ミラー3が形成された透光性基板4の反射ミラー表面にX軸方向に配向処理された配向膜(図示せず)を形成し、その上に液晶モノマー溶液を塗布した後、紫外線を照射してX軸方向に液晶分子の配向方向の揃った常光屈折率n(PLC)および異常光屈折率n(PLC)(n(PLC)<n(PLC))の高分子液晶層を形成する。さらに、フォトリソグラフィ法と反応性イオンエッチング法により、高分子液晶層を断面が鋸形状でX軸方向に直線形状となるブレーズ型回折格子1に加工する。
【0017】
次に、常光屈折率n(PLC)と略等しい等方性屈折率nの透明接着材2をブレーズ型回折格子1の凹部に充填するとともに透光性基板5に接着固定することにより反射型偏光回折格子20が得られる。このようにして、高分子液晶を複屈折材料とした回折格子からなる反射型偏光回折格子20と液晶素子30とが一体化された反射型光変調素子100となる。
【0018】
ここで、液晶層の複屈折率(常光屈折率と異常光屈折率との差)を△n(LC)=n(LC)−n(LC)とすると、波長λの入射光に対して液晶層7のリタデーション値△n(LC)×d(LC)がλ/2となるように液晶層の厚さd(LC)を調整する。
【0019】
また、高分子液晶からなるブレーズ型回折格子1の格子高さd(PLC)は、入射光に対して+1次回折効率が最大となるようにする。すなわち、高分子液晶の複屈折率を△n(PLC)=n(PLC)−n(PLC)とすると、△n(PLC)×d(PLC)が略λ/2としている。図1では断面が鋸形状のブレーズ型回折格子1を示すが、鋸形状の斜辺部分を多段の階段で近似した疑似のブレーズ型回折格子としてもよい。
【0020】
反射ミラー3に対して入射角θで反射型光変調素子100に入射した光が反射型偏光回折格子20で+1次回折光として反射して入射光と同じ方向に出射する場合、ブレーズ型回折格子1の格子ピッチPをP=λ/(2×sinθ)とし、光入出射面をブレーズ型回折格子1の鋸形状の断面であるYZ面内とする。
【0021】
なお、反射型光変調素子100に対して入射光の入射角θと出射光の出射角θが異なっていてもよい。その場合、ブレーズ型回折格子1の格子ピッチPをP=λ/(sinθ+sinθ)とする。
【0022】
図2は、本発明の第1の実施態様の反射型光変調素子の他の構成例を示す側面図である。なお、図2に示す反射型光変調素子110の構成例のように、高分子液晶層からなるブレーズ型回折格子1を透光性基板5に形成し、常光屈折率n(PLC)と略等しい等方性屈折率nの透明接着材2をブレーズ型回折格子1の凹部に充填するとともに反射ミラー3が形成された透光性基板に接着固定する構成としてもよい。なお、図2において図1と同符号のものは、同じ要素を示す。
【0023】
次に、図3を用いて図1に示す反射型光変調素子100の動作について説明する。以下、図1も参照しながら説明する。透明電極8と9とに接続された交流電源11を通して液晶層7に電圧が印加され、液晶分子の配向状態が電圧により変化する。
【0024】
印加電圧V(=0V)のとき、液晶分子の配向は透光性基板と平行でかつX軸に対して45度の角度をなす方向に揃い、波長λで偏光方向がYZ平面内で入射角θの入射光に対して、液晶層7のリタデーション値は略λ/2となる。その結果、図3(a)に示すように、液晶素子30を透過した波長λの光の偏光方向は90度回転してX軸方向の第2直線偏光に変化し、反射型偏光回折格子20に入射する。X軸方向の直線偏光は高分子液晶からなるブレーズ型回折格子1の異常光屈折率n(PLC)に対応するため、ブレーズ型回折格子1と透明接着材2とで高分子液晶の複屈折率に相当する屈折率差△n(PLC)が生じ、+1次回折光が最大である反射型偏光回折格子20となり、入射光と同じ経路を戻り反射型光変調素子100から出射する。ここで、反射型偏光回折格子20により回折されたX軸方向の第2直線偏光の反射光は、液晶素子30を再び透過することにより偏光方向がYZ平面内の出射光となる。
【0025】
一方、大半の液晶分子が電界方向に揃うのに充分な印加電圧V(>V)としたとき、液晶層7のリタデーション値は略ゼロとなり、液晶素子30を透過後の入射光の偏光方向は変化せず、YZ平面内の偏光方向を保ったまま第1直線偏光で反射型偏光回折格子20に入射する。このときの偏光方向は高分子液晶層の常光屈折率n(PLC)に対応し、透明接着材2の等方性屈折率nと一致するためブレーズ型回折格子1で回折されず直進透過する。その結果、図3(b)に示すように、反射ミラー3により鏡面反射されて高分子液晶層を往復し、反射型光変調素子100から入射光と異なる方向に出射する。
【0026】
反射型光変調素子100において、電圧印加時に残留する液晶層7のリタデーション値を位相板を用いて相殺することにより低電圧で高い消光比が実現できる。例えば、図1において液晶素子30の透光性基板6の片面に液晶層7の液晶分子の配向方向と直交する配向を有する高分子液晶からなる位相板を形成し、そのリタデーション値が電圧印加時に残留する液晶層7のリタデーション値と一致する高分子液晶層の厚さとすればよい。高分子液晶からなる位相板の代わりに水晶や1軸延伸後のポリカーボネートからなる位相板を用いてもよい。
【0027】
ここで、反射型光変調素子100の光出射側に入射光と同じ方向に出射する戻り光を信号光として受光し、入射光と異なる方向に出射する戻り光を受光しない光学系を用いることにより、透明電極8と9に印加する電圧をVからVまで変化させることにより信号光量を変化できる電圧可変光減衰器や、電圧をVとVとで切り替えることによりオン・オフ動作する光スイッチとなる。
【0028】
図4に本発明の反射型光変調素子100を、電圧による可変光減衰器や光スイッチとして用いる場合の光学系構成例を示す。光ファイバ14から出射した光をレンズ13により集光し偏光子12に入射する。
偏光子12はルチル(T)結晶などの複屈折結晶を光入射面と光出射面とが角度をなすよう加工したもので、YZ平面内の偏光とそれに直交するX軸方向の偏光の光路が分離して結晶中を伝搬するように結晶方位が決められ、反射型光変調素子100に入射する。ここで、例えば反射型光変調素子100への入射光の内、X軸方向の偏光は反射ミラー面に垂直に入射し、YZ平面内の偏光は反射ミラー面に入射角θで入射するように、偏光子12の光入射面と光出射面のなす角度を設定している。
【0029】
図1の透明電極8と9に印加する電圧がVのとき、伝搬する光線を図4(a)に示す。反射型光変調素子100への入射光の内、X軸方向の偏光は液晶素子を透過してYZ平面内の第1直線偏光となって反射型偏光回折格子で回折されることなく反射ミラーに垂直に入射および反射され、入射光と同じ光路で反射型光変調素子100と偏光子12とレンズ13とを経て光ファイバ14に集光される。また、YZ平面内の偏光は液晶素子を透過してX軸方向の第2直線偏光となって反射型偏光回折格子で主に+1次回折にされ、入射光と同じ光路で反射型光変調素子100と偏光子12とレンズ13とを経て光ファイバ14に集光される。すなわち、光ファイバ14の出射光がその偏光に関わらず同じ光ファイバ14に帰還して伝搬する。
【0030】
また、透明電極8と9とに印加する電圧がVのとき、伝搬する光線を図(b)に示す。反射型光変調素子100の入射光の内、異常光偏光は異常光偏光のまま液晶素子を透過して反射型偏光回折格子で回折されるため、入射光と異なる光路で反射型光変調素子100と偏光子12とレンズ13とを経ても光ファイバ14に集光されない。また、常光偏光は常光偏光のまま液晶素子を透過して反射型偏光回折格子で回折されることなく反射ミラー面で鏡面反射されて入射光と異なる光路で反射型光変調素子100と偏光子12とレンズ13とを経ても光ファイバ14には集光されない。すなわち、光ファイバ14の出射光がその偏光方向に関わらず同じ光ファイバ14に帰還しない。
【0031】
液晶素子30の透明電極8と9の少なくとも一方が分割された複数の画素電極からなり、電極ごとに独立に電圧を印加できる反射型光変調素子としてもよい。このとき、図1において画素電極はX軸方向に分割され、Y軸方向には分割されていないパターンとすることが好ましい。
【0032】
また、図4において複屈折結晶を加工した偏光子12を反射型光変調素子100に組み合わせて用いた例を示したが、偏光回折型偏光子を偏光子12として用いてもよい。図5は、反射型光変調素子100の光入射側に偏光回折型偏光子22を用いた場合の光減衰器の作用を示す側面図である。(a)は印加電圧がVの状態を、(b)は印加電圧がVの状態を示す。ここでは透過型のブレーズ型回折格子からなる偏光回折型偏光子22を偏光子12として用いている。偏光回折型偏光子22は反射型光変調素子100のブレーズ型回折格子1と同じ高分子液晶からなる回折格子だが、その格子ピッチは2倍の2Pとし、高分子液晶の常光屈折率と異常光屈折率とが逆になるように高分子液晶分子の配向方向がブレーズ型回折格子1と90度異なる。また、鋸断面形状の斜辺の傾斜方向が逆で、偏光回折型偏光子22では透過型のブレーズ型回折格子の+1次回折が最大となるよう、反射型光変調素子100のブレーズ型回折格子1に比べ高分子液晶層からなるブレーズ型回折格子の格子高さが2倍となっている。
【0033】
印加電圧Vのとき、図5(a)に示すように偏光回折型偏光子22を直進透過するX軸方向の偏光は反射型光変調素子100の反射ミラーに垂直に入射および反射されて元の経路を帰還する。一方、偏光回折型偏光子22で+1次回折されたYZ平面内の偏光は反射型光変調素子100の反射型偏光回折格子で+1次回折されてレンズ13を経て光ファイバ14へと、元の経路を帰還する。
【0034】
また、印加電圧Vのとき、図5(b)に示すように偏光回折型偏光子22を直進透過するX軸方向の偏光は反射型光変調素子100の反射型偏光回折格子で回折されて光ファイバ14に集光されない。一方、偏光回折型偏光子22で+1次回折されたYZ平面内の偏光は反射型光変調素子100の反射ミラーに斜入射して鏡面反射されるため光ファイバ14に集光されない。すなわち、図4に示した場合と同様に電圧可変光減衰器や光スイッチとして機能する。
【0035】
図4および図5の電圧可変光減衰器の作用を示す図では、YZ平面内の偏光とそれに直交するX軸方向の偏光が入射する場合について説明したが、図1から図3に示したように、YZ平面内の偏光のみが入射してもよい。
【0036】
波長多重光通信ネットワークに用いられる光スイッチや可変光減衰器では−40dB以上の高い消光比を安定して実現すること、すなわちIoffレベルを充分小さな値にすることが重要である。
【0037】
offレベルは反射型光変調素子100の入射光と同じ光路を帰還する光量であり、図1において液晶層7のリタデーション値がゼロのときに反射型偏光回折格子に入射するYZ平面内の第1直線偏光が+1次回折されて入射光と同じ光路を帰還する光量である。ここで、反射型偏光回折格子の消光比は、Ioffレベルに関係する第1直線偏光(高分子液晶の常光偏光)の入射光に対して発生する+1次回折光と、Ionレベルに関係する第2直線偏光(高分子液晶の異常光偏光)の入射光に対して発生する+1次回折光との光量比に相当する。すなわち、ブレーズ型回折格子1の高分子液晶の常光屈折率n(PLC)と透明接着材2の等方性屈折率nとが完全に一致すれば、常光偏光の入射光に対して+1次回折光は発生せず、原理的にIoffレベルはゼロとなり、消光比は無限大となる。しかし、n(PLC)とnとのわずかな相違に起因して第1直線偏光に対し+1次回折光が発生し、反射型偏光回折格子の消光比を劣化させる原因となる。
【0038】
[第2の実施態様]
図6は本発明の第2の実施態様の反射型光変調素子200の構成例を示す側面図である。反射型偏光回折格子の消光比を向上することにより安定して高い消光比を得る反射型光変調素子100を実現することができる
【0039】
図1に示した反射型光変調素子100と比較し、反射型偏光回折格子20と液晶素子30との間に、高分子液晶層をブレーズ型回折格子15に加工して透明接着材2でその凹部が充填された透過型偏光回折格子40が形成されている点が異なる。図6において、図2と同符号のものは同じ要素を表す。
【0040】
ブレーズ型回折格子15は透光性基板5の表面にY軸方向に配向処理された配向膜(図示せず)を形成し、その上に液晶モノマー溶液を塗布した後、紫外線などを照射してブレーズ型回折格子1と同じ常光屈折率n(PLC)および異常光屈折率nだが、Y軸方向に液晶分子の配向方向の揃った高分子液晶層を形成する。すなわち、高分子液晶の配向方向がブレーズ型回折格子1とブレーズ型回折格子15で直交している。さらに、フォトリソグラフィ法と反応性イオンエッチング法により高分子液晶層を断面が鋸形状でY軸方向に直線形状となるブレーズ型回折格子15に加工する。図6では断面形状が視認できるようにYZ平面内に鋸形状の断面を示すが、後述するようにブレーズ型回折格子1とブレーズ型回折格子15の多重回折光に起因する迷光を抑制するため、実際には鋸形状の断面は紙面と垂直なXZ平面となるよう加工する。
【0041】
高分子液晶からなるブレーズ型回折格子15の格子高さD(PLC)は、入射光に対して+1次回折効率が最大となるようにする。すなわち、高分子液晶の複屈折率を△n(PLC)=n(PLC)−n(PLC)とすると、△n(PLC)×D(PLC)=λとしている。図6では断面が鋸形状のブレーズ型回折格子15を示すが、鋸形状の斜辺部分を多段の階段で近似した疑似のブレーズ型回折格子としてもよい。
【0042】
また、ブレーズ型回折格子15からなる透過型偏光回折格子40の回折光は信号光として用いられないため、回折光が信号光に重畳しない回折角度となる格子ピッチであればよい。
【0043】
次に、透過型偏光回折格子40を付加することによる反射型光変調素子200の消光比改善作用について説明する。
透過型偏光回折格子40に入射する光のうち、液晶素子30を透過してX軸方向の偏光となった第2直線偏光は、透過型偏光回折格子40に対しては常光偏光であるため回折されることなく直進透過し、反射型偏光回折格子20に対しては異常光偏光であるため+1次回折光が発生し、反射ミラー3で反射され、入射光と同じ経路を戻り透過型偏光回折格子40を直進透過して反射型光変調素子200から信号光として出射する。このとき、透過型偏光回折格子40の回折光、反射型偏光回折格子20の+1次回折光以外の回折光と回折されない光は少ないほどIonレベルの低下を招かないので、少ないことが好ましい。
【0044】
また、液晶素子30を透過してXZ平面内の偏光となった第1直線偏光は、透過型偏光回折格子40に対しては異常光偏光であるため回折され、反射型偏光回折格子20に対しては常光偏光であるため大半の光は回折されることなく反射ミラー3で反射され、透過型偏光回折格子40により再び回折されて入射光と異なる経路を経て反射型光変調素子200から出射し、信号光には重畳しない。このとき、n(PLC)とnとのわずかな相違に起因して反射型偏光回折格子20で発生する+1次回折光は透過型偏光回折格子40で回折され(図6の点線で示す)、YZ平面外に出射して信号光には重畳しないため高い消光比が実現できる。また、透過型偏光回折格子40の格子形状をブレーズ型回折格子15としているため、反射ミラー3の反射前後である透過型偏光回折格子40の往路(前)と復路(後)で回折された多重回折光の内、信号光に重畳する光量は極めて低い値になっている。
【0045】
その結果、反射型偏光回折格子20に透過型偏光回折格子40を積層した本発明の反射型光変調素子200の構成とすることにより、Ioffレベルを安定して充分小さな値となるため、−40dB以上の高い消光比を実現する電圧による光スイッチや可変光減衰器が得られる。特に、波長多重光通信ネットワークに用いられる入射光の波長帯域幅に対し、広い印加電圧マージンにおいて高い消光比を確保できる。
【0046】
また、板厚の薄い透光性基板5を用いることにより反射ミラー3と液晶層7との間隔を小さくできるため、液晶素子30の透明電極8と9の少なくとも一方が分割された複数の画素電極からなる場合でも、液晶素子の往路と復路とで画素電極の透過光の隣接電極への漏れが低減され、クロストークが抑制できる。
【0047】
また、透過型偏光回折格子40と反射型偏光回折格子20との間隔を広くし、透過型偏光回折格子40の空間格子パターンを分布させることによりブレーズ型回折格子15を矩形状の格子とした場合でも、透過型偏光回折格子40の往路と復路で回折された多重回折光が信号光に重畳することを回避できる。
【0048】
また、反射型光変調素子100(図5)および200(図6)において、透光性基板5および6の屈折率の異なる媒質との界面で発生する反射光は、透光性基板の表面に微細な凹凸を形成することにより拡散光となり、信号光に重畳する迷光を軽減できる。また、液晶素子30と反射型偏光回折格子20または透過型偏光回折格子40が一体化された反射型偏光回折格子20を別々に作製し、接着剤を用いて一体化してもよい。
【0049】
なお、上記第1および第2の実施態様では印加電圧VとVの間の動作について説明したが、他の印加電圧またはこの印加電圧に応じた液晶の配向状態を変化させてもよい。
また、液晶配向としてツイスト配向や垂直配向やハイブリッド配向でもよい。また、液晶の配向状態の変化に応じて透過光の偏光状態が変化する液晶であればネマティック液晶以外にスメクティック液晶やコレスティック液晶またはそれ以外の液晶材料を用いてもよい。
【0050】
また、液晶の配向状態を変化させる制御手段として透明電極間に印加する交流電圧の場合について示したが、電圧の代わりに磁場、温度、光などの制御手段を用いて液晶の配向状態を変化させてもよい。
また、複屈折材料として高分子液晶を用い鋸歯状の断面形状に加工された回折格子からなる反射型偏光回折格子とした例について説明したが、誘電体結晶などの複屈折材料を用いてもよい。また、格子ピッチ内で厚さ方向に液晶分子をチルト配向の空間分布をつけることにより、鋸歯状の断面形状に加工しない同じ高分子液晶層の厚さで異常光偏光に対してブレーズ型回折格子と同等の機能とできる。
【0051】
反射ミラーとして、ガラス基板などの表面にアルミニウム、金、銀などの金属膜や、TaやTiOなどの高屈折率誘電体膜とSiOなどの低屈折率誘電体膜を交互に積層した誘電体多層膜ミラーを蒸着法やスパッタ法で形成して用いることができる。
【0052】
透明電極を形成する材料としては、ITOなどの酸化物膜や、アルミニウム、クロムなどの金属箔膜が使用できるが、伝導性、光透過性、耐久性などの点からITO膜を用いることが好ましい。
【0053】
偏光状態を変えるとは、液晶素子へ入射する直線偏光を円偏光と直線偏光を含む楕円偏光に変換することを意味し、上記実施態様においては、電圧Vで直線偏光の偏光方向を90度回転する場合を示す。
【0054】
本発明の反射型光変調素子および可変光減衰器のさらなる特徴については以下に示す実施例により具体的に説明する。
【0055】
【実施例】
本実施例を図6に示す反射型光変調素子200の断面図を用いて説明する。透光性基板5であるガラス基板の片面に成膜されたITO膜からなる透明電極8をフォトリソグラフィ法とエッチング法によりY軸方向に直線状(断面形状が視認できるようX軸方向に直線形状として表示)となるよう電極幅100μmで電極間隔5μmの画素電極形状にパターニングし、透光性基板6であるガラス基板の片面にITO膜からなる透明電極9を成膜する。透明電極8および9上にポリイミド膜を塗布してX軸に対して45度の角度をなす方向に配向処理を施した配向膜(図示せず)とする。
【0056】
次に、セルギャップ制御用のスペーサ混入したシール材を用いて配向膜が形成された透光性基板6(ガラス基板)の片面にシール10を印刷塗布し、透光性基板5(ガラス基板)に圧着固化することにより空セルを作製する。シールの一部に設けられた注入口(図示せず)から液晶を注入した後、注入口を封止して液晶素子30ができあがる。ここで用いる液晶は波長λ=1.56μmに対して常光屈折率n(LC)=1.49および異常光屈折率n(LC)=1.65で、セルギャップをd(LC)=5.5μmとする。このとき液晶層7のリタデーション値は0.88μmである。
【0057】
また、図6には示されていないが、常光屈折率方向が液晶層の異常光屈折率方向と一致するとともにリタデーション値0.1μmの高分子液晶からなる位相板を透光性基板6と別の透明基板(図示せず)で狭持して形成する。透明電極8と9に電圧を印加しないとき、この位相板と液晶層7とを一体化した液晶素子30全体のリタデーション値が0.78μmとなり、波長λ=1.56μmに対してλ/2波長板に相当するようにしている。このときYZ平面内の偏光を有する入射光は液晶素子30を透過してX軸方向の偏光を有する出射光に偏光方向が変化する。
【0058】
透明電極8と9に電圧を印加し、液晶層7の液晶分子を透光性基板に対して平行配向から垂直配向に変化させることにより、液晶層のリタデーション値が減少し印加電圧6Vで0.1μm残留するが、位相板と液晶層7とを一体化することで位相板がこの残留分を打ち消して全体のリタデーション値はゼロとなり、入射光は液晶素子30を透過して偏光状態が不変のまま出射する。
【0059】
次に、位相板付き液晶素子30の透光性基板5の片面にポリイミド膜を塗布してY軸方向に配向処理を施した配向膜(図示せず)とする。その上に液晶モノマー溶液を塗布した後紫外線を照射して常光屈折率n(PLC)=1.55および異常光屈折率n(PLC)=1.75で、Y軸方向に配向方向の揃った膜厚6.8μmの高分子液晶層を形成する。さらに、フォトリソグラフィ法と反応性イオンエッチング法により高分子液晶層に対し、断面が鋸形状を8段の階段形状で近似した深さ6.8μmでY軸方向に直線形状(断面形状が視認できるようX軸方向に直線形状として表示)となる疑似のブレーズ型回折格子15に加工する。
【0060】
次に、片面に反射ミラー3が形成された透光性基板4であるガラス基板の反射ミラー3の表面にX軸方向に配向処理された配向膜(図示せず)を形成し、その上にブレーズ型回折格子15と同じ液晶モノマーを用い同様のプロセスにて、X軸方向に液晶分子の配向方向の揃った高分子液晶からなり、断面が鋸形状を8段の階段形状で近似したX軸方向に直線形状となる疑似のブレーズ型回折格子1に加工する。ここで、斜辺部を階段状で近似した疑似のブレーズ型回折格子1の格子高さは3.4μmとしている。また、反射ミラー3は高屈折率誘電体膜Taと低屈折率誘電体膜SiOを交互に光学膜厚が略λ/4となるよう30層以上積層し、1.48μmから1.62μmまでの波長帯域で99.9%以上の反射率を有する多層膜反射ミラーを用いる。
【0061】
さらに、常光屈折率n(PLC)と略等しい等方性屈折率n=1.56の透明接着材2を用いて、疑似のブレーズ型回折格子1および疑似のブレーズ型回折格子15の凹部に充填するとともに透光性基板4と5に接着固定することにより反射型偏光回折格子20と透過型偏光回折格子40が得られる。このようにして、反射型光変調素子200を作製する。このとき、X軸方向の第2直線偏光は透過型偏光回折格子40を回折されることなく直進透過し、反射型偏光回折格子20で80%以上が+1次回折される。また、YZ平面内の第1直線偏光は透過型偏光回折格子40で80%以上が+1次回折され、反射型偏光回折格子20を直進透過する。
【0062】
この反射型光変調素子200にYZ面内で反射ミラー面の法線方向であるZ軸に対して入射角θ=5°で光が入射する。入射光は液晶素子30の画素電極ごとに1.48μmから1.62μmまでの波長帯の異なる波長の光が入射し、各画素電極に対応した入射光波長に対して+1次回折光の回折角度が入射角θと同じになるように、反射型偏光回折格子20の疑似のブレーズ型回折格子15の格子ピッチが8.5μmから9.3μmまで分布している。
【0063】
透明電極8と9とに接続された交流電源を通して画素電極ごとに液晶層7に印加する電圧Vを調整する。YZ平面内の偏光(第1直線偏光)は位相板付き液晶素子30を透過すると、V=0ではほぼ直交するX軸方向の偏光(第2直線偏光)に変化し、V=6V前後で偏光状態は変化しない。
【0064】
したがって、反射型光変調素子200の各画素電極に入射する1.48μmから1.62μmまでの波長帯の光に対して、反射型偏光回折格子20で回折されて入射光と同じ角度方向に反射型光変調素子200を出射する光は、印加電圧V=0では大半であるが、印加電圧V=6V前後ではほぼゼロとなる。また、印加電圧Vが0と6Vの中間領域ではその中間の光量となる。
【0065】
すなわち、入射光と同じ角度の出射光と、異なる角度の出射光とを分離する光学系と組み合わせることにより高い消光比の電圧による光スイッチまたは可変減衰器が得られる。例えば、光ファイバから出射する1.48μmから1.62μmまでの波長帯の波長多重光を回折格子により分光した後、レンズを用いて反射型光変調素子200に入射角θで入射させるとともに各画素電極に集光する。
【0066】
その結果、入射光と同じ角度方向に反射型光変調素子200を出射した光は光ファイバに帰還して伝搬されるがそれ以外の光は遮断されるため−40dB以上の高い消光比を安定して実現する電圧による光スイッチまたは可変減衰器となる。また、反射ミラーと電極との間隔を小さくできるため、画素電極構造であっても画素間の光信号クロストークが抑制できる。
【0067】
図7中の○線は本発明の反射型光変調素子200液晶層へ電圧を0Vから10Vまで印加したとき、光ファイバから出射した光の内で反射型光変調素子を反射して同じ光ファイバに戻る信号光効率を示すグラフである。4.6Vから10V以上の広い電圧印加範囲で−40dB以上の高い消光比が得られる。
【0068】
比較のために、従来の可変光減衰器300を用いた場合の印加電圧に対する信号光効率を図7中に実線で示す。−40dB以上の消光比が得られるのは6.0Vから6.4Vまでの狭い印加電圧範囲に留まっている。
【0069】
【発明の効果】
以上説明したように、本発明の反射型光変調素子では液晶分子の配向状態の変化に応じて入射光の偏光状態を変化させる液晶素子と反射基板面上に形成された複屈折材料が鋸歯状の断面形状に加工された回折格子からなり、第1直線偏光を鏡面反射し、第2直線偏光を回折した反射する反射型偏光回折格子とが一体化されているため、小型で消光比の高い反射型光変調素子が得られる。また、液晶の配向状態を電圧により変化させる場合、反射ミラーと電圧印加用電極の間隔を小さくできるため、画素電極構造であっても画素間の光信号クロストークが抑制できる。
【0070】
また、反射型偏光回折格子として複屈折性を有する高分子液晶を用いることにより、微細な格子ピッチでも正確に鋸歯状の断面形状に加工できるため、高い信号光回折効率が得られる。
【0071】
また、液晶素子と反射型偏光回折格子との間に、第1直線偏光を回折しかつこれと直交する偏光方向の第2直線偏光を回折することなく透過する透過型偏光回折格子を配置することによりさらに高い消光比が得られる。
【0072】
特に、透過型偏光回折格として複屈折性を有する高分子液晶を鋸歯状の断面形状に加工した回折格子とすることにより、往路および復路で透過型偏光回折格子により回折された多重回折光がIoffレベルに重畳しないため、広い印加電圧範囲において安定してIoffレベルを低い値に維持できる。その結果、波長多重光通信ネットワークなどの使用に適する光スイッチや光減衰器となる。
【0073】
また、反射型光変調素子を出射する反射型偏光回折格子により回折された光と回折されない光とを分離して一方の出射光のみを受光する分別手段を付加することにより、印加電圧の大きさに応じて出射光の光量を調整する可変光減衰器となる。
【図面の簡単な説明】
【図1】本発明の第1の実施態様の反射型光変調素子の構成例を示す断面図。
【図2】本発明の第1の実施態様の反射型光変調素子の他の構成例を示す断面図。
【図3】図1に示す反射型光変調素子に光が入射した場合の作用を示す断面図、(a)電圧非印加時の最大+1次回折反射状態、(b)電圧印加時でミラー反射状態。
【図4】図1に示す反射型光変調素子の光入射側に複屈折結晶からなる偏光子を用いた場合の光減衰器の作用を説明する断面図、(a)電圧非印加時の状態、(b)は電圧印加時の状態。
【図5】図1に示す反射型光変調素子の光入射側に偏光回折型偏光子を用いた場合の光減衰器の作用を示す断面図、(a)電圧非印加時の状態、(b)電圧印加時の状態。
【図6】本発明の第2の実施態様の反射型光変調素子の構成例を示す断面図。
【図7】本発明の実施例の反射型光変調素子を用いた場合の、印加電圧と信号光効率を示すグラフ(○線は実施例を、実線は従来構成の比較例)。
【図8】従来例の透過型光変調素子の構成例を示す断面図。
【符号の説明】
1、15:ブレーズ型回折格子
2:透明接着材
3:反射ミラー
4、5、6:透光性基板
7:液晶層
8、9:透明電極
10:シール
11:交流電源
12:偏光子
13:レンズ
14:光ファイバ
22、60:偏光回折型偏光子
20:反射型偏光回折格子
30:液晶素子
40:透過型偏光回折格子
50:位相板付き液晶セル
100、110、200:反射型光変調素子
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a reflective light modulation element and a variable optical attenuator, and more particularly,The reflection type light modulation element includes a reflection type polarization diffraction grating and a liquid crystal element, and changes the polarization state of the transmitted light of the liquid crystal element by using a control means for controlling the alignment state of the liquid crystal molecules by applying a voltage, thereby reflecting the polarization polarization diffraction. The present invention relates to a reflection type light modulation element that changes a diffraction state by a grating. In addition, the variable optical attenuator is diffracted light by a reflective light modulator.WhenNon-diffracted lightOut ofEither one is received by the sorting means, and the amount of received light changes according to the magnitude of the applied voltage.
[0002]
[Prior art]
  Light modulation elements using liquid crystals are commercialized as liquid crystal displays, and are used in various optical devices such as variable optical attenuators and optical switches that control transmitted light by changing the voltage applied to the liquid crystal layer. . For example, Japanese Patent Application Laid-Open No. 2003-66450 discloses a variable optical attenuator in which a phase plate is integrated with a liquid crystal cell and the amount of transmitted light changes according to the magnitude of an applied voltage. Further, in the same Japanese Patent Application Laid-Open No. 2003-66450, a configuration example in which a polarization diffraction type polarizer is further integrated so that a temperature rise of the liquid crystal layer is small and a stable extinction ratio can be obtained even when high-intensity light is incident. Is disclosed. An example of the configuration of this conventional transmissive light modulation element is shown in FIG. Polarization diffraction in liquid crystal cell 50 with phase plateMold biasThe photon 60 is integrated into a variable optical attenuator 300. The linearly polarized light in the Y-axis direction depends on the voltage applied to the liquid crystal layerWith phase plateThe polarization state after passing through the liquid crystal cell 50 is changed, the linearly polarized light component in the Y-axis direction is diffracted by the polarization diffraction polarizer 60, and the linearly polarized light component in the X-axis direction is transmitted straight. By separating the diffracted light and the straight transmitted light and extracting only the straight transmitted light, a variable attenuator by voltage is obtained.
[0003]
Also, the same Japanese Patent Application Laid-Open No. 2003-66450 discloses that by using one electrode in the liquid crystal cell as a reflective electrode, the thickness of the liquid crystal layer can be halved, leading to lower drive voltage and faster response. ing.
[0004]
In a wavelength division multiplexing optical communication network, an optical switch is required to pass or block light of a predetermined wavelength with respect to the wavelength division multiplexed signal by an external control signal.off/ IonTherefore, a high extinction ratio of -40 dB or more is required.
[0005]
The conventional variable attenuator shown in FIG. 8 is suitable for an application in which the extinction ratio is adjusted according to the magnitude of the applied voltage, but is stable because the applied voltage range in which a high extinction ratio of −40 dB or more is obtained is narrow. For use as an optical switch that maintains a high extinction ratio, IoffIt was necessary to expand the low voltage range.
[0006]
As a measure for improving the extinction ratio, it is effective to arrange two variable optical attenuators 300 in series. However, there is a problem that the voltage application wiring becomes complicated and increases in size. In particular, in order to make an optical switch or variable optical attenuator that passes or blocks light of a predetermined wavelength in a wavelength multiplexed signal, each pixel is made independent as a pixel electrode structure in which an electrode for applying a voltage to a liquid crystal layer is divided for each wavelength. Therefore, it is difficult to adjust the position of the pixel electrode between the two variable optical attenuators without increasing the size of the variable optical attenuator.
[0007]
In addition, a single variable optical attenuator 300 has a configuration similar to that in which two variable optical attenuators 300 are arranged in series by providing a reflection mirror on the light output side of the transmission type variable optical attenuator 300. Realize. However, when a polarization diffraction type polarizer is used, there is a problem that a high blocking amount cannot be obtained because light diffracted in the forward path is reflected by the reflecting mirror and then diffracted in the return path and is superimposed on straight transmitted light that is not diffracted. It was.
[0008]
[Patent Document 1]
JP 2003-66450 A
[0009]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and aims to provide a reflection type light modulation element that is excellent in mass productivity and that can stably obtain a high blocking amount and a variable optical attenuator using the reflection type light modulation element. To do.
[0010]
[Means for Solving the Problems]
  The present invention reflects incident lightControl the amount of light emittedA reflective light modulation element,The reflective light modulation element includes a liquid crystal element including a pair of translucent substrates on which transparent electrodes are formed and a liquid crystal layer in the order in which the incident light is incident, and a reflective polarization diffraction grating, The polarization diffraction grating is a blazed diffraction grating having a birefringent birefringent material having a sawtooth cross section and a grating pitch P, or a shape approximating the oblique side of the sawtooth shape of the blazed diffraction grating in a staircase shape. A pseudo blazed diffraction grating having a reflection mirror that reflects the incident light, the incident light having a wavelength of λ, and an incident angle θ greater than zero with respect to the normal direction of the surface of the reflection mirror Incident at (θ> 0), the liquid crystal element changes the polarization state of the incident light incident on the reflective polarization diffraction grating according to the magnitude of the voltage applied to the liquid crystal layer through the transparent electrode. The reflection type polarized light Diffraction grating, the grating pitch P is,
  P = λ / (2 × sin θ),
Further, the first linearly polarized light having the first polarization direction is reflected by the reflection mirror without being diffracted, and the polarization direction orthogonal to the first polarization direction is selected. The traveling direction of the second linearly polarized light diffracted by the second linearly polarized light and reflected by the reflecting mirror is different from the traveling direction of the reflected first linearly polarized light, and the incident light is directed toward the reflecting mirror. Follow the same path asA reflective light modulation element is provided.
[0011]
  Also, the reflective polarization gratingIs a refractive index n in the concave portion of the blazed diffraction grating or the concave portion of the pseudo-blazed diffraction grating. s The refractive index n s Is the ordinary refractive index n of the birefringent material o The reflective light modulation element is substantially equal to the above. In addition, the compoundRefractive materialIsProvided is a reflection type light modulation element made of a polymer liquid crystal.
[0012]
  Further, between the liquid crystal element and the reflective polarization diffraction grating,BirefringenceA transmissive polarization diffraction grating is arranged,The transmissive polarization diffraction grating includes the incident light,Diffracts the first linearly polarized light; andAboveSecond linear polarizationStraight throughHaveAboveThe reflective light modulation element described above is provided.
[0013]
  The transmission type diffraction grating is a polymer liquid crystal.The cross sectionSaw bladeformConditionAlternatively, it has a shape that approximates the oblique side of the sawtooth shape like a staircase, and the longitudinal direction of the reflective polarization diffraction grating and the longitudinal direction of the transmission diffraction grating are orthogonal to each otherThe above reflection type light modulation element is provided.
[0014]
  further,Return light that emits light in a predetermined wavelength band, receives return light that is reflected and travels in the same direction as the light exit direction, as signal light, and travels by being reflected in a direction different from the light exit direction An optical system that does not receive light, and the reflection type light modulation element that is connected to control means for applying a voltage through an AC power source in the optical path of the light emitted from the optical system.A variable optical attenuator,ApplyReceiving light according to the voltage levelOf the signal lightProvided is a variable optical attenuator characterized in that the amount of light is adjusted.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
FIG. 1 is a side view showing a configuration example of a reflective light modulation device according to a first embodiment of the present invention.
Transparent electrodes 8 and 9 are respectively formed on one side of the translucent substrates 5 and 6, and an alignment film (not shown) that is aligned in the same direction is formed thereon, and is formed into a cell by using the sealing material 10. Has been. Here, the alignment treatment of the alignment film makes an angle of 45 degrees with respect to the X axis in the XY plane. In addition, the ordinary refractive index n in the cello(LC) and extraordinary refractive index ne(LC) (no(LC) <ne(LC)) nematic liquid crystal is injected to form the liquid crystal layer 7, and the alignment direction of the liquid crystal molecules, that is, the extraordinary light refractive index n is parallel to the translucent substrate and forms an angle of 45 degrees with respect to the X axis.eA liquid crystal element 30 with uniform (LC) is obtained.
[0016]
  Further, after forming an alignment film (not shown) aligned in the X-axis direction on the reflection mirror surface of the translucent substrate 4 having the reflection mirror 3 formed on one side, and applying a liquid crystal monomer solution thereon. Ordinary refractive index n in which the alignment direction of liquid crystal molecules is aligned in the X-axis direction by irradiating ultraviolet rayso(PLC) and extraordinary refractive index ne(PLC) (no(PLC) <ne(PLC)) polymer liquid crystal layer is formed. Furthermore, the cross section of the polymer liquid crystal layer is sawn by photolithography and reactive ion etching.toothThe blazed diffraction grating 1 is processed into a linear shape in the X-axis direction.
[0017]
Next, ordinary light refractive index noIsotropic refractive index n substantially equal to (PLC)sThe reflective polarizing diffraction grating 20 is obtained by filling the transparent adhesive 2 in the concave portion of the blazed diffraction grating 1 and adhering and fixing it to the translucent substrate 5. In this way, the reflection type light modulation element 100 in which the reflection type polarization diffraction grating 20 composed of a diffraction grating using a polymer liquid crystal as a birefringent material and the liquid crystal element 30 are integrated is obtained.
[0018]
Here, the birefringence (difference between the ordinary light refractive index and the extraordinary light refractive index) of the liquid crystal layer is expressed by Δn (LC) = ne(LC) -noAssuming (LC), the thickness d (LC) of the liquid crystal layer is adjusted so that the retardation value Δn (LC) × d (LC) of the liquid crystal layer 7 becomes λ / 2 with respect to incident light of wavelength λ. .
[0019]
  Further, the grating height d (PLC) of the blazed diffraction grating 1 made of polymer liquid crystal is set so that the + 1st order diffraction efficiency is maximized with respect to the incident light. That is, the birefringence of the polymer liquid crystal is expressed by Δn (PLC) = ne(PLC) -noIf (PLC), Δn (PLC) × d (PLC) is approximately λ / 2. In FIG. 1, the cross section is a sawtoothShows a blazed diffraction grating 1 in the shape of a sawtoothA pseudo blazed diffraction grating in which the hypotenuse portion of the shape is approximated by a multi-step staircase may be used.
[0020]
  When light incident on the reflective light modulation element 100 at an incident angle θ with respect to the reflective mirror 3 is reflected as + 1st order diffracted light by the reflective polarizing diffraction grating 20 and emitted in the same direction as the incident light, the blazed diffraction grating 1 The grating pitch P is set to P = λ / (2 × sin θ), and the light incident / exit surface is a saw of the blazed diffraction grating 1toothIt is in the YZ plane that is the cross section of the shape.
[0021]
In addition, the incident angle θ of the incident light with respect to the reflective light modulation element 1001And the outgoing angle of outgoing light θ2May be different. In that case, the grating pitch P of the blazed diffraction grating 1 is set to P = λ / (sin θ1+ Sinθ2).
[0022]
  FIG. 2 is a side view showing another configuration example of the reflective light modulation element according to the first embodiment of the present invention. As in the configuration example of the reflective light modulation element 110 shown in FIG. 2, a blazed diffraction grating 1 made of a polymer liquid crystal layer is formed on a translucent substrate 5, and the ordinary light refractive index noIsotropic refractive index n substantially equal to (PLC)sTranslucent substrate in which a transparent mirror 2 is filled in a recess of a blazed diffraction grating 1 and a reflecting mirror 3 is formed4It is good also as a structure which adheres and fixes to. 2, the same reference numerals as those in FIG. 1 denote the same elements.
[0023]
Next, the operation of the reflective light modulation device 100 shown in FIG. 1 will be described with reference to FIG. Hereinafter, description will be given with reference to FIG. A voltage is applied to the liquid crystal layer 7 through the AC power supply 11 connected to the transparent electrodes 8 and 9, and the alignment state of the liquid crystal molecules changes according to the voltage.
[0024]
  Applied voltage V0When (= 0V), the orientation of the liquid crystal molecules is transparent.LightnessThe retardation value of the liquid crystal layer 7 is approximately λ / with respect to incident light that is parallel to the substrate and is aligned in a direction that forms an angle of 45 degrees with respect to the X axis and that has a wavelength λ and a polarization direction within the YZ plane. 2 As a result, as shown in FIG. 3A, the polarization direction of the light having the wavelength λ transmitted through the liquid crystal element 30 is rotated by 90 degrees to be changed to the second linearly polarized light in the X-axis direction. Is incident on. The linearly polarized light in the X-axis direction is the extraordinary refractive index n of the blazed diffraction grating 1 made of a polymer liquid crystal.eIn order to cope with (PLC), a refractive index difference Δn (PLC) corresponding to the birefringence of the polymer liquid crystal is generated between the blazed diffraction grating 1 and the transparent adhesive 2, and the + 1st order diffracted light is maximum. It becomes the polarization diffraction grating 20, and returns from the reflection type light modulation element 100 through the same path as the incident light. Here, the reflected light of the second linearly polarized light in the X-axis direction diffracted by the reflective polarization diffraction grating 20 is transmitted through the liquid crystal element 30 again, so that the polarization direction becomes outgoing light in the YZ plane.
[0025]
On the other hand, an applied voltage V (> V) sufficient to align most liquid crystal molecules in the electric field direction.0), The retardation value of the liquid crystal layer 7 becomes substantially zero, the polarization direction of incident light after passing through the liquid crystal element 30 does not change, and the first linearly polarized light is reflected while maintaining the polarization direction in the YZ plane. The light enters the polarization diffraction grating 20. The polarization direction at this time is the ordinary refractive index n of the polymer liquid crystal layer.o(PLC) and isotropic refractive index n of transparent adhesive 2sTherefore, the light is transmitted through the blazed diffraction grating 1 without being diffracted. As a result, as shown in FIG. 3B, the light is reflected by the reflecting mirror 3 and reciprocates in the polymer liquid crystal layer, and is emitted from the reflective light modulation element 100 in a direction different from the incident light.
[0026]
In the reflective light modulation element 100, a high extinction ratio can be realized at a low voltage by canceling out the retardation value of the liquid crystal layer 7 remaining when a voltage is applied, using a phase plate. For example, in FIG. 1, a phase plate made of a polymer liquid crystal having an orientation orthogonal to the orientation direction of the liquid crystal molecules of the liquid crystal layer 7 is formed on one surface of the translucent substrate 6 of the liquid crystal element 30, and the retardation value thereof is The thickness of the polymer liquid crystal layer may be the same as the retardation value of the remaining liquid crystal layer 7. Instead of a phase plate made of a polymer liquid crystal, a phase plate made of quartz or uniaxially stretched polycarbonate may be used.
[0027]
Here, the return light emitted in the same direction as the incident light is received as signal light on the light emitting side of the reflective light modulation element 100, and an optical system that does not receive the return light emitted in the direction different from the incident light is used. The voltage applied to the transparent electrodes 8 and 9 is V0Voltage variable optical attenuator that can change the amount of signal by changing from V to V0By switching between V and V, the optical switch is turned on / off.
[0028]
FIG. 4 shows a configuration example of an optical system in the case where the reflection type light modulation element 100 of the present invention is used as a variable optical attenuator or an optical switch by voltage. The light emitted from the optical fiber 14 is collected by the lens 13 and enters the polarizer 12.
Polarizer 12 is rutile (TiO2) A birefringent crystal, such as a crystal, processed so that the light incident surface and the light output surface form an angle. The light path of polarized light in the YZ plane and polarized light in the X-axis direction perpendicular to it is separated and propagated in the crystal. Thus, the crystal orientation is determined, and the light enters the reflective light modulation element 100. Here, for example, in the incident light to the reflection type light modulation element 100, the polarization in the X-axis direction is perpendicularly incident on the reflection mirror surface, and the polarization in the YZ plane is incident on the reflection mirror surface at an incident angle θ. The angle between the light incident surface and the light exit surface of the polarizer 12 is set.
[0029]
The voltage applied to the transparent electrodes 8 and 9 in FIG.0FIG. 4 (a) shows the propagating light rays. Of the incident light to the reflective light modulation element 100, the polarized light in the X-axis direction is transmitted through the liquid crystal element to become the first linearly polarized light in the YZ plane, and is not diffracted by the reflective polarization diffraction grating. The light is incident and reflected vertically, and is collected on the optical fiber 14 through the reflective light modulator 100, the polarizer 12, and the lens 13 along the same optical path as the incident light. Also, the polarized light in the YZ plane is transmitted through the liquid crystal element to become the second linearly polarized light in the X-axis direction, and is mainly + 1st-order diffracted by the reflective polarization diffraction grating, and the reflective light modulation element in the same optical path as the incident light The light is condensed on the optical fiber 14 through 100, the polarizer 12, and the lens 13. That is, the light emitted from the optical fiber 14 propagates back to the same optical fiber 14 regardless of its polarization.
[0030]
  Further, when the voltage applied to the transparent electrodes 8 and 9 is V, the propagating light beam is illustrated.4Shown in (b). Of the incident light of the reflection type light modulation element 100, the extraordinary light polarization is transmitted through the liquid crystal element while being extraordinary light polarization and is diffracted by the reflection type polarization diffraction grating. Even after passing through the polarizer 12 and the lens 13, the light is not condensed on the optical fiber 14. Further, the ordinary light polarized light is transmitted through the liquid crystal element as the ordinary light polarized light and is not diffracted by the reflective polarization diffraction grating, but is specularly reflected by the reflecting mirror surface and reflected by a light path different from the incident light. And the lens 13, the light is not condensed on the optical fiber 14. That is, the light emitted from the optical fiber 14 does not return to the same optical fiber 14 regardless of the polarization direction.
[0031]
The liquid crystal element 30 may be a reflective light modulation element in which at least one of the transparent electrodes 8 and 9 is composed of a plurality of divided pixel electrodes and a voltage can be applied independently for each electrode. At this time, in FIG. 1, it is preferable that the pixel electrode has a pattern that is divided in the X-axis direction and not divided in the Y-axis direction.
[0032]
  4 shows an example in which the polarizer 12 processed with a birefringent crystal is used in combination with the reflective light modulation element 100, a polarization diffraction polarizer may be used as the polarizer 12. FIG. 5 is a side view showing the operation of the optical attenuator when the polarization diffraction type polarizer 22 is used on the light incident side of the reflection type light modulation element 100. (A) is applied voltage V0(B) shows a state where the applied voltage is V. Here, a polarization diffraction type polarizer 22 composed of a transmission type blazed diffraction grating is used as the polarizer 12. The polarization diffractive polarizer 22 is a diffraction grating made of the same polymer liquid crystal as the blazed diffraction grating 1 of the reflective light modulator 100, but the grating pitch is doubled to 2P, and the normal refractive index and extraordinary light of the polymer liquid crystal are used. The orientation direction of the polymer liquid crystal molecules is 90 degrees different from that of the blazed diffraction grating 1 so that the refractive index is reversed. Also sawtoothCompared with the blazed diffraction grating 1 of the reflective light modulation element 100, the polarization direction of the oblique side of the cross-sectional shape is reversed and the polarization diffractive polarizer 22 maximizes the + 1st order diffraction of the transmission blazed diffraction grating. The grating height of a blazed diffraction grating composed of a molecular liquid crystal layer is doubled.
[0033]
Applied voltage V0In this case, as shown in FIG. 5A, the polarized light in the X-axis direction that travels straight through the polarization diffraction type polarizer 22 is incident and reflected perpendicularly to the reflection mirror of the reflection type light modulation element 100 and returns to the original path. To do. On the other hand, the polarized light in the YZ plane + 1st order diffracted by the polarization diffraction type polarizer 22 is + 1st order diffracted by the reflective polarization diffraction grating of the reflective light modulation element 100 and passes through the lens 13 to the optical fiber 14. Return the route.
[0034]
In addition, when the applied voltage is V, as shown in FIG. 5B, the X-axis direction polarized light that travels straight through the polarization diffraction type polarizer 22 is diffracted by the reflection type polarization diffraction grating of the reflection type light modulation element 100 and light. It is not focused on the fiber 14. On the other hand, the polarized light in the YZ plane + 1st order diffracted by the polarization diffraction type polarizer 22 is obliquely incident on the reflection mirror of the reflection type light modulation element 100 and is specularly reflected, so that it is not condensed on the optical fiber 14. That is, it functions as a voltage variable optical attenuator and an optical switch as in the case shown in FIG.
[0035]
  4 and 5Voltage variable lightIn the figure showing the action of the attenuator, the case where the polarized light in the YZ plane and the polarized light in the X-axis direction orthogonal thereto are incident, but as shown in FIGS. 1 to 3, only the polarized light in the YZ plane is present. It may be incident.
[0036]
In an optical switch and a variable optical attenuator used in a wavelength division multiplexing optical communication network, it is possible to stably realize a high extinction ratio of −40 dB or more, that is, IoffIt is important to make the level sufficiently small.
[0037]
IoffThe level is the amount of light returning on the same optical path as the incident light of the reflective light modulation element 100. In FIG. 1, the first straight line in the YZ plane that enters the reflective polarizing diffraction grating when the retardation value of the liquid crystal layer 7 is zero. This is the amount of light whose polarization is + 1st order diffracted and returned on the same optical path as the incident light. Here, the extinction ratio of the reflective polarization grating is Ioff+ 1st order diffracted light generated with respect to incident light of first linearly polarized light (ordinary light polarization of polymer liquid crystal) related to the level, and IonThis corresponds to the light amount ratio with the + 1st order diffracted light generated with respect to the incident light of the second linearly polarized light (abnormal light polarization of the polymer liquid crystal) related to the level. That is, the ordinary refractive index n of the polymer liquid crystal of the blazed diffraction grating 1oIsotropic refractive index n of (PLC) and transparent adhesive 2sAnd + 1st order diffracted light is not generated with respect to the incident light of ordinary light polarization, and in principle IoffThe level is zero and the extinction ratio is infinite. However, no(PLC) and ns+ 1st order diffracted light is generated with respect to the first linearly polarized light due to a slight difference from the above, causing the extinction ratio of the reflective polarization diffraction grating to deteriorate.
[0038]
  [Second Embodiment]
  FIG. 6 is a side view showing a configuration example of the reflective light modulation element 200 according to the second embodiment of the present invention. By improving the extinction ratio of reflective polarization gratings,Stable and high extinction ratioTo obtain a reflective light modulation element 100Realizebe able to.
[0039]
Compared to the reflective light modulation element 100 shown in FIG. 1, a polymer liquid crystal layer is processed into a blazed diffraction grating 15 between the reflective polarization diffraction grating 20 and the liquid crystal element 30, and the transparent adhesive 2 The difference is that a transmissive polarization diffraction grating 40 filled with a concave portion is formed. 6, the same reference numerals as those in FIG. 2 represent the same elements.
[0040]
  The blazed diffraction grating 15 is formed by forming an alignment film (not shown) aligned in the Y-axis direction on the surface of the translucent substrate 5, applying a liquid crystal monomer solution thereon, and then irradiating it with ultraviolet rays or the like. Same ordinary refractive index n as blazed diffraction grating 1o(PLC) and extraordinary refractive index neHowever, a polymer liquid crystal layer in which the alignment direction of liquid crystal molecules is aligned in the Y-axis direction is formed. That is, the alignment direction of the polymer liquid crystal is perpendicular to the blazed diffraction grating 1 and the blazed diffraction grating 15. Furthermore, the cross section of the polymer liquid crystal layer is sawn by photolithography and reactive ion etching.toothThe blazed diffraction grating 15 is processed into a linear shape in the Y-axis direction. In FIG. 6, the saw is cut in the YZ plane so that the cross-sectional shape can be seen.toothAlthough the cross section of the shape is shown, in order to suppress the stray light caused by the multiple diffracted light of the blazed diffraction grating 1 and the blazed diffraction grating 15 as will be described later, it is actually a saw.toothThe cross section of the shape is processed so as to be an XZ plane perpendicular to the paper surface.
[0041]
  The grating height D (PLC) of the blazed diffraction grating 15 made of polymer liquid crystal is set so that the + 1st-order diffraction efficiency is maximized with respect to incident light. That is, the birefringence of the polymer liquid crystal is expressed by Δn (PLC) = ne(PLC) -noIf (PLC), Δn (PLC) × D (PLC) = λ. In FIG. 6, the cross section is a sawtoothShows a blazed diffraction grating 15 in the shape of a sawtoothA pseudo blazed diffraction grating in which the hypotenuse portion of the shape is approximated by a multi-step staircase may be used.
[0042]
Further, since the diffracted light of the transmissive polarization diffraction grating 40 composed of the blazed diffraction grating 15 is not used as signal light, it is sufficient that the diffraction pitch is a diffraction angle at which the diffracted light does not overlap the signal light.
[0043]
Next, the effect of improving the extinction ratio of the reflective light modulation element 200 by adding the transmissive polarization diffraction grating 40 will be described.
Of the light incident on the transmissive polarization diffraction grating 40, the second linearly polarized light that has been transmitted through the liquid crystal element 30 and becomes polarized in the X-axis direction is diffracted to the transmissive polarization diffraction grating 40 because it is ordinary light polarization. + 1st order diffracted light is generated because of the extraordinary light polarization with respect to the reflective polarization diffraction grating 20, and is reflected by the reflection mirror 3 and returns along the same path as the incident light. The light is transmitted through the straight line 40 and emitted from the reflective light modulation element 200 as signal light. At this time, the less diffracted light and the diffracted light other than the + 1st order diffracted light of the transmissive polarizing diffraction grating 40 and the + 1st order diffracted light of the reflective polarizing diffraction grating 20,onSince it does not cause a decrease in level, it is preferable that the amount is small.
[0044]
  In addition, the first linear polarization transmitted through the liquid crystal element 30 and becomes polarized light in the XZ plane.Light isThe transmission type polarization diffraction grating 40 is diffracted because it is extraordinary light polarization, and the reflection type polarization diffraction grating 20 is ordinary light polarization, so most of the light is reflected by the reflection mirror 3 without being diffracted. Then, the light is diffracted again by the transmissive polarization diffraction grating 40 and emitted from the reflective light modulation element 200 through a path different from the incident light, and is not superimposed on the signal light. At this time, no(PLC) and ns+ 1st order diffracted light generated by the reflective polarization diffraction grating 20 due to a slight difference from the diffracted light is diffracted by the transmissive polarization diffraction grating 40 (shown by a dotted line in FIG. 6), and is emitted out of the YZ plane to become signal light. Can not realize superposition, so a high extinction ratio can be realized. Further, since the grating shape of the transmission type polarization diffraction grating 40 is the blazed diffraction grating 15, the multiplexed light diffracted by the forward path (front) and the return path (rear) of the transmission polarization diffraction grating 40 before and after the reflection by the reflection mirror 3. Of the diffracted light, the amount of light superimposed on the signal light has a very low value.
[0045]
As a result, by adopting the configuration of the reflection type light modulation element 200 of the present invention in which the transmission type polarization diffraction grating 40 is laminated on the reflection type polarization diffraction grating 20, IoffSince the level is stabilized and becomes a sufficiently small value, an optical switch or a variable optical attenuator using a voltage that realizes a high extinction ratio of −40 dB or more can be obtained. In particular, a high extinction ratio can be ensured in a wide applied voltage margin with respect to the wavelength bandwidth of incident light used in the wavelength division multiplexing optical communication network.
[0046]
Moreover, since the space | interval of the reflective mirror 3 and the liquid crystal layer 7 can be made small by using the thin translucent board | substrate 5, the several pixel electrode by which at least one of the transparent electrodes 8 and 9 of the liquid crystal element 30 was divided | segmented Even in this case, leakage of light transmitted through the pixel electrode to the adjacent electrode is reduced in the forward path and the backward path of the liquid crystal element, and crosstalk can be suppressed.
[0047]
When the blazed diffraction grating 15 is a rectangular grating by increasing the distance between the transmission polarization diffraction grating 40 and the reflection polarization diffraction grating 20 and distributing the spatial grating pattern of the transmission polarization diffraction grating 40. However, it is possible to avoid the multiple diffracted light diffracted in the forward path and the return path of the transmission type polarization diffraction grating 40 from being superimposed on the signal light.
[0048]
In addition, in the reflective light modulation elements 100 (FIG. 5) and 200 (FIG. 6), the reflected light generated at the interface between the translucent substrates 5 and 6 and the medium having a different refractive index is reflected on the surface of the translucent substrate. By forming fine irregularities, it becomes diffused light, and stray light superimposed on signal light can be reduced. Alternatively, the reflective polarizing diffraction grating 20 in which the liquid crystal element 30 and the reflective polarizing diffraction grating 20 or the transmissive polarizing diffraction grating 40 are integrated may be separately manufactured and integrated using an adhesive.
[0049]
In the first and second embodiments, the applied voltage V0Although the operation between V and V has been described, other applied voltage or the alignment state of the liquid crystal according to the applied voltage may be changed.
The liquid crystal alignment may be twist alignment, vertical alignment, or hybrid alignment. In addition to nematic liquid crystals, smectic liquid crystals, cholestic liquid crystals, or other liquid crystal materials may be used as long as the polarization state of transmitted light changes according to the change in the alignment state of the liquid crystals.
[0050]
In addition, as an example of the control means for changing the alignment state of the liquid crystal, an AC voltage applied between the transparent electrodes has been shown. However, instead of the voltage, the alignment state of the liquid crystal is changed using a control means such as a magnetic field, temperature, or light. May be.
Further, although an example in which a reflective polarizing diffraction grating made of a diffraction grating processed into a sawtooth cross section using a polymer liquid crystal as a birefringent material has been described, a birefringent material such as a dielectric crystal may be used. . In addition, by providing a spatial distribution of tilt alignment of liquid crystal molecules in the thickness direction within the grating pitch, a blaze-type diffraction grating against extraordinary light polarization with the same polymer liquid crystal layer thickness that is not processed into a sawtooth cross-sectional shape It is possible to have the same function.
[0051]
As a reflection mirror, a metal film such as aluminum, gold, silver, etc.2O5And TiO2High refractive index dielectric film such as SiO and SiO2A dielectric multilayer film mirror in which low-refractive-index dielectric films such as these are alternately laminated can be formed by vapor deposition or sputtering.
[0052]
As a material for forming the transparent electrode, an oxide film such as ITO or a metal foil film such as aluminum or chromium can be used, but it is preferable to use an ITO film from the viewpoint of conductivity, light transmittance, durability, and the like. .
[0053]
Changing the polarization state means converting linearly polarized light incident on the liquid crystal element into elliptically polarized light including circularly polarized light and linearly polarized light. In the above embodiment, the voltage V0Shows a case where the polarization direction of linearly polarized light is rotated by 90 degrees.
[0054]
Further features of the reflective light modulation element and the variable optical attenuator of the present invention will be specifically described with reference to the following embodiments.
[0055]
【Example】
This embodiment will be described with reference to a cross-sectional view of the reflective light modulation element 200 shown in FIG. A transparent electrode 8 made of an ITO film formed on one side of a glass substrate which is a light-transmitting substrate 5 is linear in the Y-axis direction by photolithography and etching (linear in the X-axis direction so that the cross-sectional shape can be visually recognized). The transparent electrode 9 made of an ITO film is formed on one surface of a glass substrate which is a light-transmitting substrate 6 so as to form a pixel electrode shape having an electrode width of 100 μm and an electrode interval of 5 μm. An alignment film (not shown) is obtained by applying a polyimide film on the transparent electrodes 8 and 9 and performing an alignment process in a direction that forms an angle of 45 degrees with respect to the X axis.
[0056]
  Next, spacer for cell gap controlTheSealed on one side of a translucent substrate 6 (glass substrate) on which an alignment film is formed using a mixed sealing materialMaterialAn empty cell is produced by printing and applying 10 and solidifying by pressure on the light-transmitting substrate 5 (glass substrate). stickerMaterialAfter injecting liquid crystal from an injection port (not shown) provided in a part of the liquid crystal, the injection port is sealed to complete the liquid crystal element 30. The liquid crystal used here has an ordinary refractive index n for a wavelength λ = 1.56 μm.o(LC) = 1.49 and extraordinary light refractive index ne(LC) = 1.65 and the cell gap is d (LC) = 5.5 μm. At this time, the retardation value of the liquid crystal layer 7 is 0.88 μm.
[0057]
Although not shown in FIG. 6, a phase plate made of a polymer liquid crystal having a normal light refractive index direction coincident with the extraordinary light refractive index direction of the liquid crystal layer and a retardation value of 0.1 μm is separated from the translucent substrate 6. And a transparent substrate (not shown). When no voltage is applied to the transparent electrodes 8 and 9, the retardation value of the entire liquid crystal element 30 in which the phase plate and the liquid crystal layer 7 are integrated is 0.78 μm, and λ / 2 wavelength with respect to the wavelength λ = 1.56 μm. It corresponds to a board. At this time, the incident light having the polarization in the YZ plane is transmitted through the liquid crystal element 30 and the polarization direction is changed to the outgoing light having the polarization in the X-axis direction.
[0058]
By applying a voltage to the transparent electrodes 8 and 9 and changing the liquid crystal molecules of the liquid crystal layer 7 from the parallel alignment to the vertical alignment with respect to the translucent substrate, the retardation value of the liquid crystal layer is reduced, and the applied voltage is 6V. Although 1 μm remains, by integrating the phase plate and the liquid crystal layer 7, the phase plate cancels this residue and the overall retardation value becomes zero, and the incident light is transmitted through the liquid crystal element 30 and the polarization state remains unchanged. The light is emitted as it is.
[0059]
  Next, an alignment film (not shown) is obtained by applying a polyimide film on one surface of the light-transmitting substrate 5 of the liquid crystal element 30 with a phase plate and performing an alignment process in the Y-axis direction. A liquid crystal monomer solution is applied thereon, then irradiated with ultraviolet rays, and an ordinary refractive index no(PLC) = 1.55 and extraordinary refractive index ne(PLC) = 1.75, and a polymer liquid crystal layer having a film thickness of 6.8 μm and aligned in the Y-axis direction is formed. Furthermore, the cross section is sawn against the polymer liquid crystal layer by photolithography and reactive ion etching.toothProcessed into a pseudo blazed diffraction grating 15 having a linear shape in the Y-axis direction (displayed as a linear shape in the X-axis direction so that the cross-sectional shape can be visually recognized) at a depth of 6.8 μm, which is approximated by an 8-step staircase shape. .
[0060]
  Next, an alignment film (not shown) that is aligned in the X-axis direction is formed on the surface of the reflection mirror 3 of the glass substrate, which is the translucent substrate 4 having the reflection mirror 3 formed on one side, and on that. The same liquid crystal monomer as the blazed diffraction grating 15 is used, and in the same process, the liquid crystal molecules are aligned in the X-axis direction.toothIt is processed into a pseudo blazed diffraction grating 1 having a linear shape in the X-axis direction whose shape is approximated by an eight-step staircase shape. Here, the height of the pseudo blazed diffraction grating 1 in which the hypotenuse is approximated by a staircase is set to 3.4 μm. The reflection mirror 3 is made of a high refractive index dielectric film Ta.2O5And low refractive index dielectric film SiO230 or more layers are alternately laminated so that the optical film thickness becomes approximately λ / 4, and a multilayer film reflection mirror having a reflectance of 99.9% or more in a wavelength band from 1.48 μm to 1.62 μm is used.
[0061]
Further, ordinary light refractive index noIsotropic refractive index n substantially equal to (PLC)s= 1.56 transparent adhesive material 2 is used to fill the concave portions of the pseudo blazed diffraction grating 1 and the pseudo blazed diffraction grating 15 and to adhere to and fix to the translucent substrates 4 and 5, thereby reflecting polarization. The diffraction grating 20 and the transmissive polarization diffraction grating 40 are obtained. In this way, the reflective light modulation element 200 is manufactured. At this time, the second linearly polarized light in the X-axis direction passes straight through the transmissive polarization diffraction grating 40 without being diffracted, and 80% or more is + 1st-order diffracted by the reflective polarization diffraction grating 20. Further, 80% or more of the first linearly polarized light in the YZ plane is + 1st-order diffracted by the transmission type polarization diffraction grating 40 and passes straight through the reflection type polarization diffraction grating 20.
[0062]
Light is incident on the reflective light modulation element 200 at an incident angle θ = 5 ° with respect to the Z axis, which is the normal direction of the reflecting mirror surface in the YZ plane. Incident light is incident on each pixel electrode of the liquid crystal element 30 with light having different wavelengths in the wavelength band from 1.48 μm to 1.62 μm, and the diffraction angle of the + 1st order diffracted light with respect to the incident light wavelength corresponding to each pixel electrode. The grating pitch of the pseudo blazed diffraction grating 15 of the reflective polarization diffraction grating 20 is distributed from 8.5 μm to 9.3 μm so as to be the same as the incident angle θ.
[0063]
The voltage V applied to the liquid crystal layer 7 is adjusted for each pixel electrode through an AC power source connected to the transparent electrodes 8 and 9. When the polarized light in the YZ plane (first linearly polarized light) is transmitted through the liquid crystal element 30 with a phase plate, it changes to polarized light in the X-axis direction (second linearly polarized light) substantially orthogonal at V = 0, and polarized at around V = 6V. The state does not change.
[0064]
Therefore, the light in the wavelength band from 1.48 μm to 1.62 μm incident on each pixel electrode of the reflective light modulation element 200 is diffracted by the reflective polarization diffraction grating 20 and reflected in the same angle direction as the incident light. Most of the light emitted from the type light modulation element 200 is almost zero at the applied voltage V = 0, but is almost zero at around the applied voltage V = 6V. Further, in the intermediate region where the applied voltage V is 0 and 6V, the light quantity is intermediate.
[0065]
That is, an optical switch or variable attenuator with a high extinction ratio voltage can be obtained by combining with an optical system that separates outgoing light having the same angle as incident light and outgoing light having a different angle. For example, after wavelength-multiplexed light in a wavelength band from 1.48 μm to 1.62 μm emitted from an optical fiber is dispersed by a diffraction grating, it is made incident on the reflective light modulation element 200 at an incident angle θ using a lens and each pixel. Condensed on the electrode.
[0066]
  As a result, the light emitted from the reflective light modulation element 200 in the same angle direction as the incident light is propagated back to the optical fiber, but the other light is blocked, so that a high extinction ratio of −40 dB or more is stabilized. Realized by optical switch or variablelightIt becomes an attenuator. In addition, since the distance between the reflecting mirror and the electrode can be reduced, optical signal crosstalk between pixels can be suppressed even with a pixel electrode structure.
[0067]
In FIG. 7, when the voltage is applied to the liquid crystal layer of the reflection type light modulation element 200 of the present invention from 0 V to 10 V, the same optical fiber reflects the reflection type light modulation element in the light emitted from the optical fiber. It is a graph which shows the signal light efficiency which returns to. A high extinction ratio of -40 dB or more can be obtained in a wide voltage application range of 4.6 V to 10 V or more.
[0068]
For comparison, the signal light efficiency with respect to the applied voltage when the conventional variable optical attenuator 300 is used is shown by a solid line in FIG. An extinction ratio of -40 dB or higher is obtained in a narrow applied voltage range from 6.0 V to 6.4 V.
[0069]
【The invention's effect】
As described above, in the reflection type light modulation element of the present invention, the liquid crystal element that changes the polarization state of incident light according to the change in the alignment state of the liquid crystal molecules and the birefringent material formed on the reflective substrate surface are sawtooth-shaped. And a reflection type polarization diffraction grating that reflects the first linearly polarized light and reflects the second linearly polarized light is integrated, and thus is compact and has a high extinction ratio. A reflective light modulation element is obtained. Further, when the alignment state of the liquid crystal is changed by voltage, the distance between the reflection mirror and the voltage application electrode can be reduced, so that optical signal crosstalk between pixels can be suppressed even in the pixel electrode structure.
[0070]
Further, by using a polymer liquid crystal having birefringence as the reflective polarization diffraction grating, it is possible to accurately process a sawtooth cross-sectional shape even with a fine grating pitch, so that high signal light diffraction efficiency can be obtained.
[0071]
In addition, a transmissive polarization diffraction grating that diffracts the first linearly polarized light and transmits the second linearly polarized light in the polarization direction orthogonal to the first linearly polarized light without diffracting is disposed between the liquid crystal element and the reflective polarization diffraction grating. As a result, a higher extinction ratio can be obtained.
[0072]
In particular, by using a diffraction grating obtained by processing a polymer liquid crystal having birefringence as a transmission polarization diffraction grating into a sawtooth cross-sectional shape, multiple diffracted light diffracted by the transmission polarization diffraction grating in the forward path and the return path is IoffSince it does not overlap with the level, I can be stable over a wide applied voltage rangeoffThe level can be maintained at a low value. As a result, an optical switch or an optical attenuator suitable for use in a wavelength division multiplexing optical communication network or the like is obtained.
[0073]
In addition, by adding a separation means for separating the light diffracted by the reflective polarizing diffraction grating that exits the reflective light modulation element and the light that is not diffracted and receiving only one of the emitted light, the magnitude of the applied voltage is increased. Thus, a variable optical attenuator that adjusts the amount of emitted light according to the above is obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration example of a reflective light modulation element according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing another configuration example of the reflective light modulation element according to the first embodiment of the present invention.
3 is a cross-sectional view showing the operation when light is incident on the reflective light modulation element shown in FIG. 1, (a) maximum + 1st order diffraction reflection state when no voltage is applied, and (b) mirror reflection when voltage is applied. Status.
4 is a cross-sectional view for explaining the operation of an optical attenuator when a polarizer made of a birefringent crystal is used on the light incident side of the reflective light modulation element shown in FIG. 1, (a) state when no voltage is applied. , (B) shows the state when a voltage is applied.
5 is a cross-sectional view showing the operation of an optical attenuator when a polarization diffraction type polarizer is used on the light incident side of the reflective light modulation element shown in FIG. 1, (a) state when no voltage is applied, (b) ) State when voltage is applied.
FIG. 6 is a cross-sectional view showing a configuration example of a reflective light modulation element according to a second embodiment of the present invention.
FIG. 7 is a graph showing applied voltage and signal light efficiency in the case of using the reflective light modulation device of the example of the present invention (circle line indicates an example, solid line indicates a comparative example of a conventional configuration).
FIG. 8 is a cross-sectional view showing a configuration example of a conventional transmissive light modulation element.
[Explanation of symbols]
1, 15: Blaze diffraction grating
2: Transparent adhesive
3: Reflection mirror
4, 5, 6: Translucent substrate
7: Liquid crystal layer
8, 9: Transparent electrode
10: SealMaterial
11: AC power supply
12: Polarizer
13: Lens
14: Optical fiber
22, 60: Polarization diffraction type polarizer
20: Reflective polarization diffraction grating
30: Liquid crystal element
40: Transmission polarization grating
50: Liquid crystal cell with phase plate
100, 110, 200: reflection type light modulation element

Claims (6)

入射光を反射させ、出射する光量を制御する反射型光変調素子であって、
前記反射型光変調素子は、前記入射光が入射する順に、
透明電極が形成された一対の透光性基板と液晶層からなる液晶素子と、
反射型偏光回折格子と、を備え、
前記反射型偏光回折格子は、複屈折性を有する複屈折材料の断面が鋸歯形状で格子ピッチPを有するブレーズ型回折格子または、前記ブレーズ型回折格子の前記鋸歯形状の斜辺部分を階段状に近似した形状を有する疑似のブレーズ型回折格子と、前記入射する光を反射する反射ミラーと、を備え、
前記入射光は波長がλで、前記反射ミラーの面の法線方向を基準にゼロより大きい入射角θ(θ>0)で入射し、
前記液晶素子は、前記透明電極を介して前記液晶層に印加する電圧の大きさによって、前記反射型偏光回折格子に入射する前記入射光の偏光状態を変化させ、
前記反射型偏光回折格子は、前記格子ピッチPが、
P=λ/(2×sinθ)、
を満足し、さらに、入射する前記入射光のうち、第1の偏光方向を有する第1直線偏光を回折せずに前記反射ミラーで反射するとともに、前記第1の偏光方向と直交する偏光方向を有する第2直線偏光を回折し、
前記反射ミラーで反射した前記第2直線偏光の進行方向は、反射した前記第1直線偏光の進行方向と異なる方向でかつ、前記反射ミラー側に向かう前記入射光と同じ経路を辿ることを特徴とする反射型光変調素子。
The incident light is reflected, a reflective optical modulation element that controls the amount of light emitted,
The reflective light modulation element is in the order in which the incident light enters.
A liquid crystal element comprising a pair of translucent substrates on which a transparent electrode is formed and a liquid crystal layer;
A reflective polarization grating, and
The reflective polarizing diffraction grating is a blazed diffraction grating having a birefringent birefringent material with a sawtooth cross section and a grating pitch P, or a stepwise approximation of the sawtooth-shaped oblique side portion of the blazed diffraction grating. A quasi-blazed diffraction grating having the shape formed above, and a reflection mirror that reflects the incident light,
The incident light has a wavelength of λ and is incident at an incident angle θ (θ> 0) larger than zero with respect to the normal direction of the surface of the reflecting mirror.
The liquid crystal element changes a polarization state of the incident light incident on the reflective polarization diffraction grating according to a magnitude of a voltage applied to the liquid crystal layer through the transparent electrode,
In the reflective polarization diffraction grating, the grating pitch P is
P = λ / (2 × sin θ),
Further, the first linearly polarized light having the first polarization direction is reflected by the reflection mirror without being diffracted, and the polarization direction orthogonal to the first polarization direction is selected. Diffracting second linearly polarized light having
The traveling direction of the second linearly polarized light reflected by the reflecting mirror, reflected the a and a direction different from the first traveling direction of the linearly polarized light, characterized Rukoto Tado the same path as the incident light toward the reflecting mirror side Reflective light modulation element.
前記反射型偏光回折格子は、前記ブレーズ型回折格子の凹部または前記疑似ブレーズ型回折格子の凹部に屈折率nThe reflective polarization diffraction grating has a refractive index n in a recess of the blazed diffraction grating or a recess of the pseudo-blazed diffraction grating. s の透明接着材を有し、With transparent adhesive
前記屈折率nRefractive index n s は、前記複屈折材料の常光屈折率nIs the ordinary refractive index n of the birefringent material o と略等しい請求項1に記載の反射型光変調素子。The reflective light modulation element according to claim 1, which is substantially equal to:
記複屈折材料高分子液晶からなる請求項1または請求項2に記載の反射型光変調素子。Reflective optical modulation element prior Kifuku refractive material according to claim 1 or claim 2 consisting of liquid crystal polymer. 前記液晶素子と前記反射型偏光回折格子との間に、複屈折性を有する透過型偏光回折格子が配置され、
前記透過型偏光回折格子は、前記入射光のうち、前記第1直線偏光を回折しかつ、前記第2直線偏光を直進透過する請求項1〜3いずれか1項に記載の反射型光変調素子。
A transmissive polarization diffraction grating having birefringence is disposed between the liquid crystal element and the reflective polarization diffraction grating,
The transmission type polarizing diffraction grating, out of the incident light, the first linearly polarized light diffraction vital, reflective light according to Motomeko 1-3 any one that spend straight permeability the second linearly polarized light Modulation element.
前記透過型回折格子は、高分子液晶からなり、断面が鋸歯または、鋸歯形状の斜辺部分を階段状に近似した形状を有し、
前記反射型偏光回折格子の長手方向と前記透過型回折格子の長手方向とが直交する請求項4に記載の反射型光変調素子。
The transmissive diffraction grating is made of polymer liquid crystal, cross-section saw-tooth shape or has an approximate shape of the hypotenuse portion of the sawtooth stepwise,
The reflective light modulation element according to claim 4, wherein a longitudinal direction of the reflective polarization diffraction grating and a longitudinal direction of the transmission diffraction grating are orthogonal to each other.
所定の波長帯の光を出射し、前記光の出射方向と同じ方向に反射されて進行する戻り光を信号光として受光するとともに、前記光の出射方向と異なる方向に反射されて進行する戻り光を受光しない光学系と、
前記光学系から出射された前記光の光路中に、交流電源を通して電圧を印加する制御手段に接続される請求項1〜5いずれか1項に記載の反射型光変調素子と、を備える可変光減衰器であって、
印加する前記電圧の大きさに応じて受光する前記信号光の光量が調整されることを特徴とする可変光減衰器。
Return light that emits light in a predetermined wavelength band, receives return light that is reflected and travels in the same direction as the light exit direction, as signal light, and travels by being reflected in a direction different from the light exit direction An optical system that does not receive light,
The optical path of the light emitted from the optical system, Ru and a reflection-type light modulation element according to any one of claims 1 to 5, which is connected to the control means for applying a voltage through an AC power source variable An optical attenuator,
The variable optical attenuator, wherein the amount of the signal light received is adjusted according to the magnitude of the applied voltage.
JP2003164668A 2003-06-10 2003-06-10 Reflective light modulator and variable optical attenuator Expired - Fee Related JP4269788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164668A JP4269788B2 (en) 2003-06-10 2003-06-10 Reflective light modulator and variable optical attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164668A JP4269788B2 (en) 2003-06-10 2003-06-10 Reflective light modulator and variable optical attenuator

Publications (2)

Publication Number Publication Date
JP2005003758A JP2005003758A (en) 2005-01-06
JP4269788B2 true JP4269788B2 (en) 2009-05-27

Family

ID=34091378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164668A Expired - Fee Related JP4269788B2 (en) 2003-06-10 2003-06-10 Reflective light modulator and variable optical attenuator

Country Status (1)

Country Link
JP (1) JP4269788B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070567A (en) * 2006-09-13 2008-03-27 Ricoh Co Ltd Display device
CN101911191B (en) 2007-12-27 2012-10-24 旭硝子株式会社 Liquid crystal element, optical head device, and variable optical modulation element
JP4959590B2 (en) * 2008-01-15 2012-06-27 浜松ホトニクス株式会社 Observation device
JP4961359B2 (en) * 2008-01-16 2012-06-27 浜松ホトニクス株式会社 Observation device
JP2009294604A (en) * 2008-06-09 2009-12-17 Asahi Glass Co Ltd Optical modulation liquid crystal element and variable optical attenuator
TWI401501B (en) * 2008-07-28 2013-07-11 Pixel Qi Corp Diffractive liquid crystal display
JP5651595B2 (en) * 2008-10-09 2015-01-14 ノース・キャロライナ・ステイト・ユニヴァーシティ Polarization-independent liquid crystal display device having a plurality of polarization grating arrangements and related devices
JP5218079B2 (en) 2009-01-15 2013-06-26 株式会社リコー Optical element, optical pickup, optical information processing apparatus, optical attenuator, polarization conversion element, projector optical system, optical equipment
US8830426B2 (en) 2010-11-17 2014-09-09 Pixel Qi Corporation Color shift reduction in transflective liquid crystal displays
DE102015218702A1 (en) * 2015-09-29 2017-03-30 Dr. Johannes Heidenhain Gmbh Optical layer system
JP6857384B2 (en) 2016-11-24 2021-04-14 国立大学法人大阪大学 Optical element

Also Published As

Publication number Publication date
JP2005003758A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
EP1420275B1 (en) Isolator and optical attenuator
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
US7167230B2 (en) Liquid crystal variable wavelength filter unit, and driving method thereof
JP6285662B2 (en) Variable optical retarder
EP1688783B1 (en) Optical element using liquid crystal having optical isotropy
WO2012136970A1 (en) Laser despeckler based on angular diversity
WO2006082901A1 (en) Variable transmission light quantity element and projection display
JP4269788B2 (en) Reflective light modulator and variable optical attenuator
JP4792679B2 (en) Isolator and variable voltage attenuator
JP2009294604A (en) Optical modulation liquid crystal element and variable optical attenuator
JP6719763B2 (en) High speed optical switching engine
JP4106981B2 (en) Optical attenuator
JP5195024B2 (en) Diffraction element, optical attenuator, optical head device, and projection display device
JP4232523B2 (en) Optical modulator and optical attenuator
JP2803181B2 (en) Birefringent diffraction grating polarizer
JP5150992B2 (en) Liquid crystal device and optical attenuator
JPH05249506A (en) Optical switch
JP2011191787A (en) Isolator and voltage-variable attenuator
US20240365028A1 (en) Wavelength selective switch and optical cross-connect device including wavelength selective switch
JP4786841B2 (en) Liquid crystal optical switch and driving method thereof
JP2009175751A (en) Liquid crystal variable-wavelength filter device
CN118575113A (en) Wavelength selective switch and optical cross-connect device using the same
US20050185133A1 (en) Diffraction grating wave plate
JPH09113859A (en) Optical filter module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees