JP2009294604A - Optical modulation liquid crystal element and variable optical attenuator - Google Patents

Optical modulation liquid crystal element and variable optical attenuator Download PDF

Info

Publication number
JP2009294604A
JP2009294604A JP2008150704A JP2008150704A JP2009294604A JP 2009294604 A JP2009294604 A JP 2009294604A JP 2008150704 A JP2008150704 A JP 2008150704A JP 2008150704 A JP2008150704 A JP 2008150704A JP 2009294604 A JP2009294604 A JP 2009294604A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
polarization
refractive index
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008150704A
Other languages
Japanese (ja)
Other versions
JP2009294604A5 (en
Inventor
Yoshiharu Oi
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008150704A priority Critical patent/JP2009294604A/en
Publication of JP2009294604A publication Critical patent/JP2009294604A/en
Publication of JP2009294604A5 publication Critical patent/JP2009294604A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical modulation liquid crystal element capable of adjusting light quantity stably and quickly over a wide wavelength range in accordance with an application voltage irrespective of a polarization state of incident light, and to provide a variable optical attenuator. <P>SOLUTION: The optical modulation liquid crystal element includes: a polarization separating element which deflects light of first linear polarization and light of second linear polarization by the same angle in axially symmetrical directions to each other with respect to polarization components of the first linear polarization and the second linear polarization vertical to each other of the incident light, on the basis of the light axis of incident light; and a reflection type liquid crystal element in which the polarization states of transmission light of the first linear polarization and the second linear polarization are changed in accordance with the application voltage. The reflection type liquid crystal element includes a polarization modulation element and a reflective layer, wherein the polarization modulation element is such a liquid crystal cell that a liquid crystal layer is sandwiched between substrates each having an electrode, and retardation value changes in accordance with the voltage applied between the electrodes. The optical modulation liquid crystal element is characterized in that the polarization separation element, the polarization modulation element and the reflective layer are arranged in the order from the incident light side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、入射光の偏光状態に依存せず、印加する電圧の大きさに応じて反射して進行する光の方向を変える光変調液晶素子と可変光減衰器に関する。   The present invention relates to a light modulation liquid crystal element and a variable optical attenuator that change the direction of light that reflects and travels in accordance with the magnitude of an applied voltage, without depending on the polarization state of incident light.

通信分野において特定の帯域を有する光を光ファイバーなどの通信媒体によって通信するとき、例えば光ファイバー間や半導体レーザ光源と光ファイバー間や光ファイバーと光検出器間に配置されて用いられる光学素子として、伝送する光量を可変できる可変光減衰器が知られている。可変光減衰器は、電圧制御により液晶層に印加する電圧の大きさに応じて伝送する光量を制御することができるものである。また、投射型表示装置では、投射する光量を時間的、空間的に変化させて像を映し出すものであり、電圧制御により液晶層に印加する電圧の大きさに応じて像を映し出すものである。   When communicating light with a specific band in a communication field using a communication medium such as an optical fiber, for example, the amount of light transmitted as an optical element used between an optical fiber, between a semiconductor laser light source and an optical fiber, or between an optical fiber and a photodetector. There is known a variable optical attenuator capable of changing the above. The variable optical attenuator can control the amount of light transmitted according to the magnitude of the voltage applied to the liquid crystal layer by voltage control. The projection display apparatus projects an image by changing the amount of light to be projected temporally and spatially, and projects an image according to the magnitude of a voltage applied to the liquid crystal layer by voltage control.

この従来の可変光減衰器の一例として、例えば特許文献1として図18に示すような透過型の液晶素子300が提案されている。液晶素子300は、電極付き基板間に液晶層が狭持され、電極間に印加される電圧の大きさに応じて透過光のリタデーション値が変化する液晶セル310と、液晶セル310の光入射側に配置された第1の偏光性ビームスプリッタ320と液晶セル310の光出射側に配置された第2の偏光性ビームスプリッタ330とを備える。液晶素子300へ入射する直交した2つの直線偏光は、第1の偏光性ビームスプリッタ320により偏光方向に応じて進行経路が互いに異なって液晶セルを透過し、液晶セル310が特定のリタデーション値を有するとき第2の偏光性ビームスプリッタ330を透過する前記2つの直線偏光は、液晶素子の入射光と同じ進行方向に互いにそろって液晶素子を出射する。このように、引用文献1の液晶素子では、第1の偏光性ビームスプリッタ320および第2の偏光性ビームスプリッタ330として、具体的に偏光性の回折格子を用いる記載がされており、出射した光のうち入射方向と同じ方向で直進透過する光を集光させ、直進透過する光の成分のみ伝送させる可変光減衰器が提案されている。   As an example of this conventional variable optical attenuator, a transmissive liquid crystal element 300 as shown in FIG. The liquid crystal element 300 includes a liquid crystal cell 310 in which a liquid crystal layer is sandwiched between substrates with electrodes, and the retardation value of transmitted light changes according to the magnitude of a voltage applied between the electrodes, and the light incident side of the liquid crystal cell 310 A first polarizing beam splitter 320 disposed on the liquid crystal cell 310 and a second polarizing beam splitter 330 disposed on the light exit side of the liquid crystal cell 310. Two orthogonal linearly polarized light incident on the liquid crystal element 300 are transmitted through the liquid crystal cell with different traveling paths depending on the polarization direction by the first polarizing beam splitter 320, and the liquid crystal cell 310 has a specific retardation value. Sometimes, the two linearly polarized light beams transmitted through the second polarizing beam splitter 330 are aligned with each other in the same traveling direction as the incident light of the liquid crystal element and are emitted from the liquid crystal element. Thus, in the liquid crystal element of the cited document 1, there is a description that specifically uses a polarizing diffraction grating as the first polarizing beam splitter 320 and the second polarizing beam splitter 330, and the emitted light Among them, there has been proposed a variable optical attenuator that condenses light that travels straight in the same direction as the incident direction and transmits only the light component that travels straight.

この他の例として、特許文献2には図19に示すような投射型表示装置400が提案されている。投射型表示装置400は、投射レンズ450の光軸に対して斜め方向に進行する光源からの光がレンズ410、偏光分離器420、液晶パネル430の順に透過し、主要鏡440で反射される。このように反射されて投射レンズ450の光軸方向に進行する光を投射する機能を有するものである。図19(a)と図19(b)は、それぞれ液晶パネルに異なる電圧を印加する場合の光の様子を示すものである。   As another example, Patent Document 2 proposes a projection display device 400 as shown in FIG. In the projection display device 400, light from a light source traveling in an oblique direction with respect to the optical axis of the projection lens 450 is transmitted in the order of the lens 410, the polarization separator 420, and the liquid crystal panel 430, and is reflected by the main mirror 440. It has a function of projecting the light reflected in this way and traveling in the optical axis direction of the projection lens 450. FIG. 19A and FIG. 19B show the state of light when different voltages are applied to the liquid crystal panel.

具体的にこの偏光分離器420に用いられる偏光性の回折格子421は、互いに直交する第1の直線偏光と第2の直線偏光のうちいずれか一方を直進透過し、他方を回折する機能を有する。図19(a)は、液晶パネル430によって第1の直線偏光を第2の直線偏光に、第2の直線偏光を第1の直線偏光に変換する電圧を印加したときの光の様子である。このとき、液晶パネル430と主要鏡440により液晶パネル430を往復透過した第1の直線偏光および第2の直線偏光が、図19(a)に示す特定の印加電圧によってそれぞれ第2の直線偏光および第1の直線偏光に変換され、往路にて偏光性の回折格子421を直進透過した第1の直線偏光の入射光は復路で偏光性の回折格子421により1次回折され、往路にて偏光性の回折格子421により1次回折された第2の直線偏光の入射光は復路で偏光性の回折格子421を直進透過する。図19(b)では、液晶パネル430を往復する光の偏光状態は変化せず、第1の直線偏光および第2の直線偏光は、偏光性の回折格子421を往路、復路とも直進透過するかまたは、往路、復路とも1次回折をするため、Z方向に光は進行しない。そして、第1および第2の直線偏光の光は何れも同一方向に揃ってレンズ410により投射レンズ450に集光された後液晶パネルの画像がスクリーン上に投影される投射型表示装置400が提案されている。   Specifically, the polarizing diffraction grating 421 used in the polarization separator 420 has a function of transmitting either one of the first linearly polarized light and the second linearly polarized light orthogonal to each other in a straight line and diffracting the other. . FIG. 19A shows the state of light when the liquid crystal panel 430 applies a voltage for converting the first linearly polarized light into the second linearly polarized light and the second linearly polarized light into the first linearly polarized light. At this time, the first linearly polarized light and the second linearly polarized light transmitted and received through the liquid crystal panel 430 by the liquid crystal panel 430 and the main mirror 440 are respectively converted into the second linearly polarized light and the specific applied voltage shown in FIG. The incident light of the first linearly polarized light that has been converted into the first linearly polarized light and travels straight through the polarizing diffraction grating 421 in the forward path is first-order diffracted by the polarizing diffraction grating 421 in the backward path, and is polarized in the forward path. The incident light of the second linearly polarized light first-order diffracted by the diffraction grating 421 passes straight through the polarizing diffraction grating 421 on the return path. In FIG. 19B, the polarization state of the light traveling back and forth through the liquid crystal panel 430 does not change, and does the first linearly polarized light and the second linearly polarized light pass straight through the polarizing diffraction grating 421 in both the forward path and the backward path? Or, since the first-order diffraction is performed in both the forward path and the return path, the light does not travel in the Z direction. Then, the projection display device 400 is proposed in which the first and second linearly polarized lights are all aligned in the same direction and condensed on the projection lens 450 by the lens 410, and then the image of the liquid crystal panel is projected on the screen. Has been.

特開2004−37480号公報JP 2004-37480 A 特開平4−230733号公報JP-A-4-230733

しかしながら、特許文献1の構成において、高い消光比の可変光減衰器を実現するためには、偏光変調手段である液晶セル310の印加電圧に応じたリタデーション値の変化量が入射光の波長λに対してλ/2以上必要となり、液晶層が比較的厚い構成となる。一般に印加電圧に応じた液晶セルの応答時間は液晶層の厚さの二乗に比例するため、電圧の変化に対して液晶の応答時間が長いといった問題があった。とくに、1.55μmの波長帯で使用される光通信用途においては可視波長に比べてリタデーション値の大きな変化量が必要となり、この応答時間は可変光減衰器としての用途の制約となる。   However, in the configuration of Patent Document 1, in order to realize a variable optical attenuator with a high extinction ratio, the amount of change in the retardation value corresponding to the voltage applied to the liquid crystal cell 310 serving as the polarization modulation means becomes the wavelength λ of the incident light. On the other hand, λ / 2 or more is required, and the liquid crystal layer is relatively thick. In general, the response time of the liquid crystal cell corresponding to the applied voltage is proportional to the square of the thickness of the liquid crystal layer, so that there is a problem that the response time of the liquid crystal is long with respect to a change in voltage. In particular, an optical communication application used in the 1.55 μm wavelength band requires a large amount of change in the retardation value compared to the visible wavelength, and this response time is a limitation of the application as a variable optical attenuator.

また、図18の液晶素子300において、第1の偏光性ビームスプリッタ320と第2の偏光性ビームスプリッタ330に入射する光のうち屈折率差のない偏光方向である常光偏光は回折されることなく高い効率で直進透過するが、常光偏光と直交する異常光偏光は第1の偏光性ビームスプリッタ320および第2の偏光性ビームスプリッタ330で回折され、1次回折効率に応じて直進透過光に光損失が生じやすく、その結果、出射光強度の偏光依存性が生じやすいといった問題があった。   Further, in the liquid crystal element 300 of FIG. 18, ordinary light polarized light having a polarization direction with no difference in refractive index out of light incident on the first polarizing beam splitter 320 and the second polarizing beam splitter 330 is not diffracted. The extraordinary light polarization orthogonal to the ordinary light polarization is diffracted by the first polarizing beam splitter 320 and the second polarizing beam splitter 330, but is transmitted to the straight transmitted light according to the first-order diffraction efficiency. There is a problem that loss tends to occur, and as a result, the polarization dependence of the emitted light intensity tends to occur.

また、特許文献2の構成では、光源から出射して投射レンズ450を透過してスクリーン上に投影される光は、偏光分離器420を構成する偏光性の回折格子により1回回折する1次回折光であるため、入射光が複数の波長あるいは波長帯域を有する場合、偏光性の回折格子による1次回折光となって出射する角度が波長に依存する。その結果、レンズ410による集光点が波長により異なるといった問題が生じ、投射型表示装置として用いた場合は投射画像が色収差により解像度が劣化する。また、特許文献2に記載の光学素子を利用する別の光学系として、入射光としてレーザや光ファイバーから出射する点光源に相当する光を用い、光変調素子の出射光を集光して光検出器で受光する光学系を想定する場合、広い波長帯域の光に対して回折して出射する角度の幅が大きくなるため、受光面積の大きな光検出器が必要となり、検出性能の劣化を招く。さらに、特許文献2に記載の光学素子を光ファイバーで受光して光を伝搬する場合も同様に、集光点位置が波長によりずれるため光ファイバーとの結合効率が低下し、伝搬効率の波長依存性が生じるという問題があった。   In the configuration of Patent Document 2, the light emitted from the light source, transmitted through the projection lens 450 and projected onto the screen is first-order diffracted light that is diffracted once by the polarizing diffraction grating that constitutes the polarization separator 420. Therefore, when the incident light has a plurality of wavelengths or wavelength bands, the angle at which the incident light is emitted as the first-order diffracted light by the polarizing diffraction grating depends on the wavelength. As a result, there arises a problem that the condensing point by the lens 410 varies depending on the wavelength, and when used as a projection display device, the resolution of the projected image is deteriorated due to chromatic aberration. Further, as another optical system using the optical element described in Patent Document 2, light corresponding to a point light source emitted from a laser or an optical fiber is used as incident light, and the light emitted from the light modulation element is condensed to detect light. Assuming an optical system that receives light with a detector, the width of the angle at which light is diffracted and emitted with respect to light in a wide wavelength band becomes large, so that a photodetector with a large light receiving area is required, leading to deterioration in detection performance. Furthermore, when the optical element described in Patent Document 2 is received by an optical fiber and propagates the light, similarly, the condensing point position is shifted depending on the wavelength, so that the coupling efficiency with the optical fiber is lowered, and the wavelength dependence of the propagation efficiency is reduced. There was a problem that occurred.

本発明は、従来の液晶素子およびそれを用いた可変光減衰器における課題を解決し、高速に応答するとともに入射する光の波長の変化に対して出射光方向が安定し、入射光の偏光状態に関わらず印加電圧の大きさに応じて直進透過光の効率が変化する光変調液晶素子およびそれを用いた可変光減衰器を提供することを目的とする。   The present invention solves the problems in the conventional liquid crystal element and the variable optical attenuator using the same, responds at high speed, stabilizes the direction of outgoing light against changes in the wavelength of incident light, and changes the polarization state of incident light. It is an object of the present invention to provide a light modulation liquid crystal element in which the efficiency of linearly transmitted light changes according to the magnitude of an applied voltage, and a variable optical attenuator using the same.

本願発明は、上記問題を解決するためになされたものであり、入射光の光強度を変調する光変調液晶素子であって、前記光変調液晶素子は、偏光分離素子と、反射型液晶素子とで構成され、前記偏光分離素子は、透光性基板上に複屈折性材料からなる断面がブレーズ形状またはブレーズ形状を階段状に近似した擬似ブレーズ形状の複屈折性材料層と光学的に透明な光学材料層からなる偏光回折素子または、複屈折性材料の遅相軸が直交するように貼り合わされてなるウォラストンプリズムであり、前記複屈折材料層のブレーズ形状または擬似ブレーズ形状を有する格子の長手方向、または前記ウォラストンプリズムの貼り合わせの界面の長手方向が、前記複屈折材料の遅相軸方向または進相軸方向と略一致し、前記複屈折材料層の前記長手方向または前記ウォラストンプリズムの前記長手方向と平行する、偏光方向を第1の偏光方向、前記第1の偏光方向と直交する偏光方向を第2の偏光方向として、前記第1の偏光方向に対する前記複屈折材料層の屈折率と前記光学材料層の屈折率との差、または前記第1の偏光方向に対する前記ウォラストンプリズムの屈折率の差をΔn(≠0)、前記第2の偏光方向に対する前記複屈折材料層の屈折率と前記光学材料層の屈折率との差、または前記第2の偏光方向に対する前記ウォラストンプリズムの屈折率の差をΔn(≠0)とするとき、ΔnとΔnとが略等しく、前記反射型液晶素子は、電極と、前記電極より印加される電圧の大きさによってリタデーション値を変化させる液晶層を含む偏光変調素子と、前記液晶層に入射した光を正規反射させる反射層とを備えた、光変調液晶素子を提供する。 The present invention has been made to solve the above problems, and is a light modulation liquid crystal element that modulates the light intensity of incident light. The light modulation liquid crystal element includes a polarization separation element, a reflective liquid crystal element, and the like. The polarization separating element is optically transparent with a birefringent material layer having a cross section made of a birefringent material on a translucent substrate and having a blazed shape or a pseudo-blazed shape approximating a blazed shape to a step shape. A polarization diffraction element made of an optical material layer or a Wollaston prism bonded so that the slow axes of the birefringent materials are orthogonal to each other, and the longitudinal direction of the grating having the blazed shape or the pseudo-blazed shape of the birefringent material layer Direction, or the longitudinal direction of the bonding interface of the Wollaston prism substantially coincides with the slow axis direction or the fast axis direction of the birefringent material, and the longitudinal direction of the birefringent material layer Alternatively, the polarization direction parallel to the longitudinal direction of the Wollaston prism is defined as a first polarization direction, and a polarization direction orthogonal to the first polarization direction is defined as a second polarization direction. The difference between the refractive index of the refractive material layer and the refractive index of the optical material layer, or the difference of the refractive index of the Wollaston prism with respect to the first polarization direction is Δn 1 (≠ 0), and the difference with respect to the second polarization direction. When the difference between the refractive index of the birefringent material layer and the refractive index of the optical material layer, or the difference of the refractive index of the Wollaston prism with respect to the second polarization direction is Δn 2 (≠ 0), Δn 1 And Δn 2 are substantially equal to each other, and the reflective liquid crystal element is incident on the liquid crystal layer, a polarization modulation element including an electrode, a liquid crystal layer that changes a retardation value according to a voltage applied from the electrode, and the liquid crystal layer Provided is a light modulation liquid crystal element including a reflective layer for regularly reflecting light.

この構成により、偏光分離手段で入射する光のうち第1の偏光方向の光と第2の偏光方向の光とを入射する光軸に対して軸対称に分離し、分離して進行したこれら2つの成分の偏光が偏光変調手段を透過して反射手段で正規反射されて逆方向に進行する。このとき、偏光変調手段に印加する電圧によって液晶のリタデーション値を変化させることで、これら2つの成分の偏光の光変調液晶素子を出射する光の進行方向を、偏光成分に依存せずに変化させ、特定の方向に出射する光の光量の大きさを制御することができる。さらに、光は光変調液晶素子を往復し2回の回折を発現するので、広い波長帯域の光に対して特定の方向に出射する光の光量の大きさを制御することができる。なお、ここでいう略等しいとは、ずれが±10%以内であるものとする。   With this configuration, the light having the first polarization direction and the light having the second polarization direction out of the light incident by the polarization separation means are separated in an axial symmetry with respect to the incident optical axis, and the two proceeded separately. The polarized light of one component passes through the polarization modulation means, is regularly reflected by the reflection means, and travels in the opposite direction. At this time, by changing the retardation value of the liquid crystal according to the voltage applied to the polarization modulation means, the traveling direction of the light emitted from the light modulation liquid crystal element having the polarization of these two components is changed without depending on the polarization component. The amount of light emitted in a specific direction can be controlled. Furthermore, since the light reciprocates through the light modulation liquid crystal element and expresses diffraction twice, the amount of light emitted in a specific direction with respect to light in a wide wavelength band can be controlled. Note that “substantially equal” here means that the deviation is within ± 10%.

また、前記偏光分離素子は、前記偏光回折素子であり、前記偏光回折素子は、1つの前記複屈折性材料層と前記複屈折材料層の少なくとも凹部を充填するように1つの前記光学材料層を有し、前記偏光回折素子の前記光学材料層は、光学的に等方性な均質屈折率透明材料層であって、前記複屈折材料層の常光屈折率をn、異常光屈折率をn、前記均質屈折率透明材料層の屈折率をnとするとき、nはnとnの実質的に中間の値を有するとともに、入射する光のうち1次回折効率が最大値となる波長を波長λとするとき、前記複屈折性材料からなる断面がブレーズ形状では、0.7×λ/|n−n|≦d≦1.3×λ/|n−n|を満たし、前記複屈折性材料からなる断面が擬似ブレーズ形状では、0.85×λ/|n−n|≦d≦1.15×λ/|n−n|を満たすように、前記複屈折材料層からなる偏光性回折格子の深さdが設定されている上記に記載の光変調液晶素子を提供する。 The polarization separation element is the polarization diffraction element, and the polarization diffraction element includes one optical material layer so as to fill at least the concave portion of the one birefringent material layer and the birefringent material layer. And the optical material layer of the polarization diffraction element is an optically isotropic homogeneous refractive index transparent material layer, wherein the ordinary refractive index of the birefringent material layer is n o , and the extraordinary refractive index is n e, wherein when the refractive index of the homogeneous refractive index transparent material layer and n s, n s is and having a substantially intermediate value between n o and n e, 1-order diffraction efficiency is maximum among the incident light when the wavelength lambda 0 the wavelength at which the sectional blaze shape composed of birefringent material, 0.7 × λ 0 / | n e -n s | ≦ d ≦ 1.3 × λ 0 / | n e -n s | a filled, the cross-section pseudo blazed shape composed of the birefringent material, 0. 5 × λ 0 / | n e -n s | ≦ d ≦ 1.15 × λ 0 / | n e -n s | to meet, the depth d of the polarization diffraction grating consisting of the birefringent material layer The light modulation liquid crystal element described above is provided.

また、前記深さdが、λ/|n−n|に略等しいとき、前記複屈折性材料からなる断面がブレーズ形状では、0.77×λ≦λ≦1.43×λを満たし、前記複屈折性材料からなる断面が擬似ブレーズ形状では、0.87×λ≦λ≦1.18×λを満たすλの光が入射する上記に記載の光変調液晶素子を提供する。 In addition, when the depth d is substantially equal to λ 0 / | n e −ns s , 0.77 × λ 0 ≦ λ ≦ 1.43 × λ when the cross section made of the birefringent material is blazed. The light modulation liquid crystal element according to the above, in which light having a wavelength of λ satisfying 0.87 × λ 0 ≦ λ ≦ 1.18 × λ 0 is incident when the cross section made of the birefringent material satisfies 0 and has a pseudo-blazed shape. provide.

また、前記偏光分離素子は、前記偏光回折素子であり、前記偏光回折素子は、前記複屈折性材料層を有する1対の前記透光性基板を有するとともに、1対の前記複屈折材料層の前記長手方向が一致し、前記複屈折材料層の少なくとも凹部を充填する前記光学材料層を有し、前記偏光回折素子の前記光学材料層は、光学的に等方性な均質屈折率透明材料層であって、前記複屈折材料層の常光屈折率をn、異常光屈折率をn、前記均質屈折率透明材料層の屈折率をnとするとき、一対の前記複屈折材料層の遅相軸方向が互いに直交するとともに前記屈折率nは、前記常光屈折率nまたは異常光屈折率nのいずれか一方に実質的に等しいとともに、入射する光のうち1次回折効率が最大値となる波長を波長λとするとき、前記複屈折性材料からなる断面がブレーズ形状では、0.7×λ/|n−n|≦d≦1.3×λ/|n−n|を満たし、前記複屈折性材料からなる断面が擬似ブレーズ形状では、0.85×λ/|n−n|≦d≦1.15×λ/|n−n|を満たすように、前記複屈折材料層からなる記偏光回折格子の深さdが設定されている上記に記載の光変調液晶素子を提供する。 The polarization separation element is the polarization diffraction element, and the polarization diffraction element includes a pair of the light-transmitting substrates having the birefringent material layer and a pair of the birefringent material layers. The optical material layer has the same longitudinal direction and fills at least the concave portion of the birefringent material layer, and the optical material layer of the polarization diffraction element is an optically isotropic homogeneous refractive index transparent material layer a is, ordinary refractive index n o of the birefringent material layer, the extraordinary refractive index n e, the refractive index of the homogeneous refractive index transparent material layer when the n s, a pair of the birefringent material layer the refractive index n s with the slow axis direction are perpendicular to each other, as well as substantially equal to one of the ordinary refractive index n o or the extraordinary refractive index n e, is the first-order diffraction efficiency of the incident light when the wavelength lambda 0 the wavelength at which the maximum value, the double The cross section blaze shape composed of folding material, 0.7 × λ 0 / | n e -n o | ≦ d ≦ 1.3 × λ 0 / | n e -n o | a filled, the birefringent material the pseudo blazed shape made of cross section, 0.85 × λ 0 / | n e -n o | ≦ d ≦ 1.15 × λ 0 / | n e -n o | so as to satisfy, the birefringent material layer The light modulation liquid crystal element according to the above, in which the depth d of the polarization diffraction grating is set.

また、前記深さdが、λ/|n−n|に略等しいとき、前記複屈折性材料からなる断面がブレーズ形状では、0.77×λ≦λ≦1.43×λを満たし、前記複屈折性材料からなる断面が擬似ブレーズ形状では、0.87×λ≦λ≦1.18×λを満たすλの光が入射する上記に記載の光変調液晶素子を提供する。なお、ここでいう略等しい、実質的に等しいとは、ずれが±10%以内であるものとする。 When the depth d is substantially equal to λ 0 / | n e −n o |, the cross section made of the birefringent material is 0.77 × λ 0 ≦ λ ≦ 1.43 × λ when the cross section made of the birefringent material is blazed. The light modulation liquid crystal element according to the above, in which light having a wavelength of λ satisfying 0.87 × λ 0 ≦ λ ≦ 1.18 × λ 0 is incident when the cross section made of the birefringent material satisfies 0 and has a pseudo-blazed shape. provide. Note that the term “substantially equal” and “substantially equal” here means that the deviation is within ± 10%.

この構成により、偏光分離手段に入射する光が高い1次回折効率で出射するので、光利用効率が高く、特定の方向に出射する光の光量の大きさを変える制御性を高めることができるとともに設計自由度が高い光変調液晶素子を実現できる。   With this configuration, since the light incident on the polarization separation means is emitted with a high first-order diffraction efficiency, the light utilization efficiency is high, and controllability to change the amount of light emitted in a specific direction can be improved. A light modulation liquid crystal element with a high degree of design freedom can be realized.

また、前記偏光分離手段は、前記複屈折材料層および前記光学材料からなる層がいずれも光学的に複屈折性を示す三角柱形状の直角プリズムからなり、2つの前記直角プリズムの遅相軸が互いに直交しているウォラストンプリズムである上記に記載の光変調液晶素子を提供する。   In addition, the polarization separating means includes a triangular prism-shaped right-angle prism in which both the birefringent material layer and the optical material layer are optically birefringent, and the slow axes of the two right-angle prisms are mutually connected. The light modulation liquid crystal element described above is a Wollaston prism that is orthogonal.

この構成により、第1の偏光方向と第2の偏光方向の光が光軸に対して軸対象となる方向へ屈折させることができ、高い効率で偏光分離性を高くすることができる。   With this configuration, light in the first polarization direction and the second polarization direction can be refracted in a direction that is an axis object with respect to the optical axis, and polarization separation can be increased with high efficiency.

また、前記偏光変調手段は、前記液晶単体セルと位相板からなる液晶セルであり、前記液晶単体セルに印加する電圧がVのとき、前記波長λの光が前記液晶セルを往復するときのリタデーション値がλ/2であるとともに、前記液晶単体セルに印加する電圧がV(V≠V)のとき、前記波長λの光が前記液晶セルを往復するときのリタデーション値がゼロである上記に記載の光変調液晶素子を提供する。 The polarization modulation means is a liquid crystal cell composed of the single liquid crystal cell and a phase plate, and when the voltage applied to the single liquid crystal cell is V 1 and the light having the wavelength λ 0 reciprocates through the liquid crystal cell. with the retardation value of is λ 0/2, when the voltage applied to the liquid crystal alone cell is V 2 (V 1 ≠ V 2 ), the retardation value when the light of the wavelength lambda 0 to reciprocate the liquid crystal cell The light modulation liquid crystal device according to the above, wherein is zero.

この構成により、特定の方向に出射する光の光量の大きさが最大となるときの液晶に印加する電圧値と最小となる電圧値との差を小さくすることができるので、低電圧駆動が可能となる。また、透過型液晶単体セルに比べて液晶層が薄くできるため、光量を可変するときの応答時間を短くすることができる。その結果、より制御性のよい光変調液晶素子を実現できる。   With this configuration, it is possible to reduce the difference between the voltage value applied to the liquid crystal and the minimum voltage value when the amount of light emitted in a specific direction is maximum, so low-voltage driving is possible. It becomes. In addition, since the liquid crystal layer can be made thinner than the transmissive liquid crystal single cell, the response time when the amount of light is varied can be shortened. As a result, a light modulation liquid crystal element with better controllability can be realized.

さらに、光源と、集光レンズと、前記集光レンズを透過した光の進行方向に上記に記載の光変調液晶素子と、前記光変調液晶素子で反射されて出射する特定の進行方向の光を受光する受光手段からなる可変光減衰器であって、前記光変調液晶素子へ印加する電圧の大きさに応じて前記受光手段で受光する光量が変化する可変光減衰器を提供する。   Further, the light modulation liquid crystal element described above in the traveling direction of the light transmitted through the light collecting lens, the light source, the condensing lens, and the light in a specific traveling direction reflected and emitted by the light modulation liquid crystal element. A variable optical attenuator comprising a light receiving means for receiving light, wherein the amount of light received by the light receiving means changes according to the magnitude of a voltage applied to the light modulation liquid crystal element.

この構成により、入射する光の偏光状態に依存せず、光変調液晶素子から特定の方向に出射した光のみを取り出して受光または伝搬させる、応答時間が短く制御性のよい可変光減衰器を実現することができる。   This configuration realizes a variable optical attenuator with short response time and good controllability that takes out only the light emitted from the light modulation liquid crystal element in a specific direction and receives or propagates it, regardless of the polarization state of the incident light. can do.

本発明は、波長帯域の広い入射光において偏光状態に依存せずに印加する電圧の大きさによって特定の方向に反射して進行する光の光量の大きさを制御できるとともに、高速の応答が可能な光変調液晶素子および光減衰器を提供することができる。   The present invention can control the magnitude of the amount of light reflected and traveling in a specific direction by the magnitude of the applied voltage regardless of the polarization state in incident light with a wide wavelength band, and can respond quickly. A light modulation liquid crystal element and an optical attenuator can be provided.

(第1の実施形態)
本発明の光変調液晶素子100の基本構成を図1、図2に示す。光変調液晶素子100は、光が入射する側から偏光分離素子101、偏光変調素子102、反射層16の順に構成されている。図1および図2において光がZ方向に進行する様子を示すが、入射光の偏光方向のうち、図1に示すX方向の偏光方向(以下、S偏光という)の光とY方向の偏光方向の光(以下、P偏光という)と、それぞれについて考える。ここでは、光変調液晶素子100内におけるS偏光の光の進行方向とP偏光の光の進行方向とが異なるように制御し、反射層16によって反射され、光変調液晶素子100から出射して特定の方向に進行する光の光量を、遮光手段などで制御するものである。また、これらの素子などは分離して配置されていてもよいが一体化されていると小型化の実現や特性を安定化することができ好ましい。本実施形態では、以下に偏光分離素子101と、偏光変調素子102および反射層16、について取り得る形態について説明する。なお、偏光変調素子102と反射層16をまとめて反射型液晶素子104とする。
(First embodiment)
A basic configuration of the light modulation liquid crystal element 100 of the present invention is shown in FIGS. The light modulation liquid crystal element 100 includes a polarization separation element 101, a polarization modulation element 102, and a reflection layer 16 in this order from the light incident side. FIG. 1 and FIG. 2 show how light travels in the Z direction. Among the polarization directions of incident light, the light in the X direction polarization direction (hereinafter referred to as S polarization) and the polarization direction in the Y direction shown in FIG. And light (hereinafter referred to as P-polarized light). Here, the traveling direction of the S-polarized light and the traveling direction of the P-polarized light in the light modulation liquid crystal element 100 are controlled to be different from each other, reflected by the reflective layer 16, and emitted from the light modulation liquid crystal element 100 to be specified. The amount of light traveling in the direction is controlled by a light shielding means or the like. These elements and the like may be arranged separately. However, it is preferable that they are integrated because the miniaturization can be realized and the characteristics can be stabilized. In the present embodiment, the possible forms of the polarization separation element 101, the polarization modulation element 102, and the reflection layer 16 will be described below. Note that the polarization modulator 102 and the reflective layer 16 are collectively referred to as a reflective liquid crystal element 104.

1.偏光分離素子
具体的に光変調液晶素子100の構成要素である偏光分離素子101の機能について図3を用いて説明する。偏光分離素子101には−Z方向に進行する光が入射し、上記のようにS偏光の光とP偏光の光との進行方向が異なるように分離するが、このとき入射光の進行方向(光軸)を基準に互いに軸対称な方向にS偏光の光とP偏光の光を同じ角度θだけ偏向して進行する。また、図3において図示しない反射層によって反射された光がθの角度で逆方向から+Z方向に入射する場合、同じ角度θだけ偏向して光軸と平行する進行方向で出射する。
1. Polarization Separation Element Specifically, the function of the polarization separation element 101 that is a component of the light modulation liquid crystal element 100 will be described with reference to FIG. Light traveling in the −Z direction is incident on the polarization separation element 101 and is separated so that the traveling directions of the S-polarized light and the P-polarized light are different as described above. At this time, the traveling direction of the incident light ( S-polarized light and P-polarized light are deflected by the same angle θ in directions that are axially symmetric with respect to the optical axis). In addition, when light reflected by a reflection layer (not shown in FIG. 3) enters the + Z direction from the opposite direction at an angle θ, the light is deflected by the same angle θ and emitted in a traveling direction parallel to the optical axis.

次に、偏光分離素子として図4に偏光性回折格子を用いた偏光回折素子101aの模式図を示す。偏光回折素子101aは、断面が周期的な回折格子形状であって光学的に複屈折性を有する複屈折性材料層からなる偏光回折格子6と、偏光回折格子6の少なくとも凹部を充填する光学的に均質となる特性を有する均質屈折率透明材料からなる均質屈折率透明材料層7を一対の平行に配される透光性基板1および2で挟持された構造となっている。また、図4に示す偏光回折格子6の遅相軸方向は回折格子の長手方向と平行となるX方向とするが、遅相軸方向がY方向であってもよい。回折格子形状は、断面形状が鋸歯状となるいわゆるブレーズ形状や、ブレーズ形状を階段状に近似した擬似ブレーズ形状にするものであり、S偏光およびP偏光の偏光成分を高い効率で偏向分離できる。   Next, FIG. 4 shows a schematic diagram of a polarization diffraction element 101a using a polarizing diffraction grating as a polarization separation element. The polarization diffraction element 101a has a diffraction grating shape having a periodic cross section and an optically birefringent material layer having a birefringent material layer, and an optical element that fills at least the concave portion of the polarization diffraction grating 6. The homogeneous refractive index transparent material layer 7 made of a homogeneous refractive index transparent material having uniform characteristics is sandwiched between a pair of translucent substrates 1 and 2 arranged in parallel. Further, although the slow axis direction of the polarization diffraction grating 6 shown in FIG. 4 is the X direction parallel to the longitudinal direction of the diffraction grating, the slow axis direction may be the Y direction. The diffraction grating shape is a so-called blazed shape in which the cross-sectional shape is a sawtooth shape, or a pseudo blazed shape in which the blazed shape approximates a step shape, and can deflect and separate polarization components of S-polarized light and P-polarized light with high efficiency.

偏光回折格子6を構成する複屈折性材料は、屈折率異方性Δnを有し、Δnは常光屈折率nと異常光屈折率nとの差の絶対値(Δn=|n−n|)で表される。また、均質屈折率透明材料の屈折率nは、常光屈折率nと異常光屈折率nの平均値(n+n)/2に略等しい値となるように設定する。このようにすることでS偏光の光における偏光回折格子6の屈折率と均質屈折率透明材料層7の屈折率との差をΔn(≠0)、P偏光の光における偏光回折格子6の屈折率と均質屈折率透明材料層7の屈折率との差をΔn(≠0)、とすると、ΔnとΔnとが実質的に等しくなるため、光軸に対して軸対称な方向に同じ角度θだけ互いに偏向分離して出射するとともに同じ回折次数の回折効率は等しくなる。 Birefringent material forming the polarization diffraction grating 6 has a refractive index anisotropy [Delta] n, [Delta] n is the absolute value of the difference between the ordinary refractive index n o and extraordinary refractive index n e (Δn = | n e - n o |). The refractive index n s of the homogeneous refractive index transparent material is set to be substantially equal average value (n o + n e) / 2 of the ordinary refractive index n o and extraordinary refractive index n e. In this way, the difference between the refractive index of the polarization diffraction grating 6 in S-polarized light and the refractive index of the homogeneous refractive index transparent material layer 7 is Δn s (≠ 0), and the polarization diffraction grating 6 in P-polarized light has a difference. If the difference between the refractive index and the refractive index of the homogeneous refractive index transparent material layer 7 is Δn p (≠ 0), Δn s and Δn p are substantially equal to each other. And the same diffraction order, the diffraction efficiencies of the same diffraction orders are equal.

なお、透光性基板1、2は入射する光に対して透明であれば、樹脂板、樹脂フィルムなど種々の材料を用いることができるが、ガラスや石英ガラスなどの光学的等方性材料を用いると、透過光に複屈折性の影響を与えないため好ましい。また、複屈折性材料は、図示しない配向膜上に液晶モノマーを配して紫外線等で硬化させた高分子液晶で構成されているとよいが、これに限らず、水晶やLiNbO(ニオブ酸リチウム)のような複屈折のある単結晶を加工したり、複屈折性のある樹脂フィルムを加工したり、樹脂の射出成型品により作製してもよい。なお、配向膜は作製のプロセスで必要になる場合もあるが、複屈折性材料を加工する場合は配さなくてもよい。さらに、均質屈折率透明材料としては接着材や充填材として用いられる有機材料でもよいし、SiO膜(x、yはSiに対するOおよびNの原子数比)、SiO膜、Si膜、Al膜などの無機材料を用いてもよい。 As long as the transparent substrates 1 and 2 are transparent to incident light, various materials such as a resin plate and a resin film can be used. However, optically isotropic materials such as glass and quartz glass are used. When used, it is preferable because it does not affect the birefringence of the transmitted light. The birefringent material may be composed of a polymer liquid crystal in which a liquid crystal monomer is disposed on an alignment film (not shown) and cured with ultraviolet rays or the like, but is not limited thereto, and is not limited to quartz or LiNbO 3 (niobic acid). Alternatively, a single crystal having birefringence such as lithium) may be processed, a resin film having birefringence may be processed, or an injection molded product of resin may be used. The alignment film may be necessary in the manufacturing process, but may not be provided when processing the birefringent material. Further, the homogeneous refractive index transparent material may be an organic material used as an adhesive or a filler, or a SiO x N y film (where x and y are the atomic ratios of O and N to Si), SiO 2 film, Si 3 An inorganic material such as an N 4 film or an Al 2 O 3 film may be used.

ここで、ブレーズ形状の設計について具体的に説明する。入射光のうち特定の波長を波長λとし、この波長λの光が常光屈折率を感じる偏光方向(複屈折性材料の進相軸方向)および異常光屈折率を感じる偏光方向(複屈折性材料の遅相軸方向)に対する1次回折効率が最大になるようにする。また、凹凸の深さ、つまり偏光回折格子6の最大の厚さをdとするとき、凹凸部の位相差が、
2π×|n−n|×d/λ≒2π、
2π×|n−n|×d/λ≒2π、
となるように設計する。なお、ブレーズ形状は階段形状で近似した疑似ブレーズ形状の回折格子形状としてもよい。その場合、4段から16段程度の階段状の疑似ブレーズ形状とすることが好ましい。
Here, the design of the blaze shape will be specifically described. A specific wavelength of incident light is set to a wavelength λ 0, and a polarization direction in which the light of this wavelength λ 0 feels an ordinary refractive index (a fast axis direction of a birefringent material) and a polarization direction to sense an extraordinary light refractive index (birefringence) The first-order diffraction efficiency with respect to the slow axis direction of the active material is maximized. Further, when the depth of the unevenness, that is, the maximum thickness of the polarization diffraction grating 6 is d, the phase difference of the uneven portion is
2π × | n o −n s | × d / λ 0 ≈2π,
2π × | n e −n s | × d / λ 0 ≈2π,
Design to be The blazed shape may be a pseudo-blazed diffraction grating shape approximated by a staircase shape. In that case, it is preferable to have a staircase-like pseudo-blazed shape with 4 to 16 steps.

次に、回折光のうち1次回折効率を大きくするための偏光回折格子6の形状について説明する。1次回折光を効率よく発現するときの1次回折効率は、75%以上が好ましく、90%以上であればより好ましい。このように、1次回折効率が75%以上の大きな値とするためには、ブレーズ形状をした複屈折性材料層からなる偏光回折格子6の深さ(厚さ)dを調整することで実現できる。   Next, the shape of the polarization diffraction grating 6 for increasing the first-order diffraction efficiency of the diffracted light will be described. The first-order diffraction efficiency when efficiently expressing the first-order diffracted light is preferably 75% or more, and more preferably 90% or more. Thus, in order to make the first-order diffraction efficiency a large value of 75% or more, it is realized by adjusting the depth (thickness) d of the polarization diffraction grating 6 made of the blazed birefringent material layer. it can.

ここで、波長λの光が入射するとき、|n−n|×d/λに対する1次回折効率の計算結果を図5(a)に示す。また、1次回折効率が波長λで最大値となるように設計されているとき、波長λと波長λの比λ/λに対する1次回折効率の計算結果を図5(b)に示す。このように、波長λは、1次回折効率が最大値となる波長と定義できる。図5(a)には、断面がブレーズ形状の回折格子と、断面がステップ数(N)=4、8、16の擬似ブレーズ形状の回折格子の場合における特性を示すものである。なお、ブレーズ形状の断面模式図は、図5(c)に示すようにブレーズ形状の深さをdとし、擬似ブレーズ形状の断面模式図は、図5(d)に示すように擬似ブレーズ形状もブレーズ形状の深さdとして計算する。なお、図5(d)に示すように、擬似ブレーズ形状に加工するときの偏光回折格子6の物理的な厚さd´は、ステップ数Nの場合、d×(N−1)/Nに相当する。なお、ステップ数は、格子の1周期において異なる段差の数を示すものであり、1つのステップの幅はいずれも同じである。 Here, when light of wavelength λ 0 is incident, the calculation result of the first-order diffraction efficiency for | n o −n s | × d / λ 0 is shown in FIG. When the first-order diffraction efficiency is designed to be the maximum at the wavelength λ 0 , the calculation result of the first-order diffraction efficiency with respect to the ratio λ / λ 0 of the wavelength λ 0 and the wavelength λ is shown in FIG. Show. Thus, the wavelength λ 0 can be defined as the wavelength at which the first-order diffraction efficiency is maximum. FIG. 5A shows characteristics in the case of a diffraction grating having a blazed cross section and a pseudo blazed diffraction grating having a number of steps (N) = 4, 8, and 16 in cross section. In the cross-sectional schematic diagram of the blaze shape, the depth of the blaze shape is d as shown in FIG. 5C, and the cross-sectional schematic diagram of the pseudo blaze shape is also the pseudo blaze shape as shown in FIG. 5D. Calculated as the depth d of the blaze shape. As shown in FIG. 5D, the physical thickness d ′ of the polarization diffraction grating 6 when processing into a pseudo-blazed shape is d × (N−1) / N when the number of steps is N. Equivalent to. The number of steps indicates the number of different steps in one period of the lattice, and the width of one step is the same.

このとき、断面が擬似ブレーズ形状(N=4)であるとき、波長λの光が入射して75%以上の1次回折効率を実現するためには、深さdが、
0.85×λ/|n−n|≦d≦1.15×λ/|n−n| ・・・ (1)
を満たすことで1次回折光以外の回折による光の損失を少なくでき好ましい。このように、使用する波長帯域の任意の波長で、式(1)を満足することが、使用する波長帯域全体で高い回折効率が得られるので好ましい。以下の各式でも、同様に使用する波長帯域の任意の波長で各式を満足することが好ましい。また、λ/|n−n|=dとなるように設計すると、後述するように広い帯域の波長に対して75%以上の1次回折効率が得られる。なお、N=4より大きいステップ数を有する擬似ブレーズ形状であれば、図5(a)においてN=4における同じ深さdであるとき、1次回折効率はより大きい値となり、例えばN=8、16のステップ数に示すように、ブレーズ形状における1次回折効率の特性に近づく。
At this time, when the cross section is a pseudo blazed shape (N = 4), in order to realize a first-order diffraction efficiency of 75% or more when light having a wavelength λ 0 is incident, the depth d is:
0.85 × λ 0 / | n e -n s | ≦ d ≦ 1.15 × λ 0 / | n e -n s | ··· (1)
By satisfying the above, it is preferable because loss of light due to diffraction other than the first-order diffracted light can be reduced. As described above, it is preferable to satisfy the expression (1) at an arbitrary wavelength in the wavelength band to be used because high diffraction efficiency is obtained in the entire wavelength band to be used. In the following formulas, it is preferable to satisfy the formulas at any wavelength in the wavelength band to be used. Further, when designed so that λ 0 / | n e −n s | = d, a first-order diffraction efficiency of 75% or more can be obtained with respect to a wide band wavelength as will be described later. In the case of a pseudo blazed shape having a number of steps larger than N = 4, the first-order diffraction efficiency becomes larger when the depth d is the same at N = 4 in FIG. 5A. For example, N = 8 As shown by the number of steps of 16, the characteristics of the first-order diffraction efficiency in the blaze shape are approached.

また、断面がブレーズ形状であるとき、75%以上の1次回折効率を実現するためには、深さdが、
0.7×λ/|n−n|≦d≦1.3×λ/|n−n| ・・・ (2)
を満たすとよく、さらに90%以上の1次回折効率を実現するためには、深さdが、上記(1)式を満たすことで1次回折光以外の回折による光の損失をより少なくでき好ましい。
Further, when the cross section is a blazed shape, in order to realize a first-order diffraction efficiency of 75% or more, the depth d is:
0.7 × λ 0 / | n e -n s | ≦ d ≦ 1.3 × λ 0 / | n e -n s | ··· (2)
In order to realize a first-order diffraction efficiency of 90% or more, it is preferable that the depth d satisfies the above expression (1), so that the loss of light due to diffraction other than the first-order diffracted light can be reduced. .

次に、図5(b)より、波長λに対して1次回折効率が最大になるように回折格子を設計し、波長λと波長λの比λ/λに対する偏光回折格子6の1次回折効率を75%以上の値とするためには、断面が擬似ブレーズ形状(N=4)であるとき、
0.87×λ≦λ≦1.18×λ ・・・ (3)
を満たす波長λであることで回折による光の損失を少なくでき好ましい。なお、(3)式は、偏光回折格子深さd=λ/|n−n|の条件における入射波長λの取り得る範囲である。
Then, from FIG. 5 (b), 1-order diffraction efficiency is designed diffraction grating so as to maximize with respect to the wavelength lambda 0, the wavelength lambda 0 and polarization grating 6 for the ratio lambda / lambda 0 of the wavelength lambda In order to set the first-order diffraction efficiency to a value of 75% or more, when the cross section has a pseudo-blazed shape (N = 4),
0.87 × λ 0 ≦ λ ≦ 1.18 × λ 0 (3)
It is preferable that the wavelength λ satisfies the condition that light loss due to diffraction can be reduced. Note that equation (3), polarization grating depth d = λ 0 / | a possible range of the incident wavelength lambda at conditions | n e -n s.

また、断面がブレーズ形状であるとき、75%以上の1次回折効率を実現するためには、
0.77×λ≦λ≦1.43×λ ・・・ (4)
を満たすとよく、さらに90%以上の1次回折効率を実現するためには、深さdが、上記(3)式を満たすことで1次回折光以外の回折による光の損失をより少なくでき好ましい。
In order to realize a first-order diffraction efficiency of 75% or more when the cross section is a blazed shape,
0.77 × λ 0 ≦ λ ≦ 1.43 × λ 0 (4)
In order to realize a first-order diffraction efficiency of 90% or more, it is preferable that the depth d satisfies the above expression (3), so that the loss of light due to diffraction other than the first-order diffracted light can be reduced. .

このようにして得られた偏光回折格子6と均質屈折率透明材料層7からなる偏光回折素子101aに、常光屈折率を感じる偏光方向の光(P偏光の光)と異常光屈折率を感じる偏光方向の光(S偏光の光)が入射した場合、図4に模式的に示すように、YZ面内で入射光の進行方向に対して軸対称な方向にP偏光の光とS偏光の光とが同じ角度θだけ偏向分離して出射する。なお、偏光回折格子6の凹部を充填する光学材料として均質な屈折率を有する材料について説明したが、これに限らない。例えば、複屈折性を有する材料であってもよいが、この場合は、上記のようにΔnとΔnとが実質的に等しくなるようにするように光学軸の方向を調整することで実現ができる。 In the polarization diffraction element 101a composed of the polarization diffraction grating 6 and the homogeneous refractive index transparent material layer 7 thus obtained, polarized light that senses ordinary light refractive index (P-polarized light) and polarized light that senses extraordinary light refractive index. Direction light (S-polarized light) is incident, as schematically shown in FIG. 4, P-polarized light and S-polarized light in the YZ plane are symmetrical with respect to the traveling direction of the incident light. Are emitted with the same angle θ deflected and separated. In addition, although the material which has a homogeneous refractive index was demonstrated as an optical material with which the recessed part of the polarizing diffraction grating 6 was filled, it does not restrict to this. For example, implemented by may be a material having birefringence, in this case, to adjust the direction of the optical axis so as to make the [Delta] n s and [Delta] n p as described above are substantially equal Can do.

次に、図6(a)および図6(b)に偏光回折格子を用いた他の構成となる偏光回折素子101bおよび101cの模式図を示す。偏光回折素子101bは、偏光回折格子8および9を格子形状の長手方向を一致させて対向させるとともに、対向させたときにブレーズ形状の傾斜方向が同じになるように形成される。また、偏光回折格子8および9は偏光回折格子6と同様に複屈折性材料層からなり、それぞれ常光屈折率nと異常光屈折率nを有するとともに周期的な回折格子形状の1周期分である格子ピッチも互いに等しい。また、複屈折性材料層の遅相軸が、偏光回折格子8ではX軸方向、偏光回折格子9ではY軸方向となるようにする。さらに、対向させた偏光回折格子8および9の空隙には、均質屈折率透明材料として複屈折性材料層の常光屈折率nに略等しい屈折率nの材料からなる均質屈折率透明材料層10が充填されるように構成され、さらにこれらを透光性基板1および2で挟持する構成となる。また、偏光回折素子101cは、均質屈折率透明材料層10がなく偏光回折格子8および9が隣り合う構造となっている。 Next, FIGS. 6A and 6B are schematic diagrams of polarization diffraction elements 101b and 101c having other configurations using a polarization diffraction grating. The polarization diffraction element 101b is formed so that the polarization diffraction gratings 8 and 9 are opposed to each other with the longitudinal direction of the grating shape being coincident, and the blazed inclination directions are the same when opposed. Furthermore, the polarization diffraction grating 8 and 9 made of a birefringent material layer in the same manner as the polarization diffraction grating 6, one period of a periodic diffraction grating pattern with each having a ordinary refractive index n o and extraordinary refractive index n e Are also equal to each other. Further, the slow axis of the birefringent material layer is set to be in the X-axis direction in the polarization diffraction grating 8 and in the Y-axis direction in the polarization diffraction grating 9. Further, in the gap between the polarizing diffraction gratings 8 and 9 opposed to each other, a homogeneous refractive index transparent material layer made of a material having a refractive index n s substantially equal to the ordinary refractive index n o of the birefringent material layer as a homogeneous refractive index transparent material. 10 is filled, and these are further sandwiched between the light-transmitting substrates 1 and 2. Further, the polarization diffraction element 101c has a structure in which the polarization refractive gratings 8 and 9 are adjacent to each other without the homogeneous refractive index transparent material layer 10.

ここで、偏光回折素子101bにおいてブレーズ形状の偏光回折格子8および9の機能および設計について具体的に説明する。Z方向に進行する入射光がS偏光(X軸方向)の光では、偏光回折格子8と均質屈折率透明材料層10との間で屈折率差が生じるので回折し、均質屈折率透明材料層10と偏光回折格子9との間では屈折率差が生じないので直進透過する。一方、P偏光(Y軸方向)の光では、偏光回折格子8と均質屈折率透明材料層10との間で屈折率差が生じないので直進透過し、均質屈折率透明材料層10と偏光回折格子9との間では屈折率差が生じるので回折する。偏光回折素子101bでは、偏光回折格子8および9がいずれも複屈折性材料層からなり、S偏光の光およびP偏光の光いずれも屈折率差が生じるので互いに軸対称となる角度θで回折する。   Here, the function and design of the blaze-shaped polarization diffraction gratings 8 and 9 in the polarization diffraction element 101b will be specifically described. When the incident light traveling in the Z direction is S-polarized light (X-axis direction), a refractive index difference is generated between the polarization diffraction grating 8 and the homogeneous refractive index transparent material layer 10, so that the light is diffracted. Since there is no difference in refractive index between 10 and the polarizing diffraction grating 9, the light passes straight through. On the other hand, in the P-polarized light (Y-axis direction), there is no difference in the refractive index between the polarization diffraction grating 8 and the homogeneous refractive index transparent material layer 10, so that the light travels straight, and the uniform refractive index transparent material layer 10 and polarization diffraction. Since a difference in refractive index occurs between the grating 9 and the grating 9, diffraction occurs. In the polarization diffraction element 101b, both the polarization diffraction gratings 8 and 9 are made of a birefringent material layer, and both the S-polarized light and the P-polarized light have a refractive index difference, so that they are diffracted at an angle θ that is axially symmetrical with each other. .

また、偏光回折素子101bおよび101cおいて断面が擬似ブレーズ形状(N=4)であるとき、偏光回折格子8ではS偏光に対し、偏光回折格子9ではP偏光に対して75%以上の1次回折効率を実現するためには、上記と同様に図5(a)のX軸のnをnと置き換えて表すことができ、
0.85×λ/|n−n|≦d≦1.15×λ/|n−n| ・・・ (5)
を満たすブレーズ形状の厚さdであることで回折による光の損失を少なくでき好ましい。なお、N=4より大きいステップ数を有する擬似ブレーズ形状であれば、図5(a)においてN=4における同じ深さdであるとき、1次回折効率はより大きい値となり、例えばN=8、16のステップ数に示すように、ブレーズ形状における1次回折効率の特性に近づく。
Further, when the cross sections of the polarization diffraction elements 101b and 101c have a pseudo-blazed shape (N = 4), the primary diffraction of the polarization diffraction grating 8 with respect to S polarization and the polarization diffraction grating 9 with respect to P polarization of 75% or more. to achieve the folding efficiency may represent a n s X-axis in FIGS. 5 (a) in the same manner as described above by replacing the n o,
0.85 × λ 0 / | n e -n o | ≦ d ≦ 1.15 × λ 0 / | n e -n o | ··· (5)
The blazed shape thickness d satisfying the condition is preferable because light loss due to diffraction can be reduced. In the case of a pseudo blazed shape having a number of steps larger than N = 4, the first-order diffraction efficiency becomes larger when the depth d is the same at N = 4 in FIG. 5A. For example, N = 8 As shown by the number of steps of 16, the characteristics of the first-order diffraction efficiency in the blaze shape are approached.

また、偏光回折格子8と9の断面がブレーズ形状であるとき、偏光回折格子8ではS偏光に対し、偏光回折格子9ではP偏光に対して75%以上の1次回折効率を実現するためには、深さdが、
0.7×λ/|n−n|≦d≦1.3×λ/|n−n| ・・・ (6)
を満たすとよく、さらに90%以上の1次回折効率を実現するためには、深さdが、上記(5)式を満たすことで1次回折光以外の回折による光の損失をより少なくでき好ましい。
Further, when the cross sections of the polarization diffraction gratings 8 and 9 are blazed, the polarization diffraction grating 8 achieves a first-order diffraction efficiency of 75% or more for S-polarization and the polarization diffraction grating 9 for P-polarization. The depth d is
0.7 × λ 0 / | n e -n o | ≦ d ≦ 1.3 × λ 0 / | n e -n o | ··· (6)
In order to realize a first-order diffraction efficiency of 90% or more, it is preferable that the depth d satisfies the above expression (5), so that the loss of light due to diffraction other than the first-order diffracted light can be reduced. .

次に、波長λに対して1次回折効率が最大になるように回折格子を設計し、波長λと波長λとの比λ/λに対する偏光回折格子8ではS偏光に対し、偏光回折格子9ではP偏光に対して75%以上の1次回折効率を実現するためには、断面が擬似ブレーズ形状(N=4)であるとき、
0.87×λ≦λ≦1.18×λ ・・・ (7)
を満たす波長λであることで回折による光の損失を少なくでき好ましい。なお、(7)式は、偏光回折格子深さd=λ/|n−n|の条件における入射波長λの取り得る範囲である。
Next, the primary diffraction efficiency is designed diffraction grating so as to maximize with respect to the wavelength lambda 0, the wavelength lambda and the wavelength lambda 0 and the polarization S-polarized light in the diffraction grating 8 against a ratio lambda / lambda 0 of polarization In order to achieve a first-order diffraction efficiency of 75% or more with respect to P-polarized light in the diffraction grating 9, when the cross section has a pseudo-blazed shape (N = 4),
0.87 × λ 0 ≦ λ ≦ 1.18 × λ 0 (7)
It is preferable that the wavelength λ satisfies the condition that light loss due to diffraction can be reduced. Note that equation (7), polarization grating depth d = λ 0 / | a possible range of the incident wavelength lambda at conditions | n e -n o.

また、断面がブレーズ形状であるとき、75%以上の1次回折効率を実現するためには、
0.77×λ≦λ≦1.43×λ ・・・ (8)
を満たすとよく、さらに90%以上の1次回折効率を実現するためには、深さdが、上記(7)式を満たすことで1次回折光以外の回折による光の損失をより少なくでき好ましい。
In order to achieve a first-order diffraction efficiency of 75% or more when the cross section is blazed,
0.77 × λ 0 ≦ λ ≦ 1.43 × λ 0 (8)
In order to realize a first-order diffraction efficiency of 90% or more, it is preferable that the depth d satisfies the above formula (7), so that the loss of light due to diffraction other than the first-order diffracted light can be reduced. .

なお、偏光回折素子101bおよび101cの構成はこれに限らず、複屈折材料層の遅相軸が偏光回折格子8でY軸方向、偏光回折格子9でX軸方向であってもよく、均質屈折率透明材料10の屈折率は複屈折材料層の異常光屈折率と等しくしてもよい。また、ブレーズ形状の傾斜方向も図6では紙面上で右下がりであるが、紙面上で右上がりの方向であってもよく、図6において、S偏光の光における偏光回折格子8の屈折率と均質屈折率透明材料層10の屈折率との差をΔn(≠0)、P偏光の光における偏光回折格子9の屈折率と均質屈折率透明材料層10の屈折率との差をΔn(≠0)、とし、ΔnとΔnとが実質的に等しくなるようにすると、光軸に対して軸対称な方向に同じ角度θだけ互いに偏向分離して出射するとともに同じ回折次数の回折効率は等しくなる。 The configuration of the polarization diffraction elements 101b and 101c is not limited to this, and the slow axis of the birefringent material layer may be the Y-axis direction with the polarization diffraction grating 8 and the X-axis direction with the polarization diffraction grating 9; The refractive index of the refractive index transparent material 10 may be equal to the extraordinary light refractive index of the birefringent material layer. The inclination direction of the blaze shape is also right-down on the paper surface in FIG. 6, but may be right-up on the paper surface. In FIG. 6, the refractive index of the polarization grating 8 in the S-polarized light The difference between the refractive index of the homogeneous refractive index transparent material layer 10 is Δn s (≠ 0), and the difference between the refractive index of the polarization diffraction grating 9 and the refractive index of the homogeneous refractive index transparent material layer 10 in the P-polarized light is Δn p. (≠ 0), and Δn s and Δn p are substantially equal to each other, they are deflected and separated from each other by the same angle θ in the axially symmetric direction with respect to the optical axis, and the diffraction of the same diffraction order. Efficiency is equal.

偏光回折素子101aは、ブレーズ形状の偏光回折格子が1つであるため、作製が容易となる長所がある。一方、偏光回折素子101bおよび101cは、ブレーズ形状の偏光回折格子が2つであるため、同じ複屈折性材料を用いた場合、偏光回折格子8および9の深さdが、偏光回折格子6の半分となり、ピッチが狭い形状であっても作製が容易であるとともに高い1次回折効率が実現しやすいため、回折角度すなわち偏光分離角度θを大きくできるといった長所がある。   Since the polarization diffraction element 101a has one blaze-shaped polarization diffraction grating, it has an advantage that it can be easily manufactured. On the other hand, the polarization diffraction elements 101b and 101c have two blazed polarization diffraction gratings. Therefore, when the same birefringent material is used, the depth d of the polarization diffraction gratings 8 and 9 is less than that of the polarization diffraction grating 6. Even if the pitch is narrow, the fabrication is easy and high first-order diffraction efficiency is easily realized, so that the diffraction angle, that is, the polarization separation angle θ can be increased.

次いで、偏光回折素子以外の偏光分離素子の構成について図7を用いて説明する。図7は、偏光分離手段としてウォラストンプリズム101dを用いた構成を示す模式図である。ウォラストンプリズムは、方解石やイットリウム・バナデート(YVO)結晶やルチル(TiO)結晶など光学的に複屈折性を示す材料からなる三角柱形状の2つの直角プリズム4と5からなり、図7のX−Y平面からみて直角プリズム4の遅相軸と直角プリズム5の遅相軸とが互いに直交するように一体化されている。なお、図7に示すウォラストンプリズム101dを構成する直角プリズム4および5でできる境界線は、紙面上右下がりであり、X軸と直交するいずれの面(Y−Z平面)で同一である。ここで、この境界線の連続する方向を、直角プリズム4と直角プリズム5との貼り合わせの界面の長手方向とすると、貼り合わせの界面の長手方向はX軸方向に一致する。また、図7からウォラストンプリズムの界面の長手方向は、分離前の光が入射する方向に対して直交する方向に相当する。 Next, the configuration of the polarization separation element other than the polarization diffraction element will be described with reference to FIG. FIG. 7 is a schematic diagram showing a configuration using a Wollaston prism 101d as polarization separation means. The Wollaston prism is composed of two rectangular prisms 4 and 5 having a triangular prism shape made of an optically birefringent material such as calcite, yttrium vanadate (YVO 4 ) crystal and rutile (TiO 2 ) crystal. As viewed from the XY plane, the slow axis of the right-angle prism 4 and the slow axis of the right-angle prism 5 are integrated so as to be orthogonal to each other. Note that the boundary line formed by the right-angle prisms 4 and 5 constituting the Wollaston prism 101d shown in FIG. 7 is right-down on the page, and is the same on any plane (YZ plane) orthogonal to the X axis. Here, if the direction in which the boundary line continues is the longitudinal direction of the bonding interface between the right-angle prism 4 and the right-angle prism 5, the longitudinal direction of the bonding interface coincides with the X-axis direction. From FIG. 7, the longitudinal direction of the interface of the Wollaston prism corresponds to the direction orthogonal to the direction in which the light before separation is incident.

ここで、直角プリズム4の遅相軸をY軸方向、直角プリズム5の遅相軸をX軸方向とし、直角プリズム4の進相軸をX軸方向、直角プリズム5の進相軸をY軸方向とする。このように設定することによって、X軸に平行なS偏光の光は、直角プリズム5の高屈折率媒質と直角プリズム4の低屈折率媒質の界面における屈折の法則により、光軸に対して角度θで+Y方向に傾いた方向に進行する。一方、Y軸に平行なP偏光の光は、直角プリズム5の低屈折率媒質と直角プリズム4の高屈折率媒質の界面における屈折の法則により、光軸に対して角度θで−Y方向に傾いた方向に進行する。つまり、S偏光の光とP偏光の光とがYZ面内で入射光の進行方向に対して軸対称な方向に同じ角度θだけ偏向分離して出射する。ここでは、直角プリズム4および直角プリズム5は同じ材料で構成されるので、常光屈折率nと異常光屈折率nも同一の特性を有するものである。また、ウォラストンプリズムの遅相軸方向はこれに限らず、直角プリズム4の遅相軸をX軸方向、直角プリズム5の遅相軸をY軸方向としてもよい。 Here, the slow axis of the right-angle prism 4 is the Y-axis direction, the slow axis of the right-angle prism 5 is the X-axis direction, the fast axis of the right-angle prism 4 is the X-axis direction, and the fast axis of the right-angle prism 5 is the Y-axis. The direction. By setting in this way, the S-polarized light parallel to the X-axis is angled with respect to the optical axis by the law of refraction at the interface between the high-refractive index medium of the right-angle prism 5 and the low-refractive index medium of the right-angle prism 4. It advances in the direction inclined in the + Y direction at θ. On the other hand, the P-polarized light parallel to the Y-axis is in the −Y direction at an angle θ with respect to the optical axis according to the law of refraction at the interface between the low-refractive index medium of the right-angle prism 5 and the high-refractive index medium of the right-angle prism 4. Proceed in a tilted direction. In other words, the S-polarized light and the P-polarized light are deflected and separated by the same angle θ in the YZ plane in the axially symmetric direction with respect to the traveling direction of the incident light. Here, since the right-angle prism 4 and the right-angle prism 5 is made of the same material, the ordinary refractive index n o and extraordinary refractive index n e is also having the same characteristics. The slow axis direction of the Wollaston prism is not limited to this, and the slow axis of the right-angle prism 4 may be the X-axis direction, and the slow axis of the right-angle prism 5 may be the Y-axis direction.

2.反射型液晶素子(偏光変調素子および反射層)
図1の光変調液晶素子100の構成要素である反射型液晶素子104を構成する偏光変調素子102および反射層16について説明する。偏光変調素子は、入射する光の偏光状態を変化させる機能を有するものである。具体的には、偏光状態を変化させる手段として液晶に印加する電圧の大きさによって制御するものであって、比較的低電圧で動作し、消費電力が少なく、小型軽量であり、量産性に優れている点で、電極付き基板間に液晶層が狭持され該電極間に印加される電圧に応じてリタデーション値が変化する液晶素子を用いることが好ましい。液晶素子以外の構成としては、電気光学結晶や光磁気光学結晶を用いてもよい。図1において偏光変調素子102は、電圧制御装置103より印加される電磁場等に応じて、入射光の偏光状態を変調することができ、さらに、入射光が反射層16により反射されて偏光変調素子102を透過するときにも、偏光状態が変調される。
2. Reflective liquid crystal elements (polarization modulation elements and reflective layers)
The polarization modulation element 102 and the reflective layer 16 constituting the reflective liquid crystal element 104, which are components of the light modulation liquid crystal element 100 of FIG. 1, will be described. The polarization modulation element has a function of changing the polarization state of incident light. Specifically, it is controlled by the magnitude of the voltage applied to the liquid crystal as a means of changing the polarization state, operates at a relatively low voltage, consumes little power, is small and lightweight, and is excellent in mass productivity. Therefore, it is preferable to use a liquid crystal element in which a liquid crystal layer is sandwiched between substrates with electrodes and a retardation value changes according to a voltage applied between the electrodes. As a configuration other than the liquid crystal element, an electro-optical crystal or a magneto-optical crystal may be used. In FIG. 1, the polarization modulation element 102 can modulate the polarization state of incident light in accordance with an electromagnetic field or the like applied from the voltage control device 103, and the incident light is reflected by the reflection layer 16 to be polarized. The polarization state is also modulated when passing through 102.

具体的構成について図8の反射型液晶素子104aを用いて説明する。図8は、反射型液晶素子104aの偏光変調素子として液晶単体セル102a、そして反射層16を用いた場合の構成を示す模式図である。液晶単体セル102aは、片面に透明電極11aおよび配向膜12aが形成された透光性基板2bと、片面に反射層16a、透明電極11bおよび配向膜12bが形成された透光性基板3との間に液晶層13がシール14を用いて所望の厚さに狭持・密封された構成である。なお、液晶単体セル102aは、少なくとも液晶層13に電圧を印加する電極を含む構造を指し、例えば反射層16aが導電性の材料であって電圧制御装置103と電気的に接続されるものであれば、反射層16aも含んで液晶単体セルとする。   A specific configuration will be described with reference to the reflective liquid crystal element 104a in FIG. FIG. 8 is a schematic diagram showing a configuration in the case where the single liquid crystal cell 102a and the reflective layer 16 are used as the polarization modulation element of the reflective liquid crystal element 104a. The single liquid crystal cell 102a includes a transparent substrate 2b having a transparent electrode 11a and an alignment film 12a formed on one side, and a transparent substrate 3 having a reflective layer 16a, the transparent electrode 11b, and an alignment film 12b formed on one side. The liquid crystal layer 13 is sandwiched and sealed to a desired thickness using a seal 14 therebetween. The single liquid crystal cell 102a indicates a structure including at least an electrode for applying a voltage to the liquid crystal layer 13. For example, the reflective layer 16a is a conductive material and is electrically connected to the voltage controller 103. In this case, the liquid crystal single cell is formed including the reflective layer 16a.

配向膜12aおよび12bは、液晶層13の液晶分子の配向ベクトル(分子配向軸)を基板と平行面内の特定方向(例えば、XY面内でX軸に対して45°の方向)に揃うように配向機能を持たせるものである。配向膜としては、ラビング処理したポリイミド膜、無機材料として斜方蒸着させたSiO膜や斜方微細エッチングしたSiO膜などが用いられる。液晶分子の配向ベクトルが配向膜12aおよび12bで同一方向となる平行配向処理をすると液晶分子の配向がその方向に揃う。配向処理はこれに限らず、異なる方向となるツイスト配向処理としてもよい。 The alignment films 12a and 12b are arranged so that the alignment vectors (molecular alignment axes) of the liquid crystal molecules of the liquid crystal layer 13 are aligned in a specific direction in a plane parallel to the substrate (for example, a direction of 45 ° with respect to the X axis in the XY plane). Is provided with an orientation function. As the alignment film, a rubbed polyimide film, an obliquely deposited SiO film, an obliquely finely etched SiO 2 film, or the like is used as an inorganic material. When the parallel alignment treatment is performed in which the alignment vectors of the liquid crystal molecules are the same in the alignment films 12a and 12b, the alignment of the liquid crystal molecules is aligned in that direction. The alignment treatment is not limited to this, and may be twist alignment treatment in different directions.

液晶層13に用いる液晶は、ネマティック液晶を用いるとよいが、スメクティック液晶やコレステリック液晶であってもよい。誘電率異方性が正の液晶を用いる場合、透明電極11aおよび12a間の電圧非印加時の液晶配向を透光性基板2bおよび3に対して数度のプレチルト角度をなしてほぼ平行となるように配向膜を形成する。電圧非印加時に、液晶層13を往復透過する光の偏光状態が、S偏光の光はP偏光の光に、P偏光の光はS偏光の光に変換されるように、液晶層13の厚さdLCが調整されている。 The liquid crystal used for the liquid crystal layer 13 may be nematic liquid crystal, but may be smectic liquid crystal or cholesteric liquid crystal. When a liquid crystal having a positive dielectric anisotropy is used, the liquid crystal alignment when no voltage is applied between the transparent electrodes 11a and 12a is substantially parallel to the translucent substrates 2b and 3 with a pretilt angle of several degrees. Thus, an alignment film is formed. The thickness of the liquid crystal layer 13 is such that when the voltage is not applied, the polarization state of the light reciprocally transmitted through the liquid crystal layer 13 is such that S-polarized light is converted to P-polarized light and P-polarized light is converted to S-polarized light. D LC is adjusted.

このようにするために、液晶の屈折率異方性を△nとすると、配向膜12aおよび12bが互いに平行に配向される場合は△n×dLCが入射光の波長λに対して略λ/(4×△n)とし、配向膜12aと12bとで互いに直交するように配向される90°ツイスト配向の場合は△n×dLCを約1.5倍程度にすればよい。液晶層13に印加する電圧を大きくするにしたがって液晶層13の液晶分子の長軸方向の配向は透光性基板に対して垂直方向に向かって傾斜し、完全に垂直に揃うと液晶層13のリタデーション値がゼロとなる。このとき、S偏光の光およびP偏光の光は液晶層13を透過しても入射光と同じ偏光状態を維持する。このように、液晶層13に印加する電圧の大きさに応じてS偏光の光およびP偏光がそれぞれ、P偏光の光およびS偏光の光に変換される割合が変化するので、電圧の大きさを制御することで偏光状態を調節することができる。 For this purpose, when the refractive index anisotropy of the liquid crystal is Δn, Δn × d LC is approximately λ with respect to the wavelength λ of the incident light when the alignment films 12a and 12b are aligned in parallel with each other. / (4 × Δn), and in the case of 90 ° twist alignment in which the alignment films 12a and 12b are aligned perpendicular to each other, Δn × d LC may be about 1.5 times. As the voltage applied to the liquid crystal layer 13 is increased, the alignment in the major axis direction of the liquid crystal molecules of the liquid crystal layer 13 is inclined in the vertical direction with respect to the light-transmitting substrate. The retardation value is zero. At this time, even if the S-polarized light and the P-polarized light are transmitted through the liquid crystal layer 13, they maintain the same polarization state as the incident light. As described above, the ratio of the S-polarized light and the P-polarized light converted into the P-polarized light and the S-polarized light respectively changes depending on the magnitude of the voltage applied to the liquid crystal layer 13. The polarization state can be adjusted by controlling.

一方、誘電率異方性が負の液晶を用いる場合、電圧非印加時の液晶分子の長軸方向の配向が透光性基板2bおよび3の垂線に対して数度のプレチルト角度をなしてほぼ垂直配向となるように配向膜を形成する。このとき、液晶層13のリタデーション値が略ゼロのため、S偏光の光およびP偏光の光は液晶層13を透過しても入射光と同じ偏光状態を維持する。そして、液晶層13に印加する電圧の増加とともに液晶層13の液晶分子の長軸方向の配向は透光性基板に対して水平方向に向かって配向膜12a、12bで規定された配向方向となるように傾斜する。そして、液晶分子の長軸方向の配向が水平方向に揃うとき、S偏光の光はP偏光の光に、P偏光の光はS偏光の光に変換されるように、液晶層13の厚さdLCを調整する。同様に、液晶層13に印加する電圧の大きさに応じてS偏光の光およびP偏光の光がそれぞれ、P偏光の光およびS偏光の光に変換される割合が変化するので、電圧の大きさを制御することで偏光状態を調節することができる。 On the other hand, when a liquid crystal having a negative dielectric anisotropy is used, the alignment in the major axis direction of the liquid crystal molecules when no voltage is applied almost forms a pretilt angle of several degrees with respect to the normal lines of the translucent substrates 2b and 3. An alignment film is formed to achieve vertical alignment. At this time, the retardation value of the liquid crystal layer 13 is substantially zero, so that the S-polarized light and the P-polarized light maintain the same polarization state as the incident light even though they pass through the liquid crystal layer 13. As the voltage applied to the liquid crystal layer 13 increases, the alignment of the liquid crystal molecules in the liquid crystal layer 13 in the major axis direction becomes the alignment direction defined by the alignment films 12a and 12b in the horizontal direction with respect to the light-transmitting substrate. To tilt. The thickness of the liquid crystal layer 13 is such that S-polarized light is converted to P-polarized light and P-polarized light is converted to S-polarized light when the alignment in the major axis direction of the liquid crystal molecules is aligned in the horizontal direction. d Adjust LC . Similarly, the ratio of S-polarized light and P-polarized light converted to P-polarized light and S-polarized light changes according to the magnitude of the voltage applied to the liquid crystal layer 13, respectively. The polarization state can be adjusted by controlling the thickness.

次いで、図1の反射層16について説明する。反射層16は、入射する光を効率よく正規反射する機能を有するものであって、AuやAl等の金属材料からなる金属膜や、相対的に屈折率の小さな誘電体膜と大きな誘電体膜を入射光の波長λに対して光学膜厚が略λ/4となるように交互に積層した誘電体多層反射膜が用いられる。なお、金属膜の場合は液晶層13に電圧を印加するための電極としても機能するため、この場合透明電極11bは不要となる。誘電体多層反射膜を用いる場合、透明電極11bは図8に示すように誘電体多層反射膜の光入射側に形成してもよい。また、透明電極11bが形成された透光性基板3の表面に、電圧制御装置103の接続部分を除き、誘電体多層反射膜を形成してもよい。反射層16aは透明電極11bと接するように配置されてもよいが、例えば、透光性基板3の光入射側と反対側の面に形成してもよい。   Next, the reflective layer 16 in FIG. 1 will be described. The reflective layer 16 has a function of efficiently and regularly reflecting incident light, and includes a metal film made of a metal material such as Au or Al, a dielectric film having a relatively low refractive index, and a large dielectric film. A dielectric multilayer reflective film is used in which the optical film thickness is alternately laminated so that the optical film thickness is approximately λ / 4 with respect to the wavelength λ of the incident light. In the case of a metal film, it also functions as an electrode for applying a voltage to the liquid crystal layer 13, and in this case, the transparent electrode 11b is unnecessary. When the dielectric multilayer reflective film is used, the transparent electrode 11b may be formed on the light incident side of the dielectric multilayer reflective film as shown in FIG. Alternatively, a dielectric multilayer reflective film may be formed on the surface of the translucent substrate 3 on which the transparent electrode 11b is formed, except for the connection portion of the voltage control device 103. The reflective layer 16a may be disposed so as to be in contact with the transparent electrode 11b, but may be formed, for example, on the surface of the translucent substrate 3 opposite to the light incident side.

次に液晶層13のリタデーション値を調整する電圧を低電圧化するための偏光変調素子104bの構成を、図9を用いて説明する。誘電率異方性が正の液晶を用い、電圧非印加時の液晶分子の配向方向が透光性基板2bおよび3と平行面内の特定方向に揃う平行配向の場合、印加電圧の増加とともに液晶層13中の液晶分子配向が基板面に垂直方向に傾斜するためリタデーション値がゼロに近づくが、配向膜面の液晶分子は表面に束縛されるため、完全にリタデーション値がゼロとなるためには、例えば矩形波交流の印加電圧実効値として20Vrms以上の高い印加電圧が必要となる。このような高い印加電圧を低電圧化するため、液晶セル102bは液晶単体セル102aの光入射側に液晶層13のリタデーション値を相殺するための位相板15を積層したものである。位相板15としては、水晶などの複屈折結晶、ポリカーボネートなどの有機フィルムを延伸した複屈折フィルム、液晶モノマーを特定方向に配向させ紫外線などの光を照射して重合硬化した高分子液晶などが用いられる。なお、液晶セル102bは、透光性基板2aを含んでもよい。   Next, the configuration of the polarization modulation element 104b for lowering the voltage for adjusting the retardation value of the liquid crystal layer 13 will be described with reference to FIG. When a liquid crystal having positive dielectric anisotropy is used and the alignment direction of liquid crystal molecules when no voltage is applied is parallel alignment aligned with a specific direction in a plane parallel to the translucent substrates 2b and 3, the liquid crystal is increased as the applied voltage is increased. The retardation value approaches zero because the liquid crystal molecule alignment in the layer 13 is inclined in the direction perpendicular to the substrate surface, but the liquid crystal molecules on the alignment film surface are bound to the surface, so that the retardation value becomes completely zero. For example, a high applied voltage of 20 Vrms or higher is required as an effective value of applied voltage of rectangular wave alternating current. In order to reduce such a high applied voltage, the liquid crystal cell 102b is formed by laminating a phase plate 15 for canceling the retardation value of the liquid crystal layer 13 on the light incident side of the liquid crystal single cell 102a. As the phase plate 15, a birefringent crystal such as quartz, a birefringent film obtained by stretching an organic film such as polycarbonate, a polymer liquid crystal obtained by polymerizing and curing a liquid crystal monomer in a specific direction and irradiating light such as ultraviolet rays is used. It is done. The liquid crystal cell 102b may include a translucent substrate 2a.

反射型液晶素子104bの、光が入射する面(XY面)からみた模式図を図10に示す。図10において、透明電極11aおよび12aにより液晶層13に電圧を印加するために、導電性微粒子を混入したシール14を介して、透明電極11aと透光性基板3の片面に形成された取り出し電極11cのみと導通させ電圧制御装置103に接続している。また、透明電極11bと導通した取り出し電極11dとを電圧制御装置103に接続している。   FIG. 10 shows a schematic diagram of the reflective liquid crystal element 104b as seen from the light incident surface (XY surface). In FIG. 10, in order to apply a voltage to the liquid crystal layer 13 by the transparent electrodes 11a and 12a, the extraction electrode formed on one side of the transparent electrode 11a and the translucent substrate 3 through a seal 14 mixed with conductive fine particles. 11c is connected to the voltage control device 103. Further, the transparent electrode 11 b and the extraction electrode 11 d that is electrically connected are connected to the voltage control device 103.

さらに、位相板15は遅相軸方向が、誘電率異方性が正の液晶を用いる液晶層13の電圧非印加時の遅相軸方向に対して直交するように配置する。そして、ゼロではない特定の印加電圧において、液晶層13を2回透過するときのリタデーション値RLCと、位相板15を2回透過するときのリタデーション値RWPとが略等しくなるように設計することにより、液晶層13と位相板15との合計のリタデーション値R=RLC−RWPをゼロに相殺することができる。 Further, the phase plate 15 is arranged so that the slow axis direction is orthogonal to the slow axis direction when no voltage is applied to the liquid crystal layer 13 using liquid crystal having positive dielectric anisotropy. Then, in certain applied voltage is not zero, and retardation value R LC when transmitted through the liquid crystal layer 13 twice, designed to be substantially equal to the retardation value R WP when passing through the phase plate 15 twice As a result, the total retardation value R = R LC -R WP of the liquid crystal layer 13 and the phase plate 15 can be offset to zero.

このような構成の反射型液晶素子104bは、例えば、10Vrms以下の印加電圧変化で液晶層13および位相板15いずれも2回透過するときの合計リタデーション値Rの変化量がλ/2となるようにRLCおよびRWPを設定しておけば、後述するように低い印加電圧で高い消光比が得られる可変光減衰器が実現できる。 In the reflective liquid crystal element 104b having such a configuration, for example, the change amount of the total retardation value R is λ / 2 when both the liquid crystal layer 13 and the phase plate 15 are transmitted twice with an applied voltage change of 10 Vrms or less. If R LC and R WP are set to, a variable optical attenuator capable of obtaining a high extinction ratio with a low applied voltage can be realized as will be described later.

反射型液晶素子104bにおいて、液晶層13に印加する電圧とリタデーション値について説明する。ここで、反射型液晶素子104bを光が2回透過するときの合計リタデーション値Rがλ/2となる印加電圧をV、ゼロとなる印加電圧をVとする。また、この電圧をV、Vとしたときの光の様子をそれぞれ模式的に、図11(a)、図11(b)に示す。このように、Vでは波長λの光が往復するとリタデーション値がλ/2となるので、S偏光の光およびP偏光の光は、それぞれP偏光の光およびS偏光の光となって出射する。一方、Vではリタデーション値がゼロとなるので、S偏光の光およびP偏光の光は偏光状態が変化せず出射する。 The voltage applied to the liquid crystal layer 13 and the retardation value in the reflective liquid crystal element 104b will be described. Here, an applied voltage at which the total retardation value R when the light is transmitted twice through the reflective liquid crystal element 104b is λ / 2 is V 1 , and an applied voltage at which the total retardation value R is zero is V 2 . In addition, FIGS. 11A and 11B schematically show the state of light when the voltages are V 1 and V 2 , respectively. Thus, in V 1 , the retardation value becomes λ / 2 when the light of wavelength λ reciprocates, so that the S-polarized light and the P-polarized light are emitted as P-polarized light and S-polarized light, respectively. . On the other hand, since the retardation value is zero at V 2 , S-polarized light and P-polarized light are emitted without changing the polarization state.

図12に偏光回折素子101aと、反射型液晶素子104bと、が一体化された光変調液晶素子110の模式図を示す。また、液晶層13への印加電圧がVおよびVとしたときの光の様子をそれぞれ模式的に、図13(a)、(b)および図14(a)、(b)に示す。なお、光が入射して反射層16aに到達するまでの光路を往路とし、反射層16aで光が反射されて出射するまでの光路を復路として説明する。図13(a)に示すように印加電圧Vにおいて、光変調液晶素子110に対して垂直に入射(−Z方向)するP偏光の光は、往路にて偏光回折素子101aにより−Y方向に回折される。そして、反射層16aにより正規反射されて反射型液晶素子104bを往復した光は、S偏光の光となって復路にて偏光回折素子101aに再入射し、+Y方向に回折され、入射光と同じ方向で逆向きに出射(+Z方向)する。 FIG. 12 shows a schematic diagram of the light modulation liquid crystal element 110 in which the polarization diffraction element 101a and the reflective liquid crystal element 104b are integrated. Further, a state of light when the applied voltage is set to V 1 and V 2 to the liquid crystal layer 13, respectively schematically shown in FIG. 13 (a), (b) and FIG. 14 (a), (b) . In the following description, an optical path from the incidence of light until reaching the reflection layer 16a is defined as an outward path, and an optical path from the reflection of the reflection layer 16a to emission is defined as a return path. As shown in FIG. 13A, at the applied voltage V 1 , P-polarized light perpendicularly incident on the light modulation liquid crystal element 110 (−Z direction) is transmitted in the −Y direction by the polarization diffraction element 101 a in the forward path. Diffracted. Then, the light that is regularly reflected by the reflective layer 16a and reciprocates through the reflective liquid crystal element 104b becomes S-polarized light, reenters the polarization diffraction element 101a in the return path, is diffracted in the + Y direction, and is the same as the incident light. The light is emitted in the opposite direction (+ Z direction).

一方、図13(b)に示すように光変調液晶素子110に対して垂直に入射するS偏光の光は、往路にて偏光回折素子101aにより+Y方向に回折される。そして、反射層16aにより正規反射されて反射型液晶素子104bを往復した光はP偏光の光となって復路にて偏光回折素子101aに再入射し、−Y方向に回折され、入射光と同じ方向で逆向きに出射(+Z方向)する。このように、印加電圧Vでは、光変調液晶素子110に入射する光と光変調液晶素子110を出射する光は、光の偏光状態に関わらず、同じ方向で逆向きの進行方向となる。 On the other hand, as shown in FIG. 13B, the S-polarized light incident perpendicularly to the light modulation liquid crystal element 110 is diffracted in the + Y direction by the polarization diffraction element 101a in the forward path. Then, the light that is regularly reflected by the reflective layer 16a and reciprocates through the reflective liquid crystal element 104b becomes P-polarized light, reenters the polarization diffraction element 101a in the return path, is diffracted in the −Y direction, and is the same as the incident light. The light is emitted in the opposite direction (+ Z direction). Thus, at the applied voltage V 1 , the light incident on the light modulation liquid crystal element 110 and the light emitted from the light modulation liquid crystal element 110 are traveling in the same direction but in opposite directions regardless of the polarization state of the light.

次に、印加電圧Vにおける光変調液晶素子110を往復する光の様子を図14(a)、(b)を用いて説明する。まず、図14(a)に示すように印加電圧Vにおいて、光変調液晶素子110に対して垂直に入射するP偏光の光は、往路にて偏光回折素子101aにより−Y方向に回折される。そして、反射層16aにより正規反射されて反射型液晶素子104bを往復した光はP偏光の光のまま復路にて偏光回折素子101aに再入射し、−Y方向に回折され、入射光と異なる方向に出射する。なお、偏光回折素子101aでの回折角度をθとするとき、入射光と出射光となす角度は近似的に2θとなる。 Next, the state of light reciprocating in the light modulation liquid crystal element 110 at the applied voltage V 2 will be described with reference to FIGS. First, as shown in FIG. 14A, at the applied voltage V 2 , P-polarized light that is perpendicularly incident on the light modulation liquid crystal element 110 is diffracted in the −Y direction by the polarization diffraction element 101 a in the forward path. . The light that is regularly reflected by the reflective layer 16a and reciprocates through the reflective liquid crystal element 104b is re-incident on the polarization diffraction element 101a in the return path as P-polarized light, is diffracted in the −Y direction, and is different from the incident light. To exit. When the diffraction angle at the polarization diffraction element 101a is θ, the angle between the incident light and the outgoing light is approximately 2θ.

一方、図14(b)に示すように光変調液晶素子110に対して垂直に入射するS偏光の光は、往路にて偏光回折素子101aにより+Y方向に回折される。そして、反射層16aにより正規反射されて反射型液晶素子104bを往復した光はS偏光の光のまま復路にて偏光回折素子101aに再入射し、+Y方向に回折され、入射光と異なる方向に出射する。このように、印加電圧Vでは、光変調液晶素子110に入射する光と光変調液晶素子110を出射する光は、光の偏光状態に関わらず、異なる進行方向となる。 On the other hand, as shown in FIG. 14B, the S-polarized light incident perpendicularly to the light modulation liquid crystal element 110 is diffracted in the + Y direction by the polarization diffraction element 101a in the forward path. Then, the light that is regularly reflected by the reflective layer 16a and reciprocated through the reflective liquid crystal element 104b remains incident on the polarization diffraction element 101a in the return path as S-polarized light, is diffracted in the + Y direction, and is in a direction different from the incident light. Exit. Thus, the applied voltage V 2, the light emitting light and a light modulating liquid crystal element 110 entering the light modulation liquid crystal element 110, regardless of the polarization state of light, the different traveling directions.

なお、印加電圧がVとVとの間であるとき、入射光と同じ方向で逆向きの出射光成分と、入射光と異なる方向の出射光成分が混在した状態、つまり、図13と図14に示す光の進行状態が混在した状態、となり、印加する電圧の大きさによってこれらの光の成分の光量の比が変わる。これより例えば、入射光と同じ方向で逆向きの出射光成分のみを受光することにより、印加電圧に応じて受光量が可変となる光変調液晶素子が得られる。 When the applied voltage is between V 1 and V 2 , a state in which the outgoing light component in the same direction as the incident light and the outgoing light component in the direction different from the incident light are mixed, that is, FIG. The light traveling state shown in FIG. 14 is mixed, and the ratio of the amounts of these light components changes depending on the magnitude of the applied voltage. Thus, for example, by receiving only the outgoing light component in the same direction as the incident light and in the opposite direction, a light modulation liquid crystal element in which the amount of received light can be changed according to the applied voltage can be obtained.

(第2の実施形態)
図15に光ファイバー18と集光レンズ17と光変調液晶素子110からなる可変光減衰器200の模式図の一例を示す。図15(a)、図15(b)はそれぞれ、液晶層への印加電圧がV、Vであるときの光変調液晶素子110光の伝搬の様子を示したものである。可変光減衰器200は、光ファイバー18から出射した発散光が、集光レンズ17を透過して平行光となり、光変調液晶素子110で反射され、反射された光のうち集光レンズ17により再び光ファイバー18に集光する光を伝搬する機能を有する。なお、光ファイバー18は、集光レンズ17の焦点位置に設置される。光ファイバー18から出射したS偏光の光とP偏光の光とが混在した光(以下、ランダム偏光という)は、集光レンズ17により平行光となって光変調液晶素子110に入射する。
(Second Embodiment)
FIG. 15 shows an example of a schematic diagram of a variable optical attenuator 200 including the optical fiber 18, the condensing lens 17, and the light modulation liquid crystal element 110. FIG. 15A and FIG. 15B show how light modulated liquid crystal element 110 propagates when voltages applied to the liquid crystal layer are V 1 and V 2 , respectively. In the variable optical attenuator 200, the divergent light emitted from the optical fiber 18 is transmitted through the condenser lens 17 to become parallel light, reflected by the light modulation liquid crystal element 110, and again reflected by the condenser lens 17 among the reflected light. 18 has a function of propagating light condensed. The optical fiber 18 is installed at the focal position of the condenser lens 17. Light (hereinafter referred to as random polarization) in which S-polarized light and P-polarized light emitted from the optical fiber 18 are mixed and converted into parallel light by the condenser lens 17 and enters the light modulation liquid crystal element 110.

図15(a)は、印加電圧がVのときの状態を示す模式図であり、光変調液晶素子110に入射する光は反射されて進行方向と平行で逆向きの光となって進行し、集光レンズ17により光ファイバー18から光が出射する位置に集光され、光ファイバー18中を逆向きに伝搬する。一方、図15(b)は、印加電圧がVのときの状態を示す模式図であり、光変調液晶素子110に入射する光が反射されて入射方向と異なる方向の出射光となる。このように、集光レンズ17により光ファイバー18から光が出射する位置と異なる位置に集光されるため、光ファイバー中を伝搬できない。また、光変調液晶素子110の機能より、入射光の偏光状態に依存せず印加する電圧の大きさに応じて光ファイバーを帰還する光量が可変な光減衰器が実現する。 FIG. 15A is a schematic diagram showing a state when the applied voltage is V 1 , and the light incident on the light modulation liquid crystal element 110 is reflected and travels in the opposite direction parallel to the traveling direction. The light is condensed at a position where light is emitted from the optical fiber 18 by the condensing lens 17 and propagates through the optical fiber 18 in the opposite direction. On the other hand, FIG. 15B is a schematic diagram showing a state when the applied voltage is V 2 , and the light incident on the light modulation liquid crystal element 110 is reflected and becomes emitted light in a direction different from the incident direction. In this way, since the light is condensed by the condensing lens 17 at a position different from the position where the light is emitted from the optical fiber 18, it cannot propagate through the optical fiber. Further, the function of the light modulation liquid crystal element 110 realizes an optical attenuator in which the amount of light returning the optical fiber is variable depending on the magnitude of the applied voltage regardless of the polarization state of the incident light.

上記の例では、光ファイバーから出射する光の位置を集光レンズの光軸上の焦点位置に配置したため、反射して戻る光も同じ光ファイバーの位置に集光しているが、他の配置でも構わない。例えば、光ファイバーから出射する光の位置を図15の光ファイバー18の位置に対して+X方向に距離A(図示せず)だけずらして配置する。光ファイバーから出射する光の中心は、集光レンズ17の中心を通らないので、光変調液晶素子110に対して光軸が傾いて入射する。このため、印加電圧Vのとき反射層16aで反射されて光変調液晶素子110を出射する光は再び集光レンズ17を透過して、−X方向に同じ距離、つまり図15の光ファイバー18の位置に対して−X方向に距離Aだけずれた位置に集光される。その集光点に光を出射する側の光ファイバーとは別の受光用光ファイバーを配置することにより、光は受光用光ファイバーに伝搬する。 In the above example, since the position of the light emitted from the optical fiber is arranged at the focal position on the optical axis of the condensing lens, the reflected light is collected at the same optical fiber position, but other arrangements may be used. Absent. For example, the position of the light emitted from the optical fiber is shifted from the position of the optical fiber 18 in FIG. 15 by a distance A (not shown) in the + X direction. Since the center of the light emitted from the optical fiber does not pass through the center of the condenser lens 17, the light axis is incident on the light modulation liquid crystal element 110 with an inclination. For this reason, when the applied voltage V 1 is applied, the light reflected by the reflective layer 16a and emitted from the light modulation liquid crystal element 110 is transmitted again through the condenser lens 17, and the same distance in the −X direction, that is, the optical fiber 18 of FIG. The light is condensed at a position shifted by a distance A in the −X direction with respect to the position. By arranging a light receiving optical fiber different from the optical fiber on the light emitting side at the condensing point, the light propagates to the light receiving optical fiber.

また、光を出射する側の光学系(素子)として光ファイバーの代わりに半導体レーザなどを光源として用い、光検出器を受光側に用いた光学装置としてもよい。このように、光変調液晶素子110を、印加する電圧に応じて光量を可変させる光減衰器として用いる場合、高い消光比を得るためには、印加電圧Vにおいて所定の集光点に帰還する光量を向上するとともに、印加電圧Vにおいて同じ集光点に帰還する光量を低減することが重要となる。 Further, as an optical system (element) on the light emitting side, a semiconductor laser or the like may be used as a light source instead of an optical fiber, and an optical device using a photodetector on the light receiving side may be used. As described above, when the light modulation liquid crystal element 110 is used as an optical attenuator that varies the amount of light according to the applied voltage, in order to obtain a high extinction ratio, the applied voltage V 1 is fed back to a predetermined condensing point. as well as improving the amount of light, at an applied voltage V 2 is possible to reduce the amount of light fed back to the same focusing point becomes important.

とくに、図15(b)のように印加電圧Vのとき、光ファイバー18から出射する光の位置と同じ点に帰還する光量が小さい方が高い消光比を得ることができる。このとき光ファイバー18に帰還する光として、光変調液晶素子110を構成する反射層16と平行な界面において、界面をなす材料の屈折率の相違に起因して発生するフレネル反射光が存在する。したがって、次のように、このフレネル反射光の光量を低減させることによって、より高い消光比を実現することができる。 In particular, when the applied voltage V 2 as shown in FIG. 15 (b), the can better amount of light fed back to the same point as the position of the light emitted from the optical fiber 18 is small to obtain a high extinction ratio. At this time, as the light returning to the optical fiber 18, Fresnel reflected light generated due to the difference in the refractive index of the material forming the interface exists at the interface parallel to the reflective layer 16 constituting the light modulation liquid crystal element 110. Therefore, a higher extinction ratio can be realized by reducing the amount of the Fresnel reflected light as follows.

具体的には、図12に示す光変調液晶素子110において、空気(光が入射する媒体)と透光性基板1、透光性基板1と偏光回折格子6、均質屈折率透明材料7と透光性基板2a、透光性基板2aと位相板15、位相板15と透光性基板2b、透光性基板2bと透明電極11aとの界面で発生するフレネル反射光の低減が必要となる。これらの界面で発生する反射光の低減策として、例えば、透光性基板の表面に反射防止膜や微細な凹凸による光拡散面などを形成するとよい。   Specifically, in the light modulation liquid crystal element 110 shown in FIG. 12, air (medium on which light is incident) and the transparent substrate 1, the transparent substrate 1 and the polarization diffraction grating 6, the homogeneous refractive index transparent material 7 and the transparent material. It is necessary to reduce the Fresnel reflected light generated at the interface between the optical substrate 2a, the translucent substrate 2a and the phase plate 15, the phase plate 15 and the translucent substrate 2b, and the translucent substrate 2b and the transparent electrode 11a. As a measure for reducing the reflected light generated at these interfaces, for example, an antireflection film or a light diffusing surface with fine irregularities may be formed on the surface of the translucent substrate.

このほかに、界面で発生するフレネル反射光を光ファイバーで受光する光量を低減する構成について図16に示す光変調液晶素子120を用いて説明するが、光変調液晶素子110と同じ光学部品は同じ符号を付して説明の重複を避ける。ここでは、光変調液晶素子110に対して反射層16の反射面を傾斜させる点が異なる。光変調液晶素子120は、角度αの傾斜を有するウェッジ付き透光性基板3aの片面に反射層16bを形成して反射型液晶素子104cとし、偏光回折素子101aと組み合わせて、反射面が傾斜した光変調液晶素子120とする。このようにすることで、反射層16bで反射する光を受ける(光ファイバーなどの)位置に到達するフレネル反射光を低減させることができるので、より高い消光比を実現できる。   In addition, a configuration for reducing the amount of light received by the optical fiber of Fresnel reflected light generated at the interface will be described using the light modulation liquid crystal element 120 shown in FIG. 16, but the same optical components as those of the light modulation liquid crystal element 110 have the same reference numerals. To avoid duplication of explanation. Here, the point that the reflection surface of the reflection layer 16 is inclined with respect to the light modulation liquid crystal element 110 is different. In the light modulation liquid crystal element 120, a reflective layer 16b is formed on one surface of a transparent substrate 3a with a wedge having an inclination of an angle α to form a reflective liquid crystal element 104c, and the reflective surface is inclined in combination with the polarization diffraction element 101a. The light modulation liquid crystal element 120 is used. By doing so, it is possible to reduce the Fresnel reflected light that reaches the position (such as an optical fiber) that receives the light reflected by the reflective layer 16b, so that a higher extinction ratio can be realized.

また、図17に示す光変調液晶素子130において、屈折率差が大きなことに起因して発生するフレネル反射光の多い空気と透光性基板1aとの界面を反射面に対して傾斜させることが有効である。ここでは、角度βの傾斜を有するウェッジ付き透光性基板1aの光入射面に反射防止膜(図示せず)を形成し、偏光回折格子6と均質屈折率透明材料層7からなる偏光回折素子101eとし、入射面が反射層16aの反射面に対して傾斜した光変調液晶素子130となる。   In addition, in the light modulation liquid crystal element 130 shown in FIG. 17, the interface between the air having a large amount of Fresnel reflection light generated due to the large difference in refractive index and the translucent substrate 1a can be inclined with respect to the reflection surface. It is valid. Here, a polarizing diffraction element comprising an antireflection film (not shown) formed on the light incident surface of a transparent substrate 1a with a wedge having an inclination of angle β, and comprising a polarizing diffraction grating 6 and a homogeneous refractive index transparent material layer 7 The light modulation liquid crystal element 130 has an incident surface inclined to the reflection surface of the reflection layer 16a.

本発明の光変調液晶素子および可変光減衰器は上記実施態様で説明した構成以外の偏光分離手段、偏光変調手段、反射手段からなる種々の形態により光変調液晶素子を実現できる。   The light modulation liquid crystal element and the variable light attenuator of the present invention can realize a light modulation liquid crystal element in various forms including polarization separation means, polarization modulation means, and reflection means other than those described in the above embodiments.

(実施例1)
本発明の光変調液晶素子110の作製方法について、図12を用いて説明する。まず、偏光分離素子として偏光回折素子101aの作製方法について説明する。透光性基板1として石英ガラス基板の片面にポリイミドを塗布して硬化し、一方向にラビングをして図示しない配向膜を形成する。もう一つの、配向膜を形成した図示しない透光性基板を用意し、配向方向が平行するように互いの配向膜を対向させて一定の厚さのシール材を配し、できた空隙に液晶モノマーの溶液を注入して充填し、液晶分子の配向ベクトル(分子配向軸)を基板と平行面内の特定方向(図12では、X軸方向)に揃うように配向させた後、紫外線光を照射して重合硬化させる。図示しないもう一方の透光性基板を離型処理し、波長1.56μmの光において常光屈折率n=1.55および異常光屈折率n=1.75で厚さ14μmの高分子液晶層を形成し、フォトリソグラフィとエッチングの技術により格子ピッチ40μmで、7段で8レベル(N=8)の階段により近似した階段状の疑似ブレーズ回折格子形状に加工する。なお、擬似ブレーズ形状の長手方向を高分子液晶層の配向方向に平行となるようにする。
(Example 1)
A method for manufacturing the light modulation liquid crystal element 110 of the present invention will be described with reference to FIGS. First, a method for manufacturing the polarization diffraction element 101a as a polarization separation element will be described. Polyimide is applied to one side of a quartz glass substrate as the translucent substrate 1 and cured, and rubbed in one direction to form an alignment film (not shown). Another translucent substrate (not shown) on which an alignment film is formed is prepared, a sealing material having a certain thickness is arranged with the alignment films facing each other so that the alignment directions are parallel, and a liquid crystal is formed in the gap formed. After injecting and filling the monomer solution, the liquid crystal molecules are aligned so that the alignment vector (molecular alignment axis) of the liquid crystal molecules is aligned in a specific direction (X-axis direction in FIG. 12) in the plane parallel to the substrate. Irradiate to cure. The other light-transmitting substrate (not shown) is subjected to a release treatment, and a polymer liquid crystal having a thickness of 14 μm and a normal light refractive index n o = 1.55 and an extraordinary light refractive index n e = 1.75 in light having a wavelength of 1.56 μm. A layer is formed and processed into a staircase-like pseudo-blazed diffraction grating shape approximated by 7 steps and 8 levels (N = 8) using a photolithography and etching technique with a grating pitch of 40 μm. The longitudinal direction of the pseudo blazed shape is made parallel to the alignment direction of the polymer liquid crystal layer.

さらに、上記の疑似ブレーズ回折格子を設けた石英基板の回折格子が設けられた面と透光性基板2aとして石英ガラス基板と30μmの間隔(格子の一番低い部分で)を持って対向するように配置し周辺をシールして、注入口から硬化後に等方屈折率を有する透明材料となる紫外線硬化性組成物を注入し、紫外線照射で硬化させる。このようにして、波長λ=1.56μmの光において、高分子液晶の常光屈折率nと異常光屈折率nの平均値(n+n)/2に相当する屈折率n=1.65の均質屈折率透明材料層7を形成し、偏光回折素子101aとする。 Further, the surface of the quartz substrate provided with the pseudo-blazed diffraction grating is opposed to the quartz glass substrate as the translucent substrate 2a with an interval of 30 μm (at the lowest part of the grating). The ultraviolet curable composition used as a transparent material which has an isotropic refractive index after hardening | curing is inject | poured from an injection hole, and it hardens | cures by ultraviolet irradiation. Thus, in the light of the wavelength lambda 0 = 1.56 .mu.m, the average value of the ordinary refractive index n o and extraordinary refractive index n e of the liquid crystal polymer (n o + n e) / 2 corresponding to the refractive index n s = 1.65 homogeneous refractive index transparent material layer 7 is formed to be a polarization diffraction element 101a.

次いで反射型液晶素子104bの作製方法について説明する。透光性基板3として石英ガラス基板の片面に、屈折率1.45のSiOと屈折率2.15のTaをその光学膜厚(屈折率×膜厚)が波長1.56μmの1/4となるようスパッタリング法により交互に積層し、反射層16として、1480〜1620nmの波長帯域で反射率が98%以上となる誘電体多層反射膜を形成する。また、誘電体多層反射膜の表面および透光性基板2bとして同じ石英ガラス基板の片面に透明電極11b、11aとなるITOを成膜する。さらに、それぞれのITOの表面にポリイミドを塗布しラビング処理により配向膜12aおよび12bを形成する。配向膜12aと12bとを対向させ、厚さ約2.8μmのシール14を用いて平行に配し、これらの空隙に図示しない注入口から液晶を注入して充填、密封し、液晶層13を形成する。 Next, a method for manufacturing the reflective liquid crystal element 104b will be described. On one side of a quartz glass substrate as the translucent substrate 3, SiO 2 with a refractive index of 1.45 and Ta 2 O 5 with a refractive index of 2.15 have an optical film thickness (refractive index × film thickness) with a wavelength of 1.56 μm. A dielectric multilayer reflective film having a reflectivity of 98% or more in the wavelength band of 1480 to 1620 nm is formed as the reflective layer 16 by alternately stacking the layers so as to be 1/4. Further, ITO serving as the transparent electrodes 11b and 11a is formed on one surface of the same quartz glass substrate as the surface of the dielectric multilayer reflective film and the translucent substrate 2b. Further, polyimide is applied to the surface of each ITO, and alignment films 12a and 12b are formed by rubbing treatment. The alignment films 12a and 12b are opposed to each other and arranged in parallel by using a seal 14 having a thickness of about 2.8 μm, and liquid crystal is injected into these gaps from an injection port (not shown) to be filled and sealed. Form.

液晶として、波長1.56μmの光に対して常光屈折率n=1.50および異常光屈折率n=1.66となる誘電率異方性が正のネマティック液晶を用い、図8に示すように、液晶層13の厚さdLCを2.8μmとした液晶単体セル102aを作製する。ここで、液晶層13の遅相軸方向が図10に示すようにY軸方向に対して45°方向で基板に対して平行配向となるように配向膜12aおよび12bは配向処理されている。このとき、波長1.56μmの光に対し、液晶層に電圧を印加しない状態の液晶単体セル102aのリタデーション値RLCが0.45μmで、電圧制御装置103により印加電圧実効値5Vrmsの矩形波交流電圧を印加した状態では液晶単体セル102aのリタデーション値RLCが0.06μmとする。 As a liquid crystal, a nematic liquid crystal having a positive dielectric anisotropy having an ordinary refractive index n o = 1.50 and an extraordinary refractive index n e = 1.66 with respect to light having a wavelength of 1.56 μm is used. As shown, a liquid crystal unit cell 102a having a thickness d LC of the liquid crystal layer 13 of 2.8 μm is produced. Here, the alignment films 12a and 12b are aligned so that the slow axis direction of the liquid crystal layer 13 is 45 ° to the Y-axis direction and parallel to the substrate as shown in FIG. At this time, for the light having a wavelength of 1.56 μm, the liquid crystal single cell 102 a in a state where no voltage is applied to the liquid crystal layer has a retardation value R LC of 0.45 μm, and the voltage controller 103 applies a rectangular wave AC having an effective voltage of 5 Vrms. In a state where a voltage is applied, the retardation value R LC of the liquid crystal single cell 102a is set to 0.06 μm.

さらに、片面に反射防止膜(図示せず)が形成された偏光回折素子101aの透光性基板2aの面に、常光屈折率n=1.55および異常光屈折率n=1.59で厚さd=1.5μmの高分子液晶層からなる位相板15を液晶単体セルに接着一体化して光変調液晶素子110とする。ここで、位相板15の遅相軸方向が液晶層13の遅相軸方向と直交するように配置し、リタデーション値RWPが0.06μmとなるようにする。その結果、印加電圧V=5Vrmsでの液晶層13に残留するリタデーション値0.06μmを相殺し、液晶セル102bのリタデーション値Rはゼロとなり、印加電圧ゼロ(V=0)で液晶セル102bのリタデーション値Rが0.39μmとなる。 Further, the ordinary light refractive index n o = 1.55 and the extraordinary light refractive index n e = 1.59 are formed on the surface of the translucent substrate 2a of the polarization diffraction element 101a having an antireflection film (not shown) formed on one side. Then, a phase plate 15 made of a polymer liquid crystal layer having a thickness d = 1.5 μm is bonded and integrated to a single liquid crystal cell to form a light modulation liquid crystal element 110. Here, the phase plate 15 is arranged so that the slow axis direction thereof is orthogonal to the slow axis direction of the liquid crystal layer 13 so that the retardation value RWP is 0.06 μm. As a result, the retardation value 0.06 μm remaining in the liquid crystal layer 13 at the applied voltage V 2 = 5 Vrms is canceled out, the retardation value R of the liquid crystal cell 102 b becomes zero, and the liquid crystal cell 102 b at the applied voltage zero (V 1 = 0). The retardation value R is 0.39 μm.

このように作製した光変調液晶素子110は、印加電圧ゼロの時、偏光回折素子101aに入射するS偏光の光とP偏光の光は液晶セル102bを往復透過してそれぞれP偏光の光とS偏光の光に変換されて出射する。一方、印加電圧V=5Vrmsの時、液晶セル102bを往復透過するS偏光の光およびP偏光の光はそれぞれ偏光状態が変化することなく出射する。 In the light modulation liquid crystal element 110 manufactured in this way, when the applied voltage is zero, the S-polarized light and the P-polarized light incident on the polarization diffraction element 101a reciprocate through the liquid crystal cell 102b, respectively. It is converted into polarized light and emitted. On the other hand, when the applied voltage V 2 = 5 Vrms, the S-polarized light and the P-polarized light that reciprocate through the liquid crystal cell 102b are emitted without changing the polarization state.

(実施例2)
実施例1で作製した光変調液晶素子110と、光の出射と受光の両方の機能を有する光ファイバー18および集光レンズ17からなる図15に示すような光減衰器200を構成する。光ファイバー18より出射する波長1.52μmから1.60μmのランダム偏光を集光レンズ17により平行光化して光変調液晶素子110に入射し、光変調液晶素子110で反射した出射光が集光レンズ17により光ファイバー18周辺に集光される。光変調液晶素子110の液晶層13に印加する矩形交流電圧の振幅をV=0VrmsからV=5Vrmsまで変化させると集光レンズ17および光変調液晶素子110を往復して光ファイバーを伝送する光強度I(V)が最大から最小まで変化する可変光減衰器が実現する。
(Example 2)
An optical attenuator 200 as shown in FIG. 15 comprising the light modulation liquid crystal element 110 produced in Example 1, the optical fiber 18 having both functions of light emission and light reception, and the condenser lens 17 is configured. Random polarized light with a wavelength of 1.52 μm to 1.60 μm emitted from the optical fiber 18 is converted into parallel light by the condenser lens 17 and incident on the light modulation liquid crystal element 110, and the outgoing light reflected by the light modulation liquid crystal element 110 is reflected by the condenser lens 17. Thus, the light is condensed around the optical fiber 18. When the amplitude of the rectangular AC voltage applied to the liquid crystal layer 13 of the light modulation liquid crystal element 110 is changed from V 1 = 0 Vrms to V 2 = 5 Vrms, light that travels back and forth through the condensing lens 17 and the light modulation liquid crystal element 110 is transmitted through the optical fiber. A variable optical attenuator in which the intensity I (V) changes from the maximum to the minimum is realized.

このとき、光強度比I(0Vrms)/I(5Vrms)で規定される消光比は22dBと高い値が得られる。また、光変調液晶素子110の使用に伴う光挿入損失I(0Vrms)は−1dB程度と低い値となる。また、印加電圧をV=0VrmsとV=5Vrmsに切り替えた時の光学応答時間は5msec以下となり、従来の透過型液晶素子に比べ液晶層の厚さが約半分のため応答時間は約1/4に高速化できる。さらに、入射光の波長が1.52μmから1.60μmまで変化しても、集光レンズ17により光ファイバー18に集光される集光点位置の変動はなく、光ファイバーを伝送する光の強度は安定する。 At this time, the extinction ratio defined by the light intensity ratio I (0 Vrms) / I (5 Vrms) is as high as 22 dB. Further, the optical insertion loss I L (0 Vrms) associated with the use of the light modulation liquid crystal element 110 is a low value of about −1 dB. Further, when the applied voltage is switched between V 1 = 0 Vrms and V 2 = 5 Vrms, the optical response time is 5 msec or less, and the response time is about 1 because the thickness of the liquid crystal layer is about half that of the conventional transmissive liquid crystal element. / 4 speed. Furthermore, even if the wavelength of the incident light changes from 1.52 μm to 1.60 μm, there is no change in the position of the condensing point collected by the condensing lens 17 on the optical fiber 18, and the intensity of the light transmitted through the optical fiber is stable. To do.

(実施例3)
実施例3として、ウォラストンプリズムを用いた偏光分離素子による光減衰器を構成する。実施例3の光減衰器は図示しないが、実施例2の光変調液晶素子110における偏光回折素子101aの代わりに、図7に示す複屈折結晶からなるウォラストンプリズム101dを用いる。
(Example 3)
As Example 3, an optical attenuator using a polarization separation element using a Wollaston prism is configured. Although the optical attenuator of the third embodiment is not shown, a Wollaston prism 101d made of a birefringent crystal shown in FIG. 7 is used instead of the polarization diffraction element 101a in the light modulation liquid crystal element 110 of the second embodiment.

ウォラストンプリズム101dは、複屈折結晶として常光屈折率n=1.945および異常光屈折率n=2.148のイットリウム・バナデート(YVO)結晶を用い、光透過面と斜面とが30°の角度をなす三角柱形状の2つの直角プリズム4と5に加工し、互いの斜面を、接着材を用いて固定することによって作製する。なお、直角プリズム4と5の異常光屈折率を示す遅相軸は図7において、直角プリズム4がY方向、直角プリズム5がX方向となるようにする。ここで、ウォラストンプリズム101dに垂直に入射するS偏光の光およびP偏光の光は直角プリズム4と5の界面および出射面で屈折し、出射面が屈折率1.45の石英ガラスの場合はそれぞれS偏光の光が−Y方向にθ=4.6°およびP偏光の光が+Y方向にθ=4.7°の角度をなして出射する。 The Wollaston prism 101d uses an yttrium vanadate (YVO 4 ) crystal having an ordinary refractive index n o = 1.945 and an extraordinary refractive index n e = 2.148 as a birefringent crystal, and has a light transmission surface and a slope of 30. It is fabricated by processing into two right-angle prisms 4 and 5 having a triangular prism shape with an angle of °, and fixing the slopes of each other with an adhesive. The slow axes indicating the extraordinary refractive indexes of the right-angle prisms 4 and 5 are set so that the right-angle prism 4 is in the Y direction and the right-angle prism 5 is in the X direction in FIG. Here, the S-polarized light and the P-polarized light that are perpendicularly incident on the Wollaston prism 101d are refracted at the interface and the exit surface of the right-angle prisms 4 and 5, and the exit surface is quartz glass having a refractive index of 1.45. S-polarized light is emitted at an angle of θ = 4.6 ° in the −Y direction, and P-polarized light is emitted at an angle of θ = 4.7 ° in the + Y direction.

このようにして作製したウォラストンプリズム101dを実施例1の反射型液晶素子104bと一体化し、光変調液晶素子とする。図15において、実施例1の光変調液晶素子110の代わりに本実施例の光変調液晶素子を配置し、液晶層13に印加する矩形交流電圧の振幅をV=0VrmsからV=5Vrmsまで変化させると、光ファイバーを伝送する光強度I(V)が最大から最小まで変化する可変光減衰器が実現する。このとき、光強度比I(0Vrms)/I(5Vrms)で規定される消光比は35dBと高い値が得られる。また、光変調液晶素子の使用に伴う光挿入損失I(0Vrms)は−0.3dB程度と低い値となる。 The Wollaston prism 101d thus fabricated is integrated with the reflective liquid crystal element 104b of Example 1 to obtain a light modulation liquid crystal element. In FIG. 15, the light modulation liquid crystal element according to the present embodiment is disposed instead of the light modulation liquid crystal element 110 according to the first embodiment, and the amplitude of the rectangular AC voltage applied to the liquid crystal layer 13 is from V 1 = 0 Vrms to V 2 = 5 Vrms. When it is changed, a variable optical attenuator is realized in which the light intensity I (V) transmitted through the optical fiber changes from the maximum to the minimum. At this time, the extinction ratio defined by the light intensity ratio I (0 Vrms) / I (5 Vrms) is as high as 35 dB. Further, the optical insertion loss I L (0 Vrms) associated with the use of the light modulation liquid crystal element is a low value of about −0.3 dB.

以上説明したように、本発明により入射光の偏光方向に関わらず光挿入損失が低くかつ消光比の高い安定した光変調液晶素子およびそれを用いた可変光減衰器が実現できる。また、本発明の光変調液晶素子の構成とすることにより応答速度の速い光変調液晶素子およびそれを用いた可変光減衰器が実現できる。さらに、入射光の広い波長帯域に対して波長依存性の少ない安定した消光比が得られる可変光減衰器が実現できる。   As described above, according to the present invention, a stable light modulation liquid crystal element having a low optical insertion loss and a high extinction ratio regardless of the polarization direction of incident light, and a variable optical attenuator using the same can be realized. Further, by adopting the configuration of the light modulation liquid crystal element of the present invention, a light modulation liquid crystal element having a high response speed and a variable optical attenuator using the light modulation liquid crystal element can be realized. Furthermore, it is possible to realize a variable optical attenuator that can obtain a stable extinction ratio with less wavelength dependency over a wide wavelength band of incident light.

本発明の光変調液晶素子の基本構成を示す側面模式図。The side surface schematic diagram which shows the basic composition of the light modulation liquid crystal element of this invention. 本発明の光変調液晶素子の基本構成を示す平面模式図。FIG. 3 is a schematic plan view showing the basic configuration of the light modulation liquid crystal element of the present invention. 本発明の光変調液晶素子の構成要素である偏光分離素子の機能を示す側面模式図。The side surface schematic diagram which shows the function of the polarization separation element which is a component of the light modulation liquid crystal element of this invention. 本発明の光変調液晶素子の構成要素である偏光分離素子を偏光回折素子とした構成例を示す断面模式図。The cross-sectional schematic diagram which shows the structural example which used the polarization separation element which is a component of the light modulation liquid crystal element of this invention as the polarization | polarized-light diffraction element. 回折格子の深さ変化に対する1次回折効率特性、回折格子に入射する光の波長変動に対する1次回折効率特性、およびブレーズ形状および擬似ブレーズ形状の深さの定義を示す模式図。The schematic diagram which shows the definition of the 1st-order diffraction efficiency characteristic with respect to the depth change of a diffraction grating, the 1st-order diffraction efficiency characteristic with respect to the wavelength fluctuation of the light which injects into a diffraction grating, and the depth of a blazed shape and a pseudo-blazed shape. 本発明の光変調液晶素子の構成要素である偏光分離素子を偏光回折素子とした他の構成例を示す断面模式図。The cross-sectional schematic diagram which shows the other structural example which used the polarization | polarized-light separation element which is a component of the light modulation liquid crystal element of this invention as the polarization | polarized-light diffraction element. 本発明の光変調液晶素子の構成要素である偏光分離素子をウォラストンプリズムとした構成例を示す断面模式図。The cross-sectional schematic diagram which shows the structural example which used the polarization separation element which is a component of the light modulation liquid crystal element of this invention as the Wollaston prism. 本発明の光変調液晶素子の構成要素である偏光変調素子および反射層を反射型液晶素子とした構成例を示す断面模式図。The cross-sectional schematic diagram which shows the structural example which used the polarization | polarized-light modulation element and reflective layer which are the components of the light modulation liquid crystal element of this invention as the reflection type liquid crystal element. 本発明の光変調液晶素子の構成要素である偏光変調素子および反射層を反射型液晶素子とした他の構成例を示す断面模式図。The cross-sectional schematic diagram which shows the other structural example which used the reflection type liquid crystal element as the polarization | polarized-light modulation element and reflective layer which are the components of the light modulation liquid crystal element of this invention. 反射型液晶素子の平面模式図。The plane schematic diagram of a reflection type liquid crystal element. 反射型液晶素子の機能を示す断面模式図。The cross-sectional schematic diagram which shows the function of a reflection type liquid crystal element. 光変調液晶素子の構成例を示す断面模式図。The cross-sectional schematic diagram which shows the structural example of a light modulation liquid crystal element. 光変調液晶素子の機能を示す断面模式図(電圧=V)。FIG. 3 is a schematic cross-sectional view showing the function of a light modulation liquid crystal element (voltage = V 1 ). 光変調液晶素子の機能を示す断面模式図(電圧=V)。FIG. 3 is a schematic cross-sectional view showing the function of a light modulation liquid crystal element (voltage = V 2 ). 本発明の光変調液晶素子からなる可変光減衰器の構成例を示す模式図。The schematic diagram which shows the structural example of the variable optical attenuator which consists of the light modulation liquid crystal element of this invention. 本発明の光変調液晶素子においてフレネル反射光低減の構成例を示す断面図。Sectional drawing which shows the structural example of Fresnel reflected light reduction in the light modulation liquid crystal element of this invention. 本発明の光変調液晶素子においてフレネル反射光低減の他の構成例を示す断面図。Sectional drawing which shows the other structural example of Fresnel reflected light reduction in the light modulation liquid crystal element of this invention. 従来の可変光減衰器の構成例を示す断面模式図。The cross-sectional schematic diagram which shows the structural example of the conventional variable optical attenuator. 従来の投影器の構成例を示す断面模式図。FIG. 10 is a schematic cross-sectional view showing a configuration example of a conventional projector.

符号の説明Explanation of symbols

1、1a、2、2a、2b、3、3a 透光性基板
4、5 直角プリズム
6、8、9 偏光回折格子
7、10 均質屈折率透明材料
11a、11b 透明電極
11c、11d 取り出し電極
12a、12b 配向膜
13 液晶層
14 シール
15 位相板
16 反射層
16a、16b 反射層
17 集光レンズ
18 光ファイバー
100、110、120、130 光変調液晶素子
101 偏光分離素子
101a、101b、101d、101e 偏光回折素子
101d ウォラストンプリズム
102 偏光変調素子
102a 液晶単体セル
102b 液晶セル
103 電圧制御装置
104、104a、104b、104c 反射型液晶素子
200 光減衰器
300 液晶素子(従来)
310 液晶セル(従来)
320 第1の偏光ビームスプリッタ
330 第2の偏光ビームスプリッタ
400 投影装置
410 レンズ
420 偏光分離器
421 偏光性の回折格子
430 液晶パネル
440 主要鏡
450 投射レンズ
1, 1a, 2, 2a, 2b, 3, 3a Translucent substrate 4, 5 Right angle prism 6, 8, 9 Polarization diffraction grating 7, 10 Homogeneous refractive index transparent material 11a, 11b Transparent electrode 11c, 11d Extraction electrode 12a, 12b Alignment film 13 Liquid crystal layer 14 Seal 15 Phase plate 16 Reflection layer 16a, 16b Reflection layer 17 Condensing lens 18 Optical fiber 100, 110, 120, 130 Light modulation liquid crystal element 101 Polarization separation element 101a, 101b, 101d, 101e Polarization diffraction element 101d Wollaston prism 102 Polarization modulation element 102a Liquid crystal single cell 102b Liquid crystal cell 103 Voltage control device 104, 104a, 104b, 104c Reflective liquid crystal element 200 Optical attenuator 300 Liquid crystal element (conventional)
310 Liquid crystal cell (conventional)
320 First polarization beam splitter 330 Second polarization beam splitter 400 Projector 410 Lens 420 Polarization separator 421 Polarizing diffraction grating 430 Liquid crystal panel 440 Main mirror 450 Projection lens

Claims (8)

入射光の光強度を変調する光変調液晶素子であって、
前記光変調液晶素子は、偏光分離素子と、反射型液晶素子とで構成され、
前記偏光分離素子は、透光性基板上に複屈折性材料からなる断面がブレーズ形状またはブレーズ形状を階段状に近似した擬似ブレーズ形状の複屈折性材料層と光学的に透明な光学材料層からなる偏光回折素子または、複屈折性材料の遅相軸が直交するように貼り合わされてなるウォラストンプリズムであり、
前記複屈折材料層のブレーズ形状または擬似ブレーズ形状を有する格子の長手方向、または前記ウォラストンプリズムの貼り合わせの界面の長手方向が、前記複屈折材料の遅相軸方向または進相軸方向と略一致し、
前記複屈折材料層の前記長手方向または前記ウォラストンプリズムの前記長手方向と平行する、偏光方向を第1の偏光方向、前記第1の偏光方向と直交する偏光方向を第2の偏光方向として、前記第1の偏光方向に対する前記複屈折材料層の屈折率と前記光学材料層の屈折率との差、または前記第1の偏光方向に対する前記ウォラストンプリズムの屈折率の差をΔn(≠0)、前記第2の偏光方向に対する前記複屈折材料層の屈折率と前記光学材料層の屈折率との差、または前記第2の偏光方向に対する前記ウォラストンプリズムの屈折率の差をΔn(≠0)とするとき、ΔnとΔnとが略等しく、
前記反射型液晶素子は、電極と、前記電極より印加される電圧の大きさによってリタデーション値を変化させる液晶層を含む偏光変調素子と、前記液晶層に入射した光を正規反射させる反射層とを備えた、光変調液晶素子。
A light modulation liquid crystal element for modulating the light intensity of incident light,
The light modulation liquid crystal element includes a polarization separation element and a reflective liquid crystal element,
The polarization separating element includes a birefringent material layer having a cross section made of a birefringent material on a translucent substrate and having a blazed shape or a quasi-blazed shape approximating a blazed shape like a staircase and an optically transparent optical material layer. Or a Wollaston prism that is bonded so that the slow axes of the birefringent materials are orthogonal to each other,
The longitudinal direction of the grating having the blazed shape or the pseudo-blazed shape of the birefringent material layer, or the longitudinal direction of the bonding interface of the Wollaston prism is substantially the slow axis direction or the fast axis direction of the birefringent material. Match
A polarization direction parallel to the longitudinal direction of the birefringent material layer or the longitudinal direction of the Wollaston prism is a first polarization direction, and a polarization direction orthogonal to the first polarization direction is a second polarization direction. The difference between the refractive index of the birefringent material layer and the refractive index of the optical material layer with respect to the first polarization direction, or the difference of the refractive index of the Wollaston prism with respect to the first polarization direction is expressed by Δn 1 (≠ 0 ), the second difference between the refractive index of the optical material layer and the refractive index of the birefringent material layer with respect to the polarization direction or the relative said second polarization direction wollastonite a difference in refractive index of the emission prism [Delta] n 2, ( ≠ 0), Δn 1 and Δn 2 are substantially equal,
The reflective liquid crystal element includes an electrode, a polarization modulator including a liquid crystal layer that changes a retardation value depending on a voltage applied from the electrode, and a reflective layer that regularly reflects light incident on the liquid crystal layer. A light modulation liquid crystal element provided.
前記偏光分離素子は、前記偏光回折素子であり、
前記偏光回折素子は、1つの前記複屈折性材料層と前記複屈折材料層の少なくとも凹部を充填するように1つの前記光学材料層を有し、
前記偏光回折素子の前記光学材料層は、光学的に等方性な均質屈折率透明材料層であって、
前記複屈折材料層の常光屈折率をn、異常光屈折率をn、前記均質屈折率透明材料層の屈折率をnとするとき、
はnとnの実質的に中間の値を有するとともに、入射する光のうち1次回折効率が最大値となる波長を波長λとするとき、
前記複屈折性材料からなる断面がブレーズ形状では、
0.7×λ/|n−n|≦d≦1.3×λ/|n−n|を満たし、
前記複屈折性材料からなる断面が擬似ブレーズ形状では、
0.85×λ/|n−n|≦d≦1.15×λ/|n−n|を満たすように、前記複屈折材料層からなる偏光性回折格子の深さdが設定されている請求項1に記載の光変調液晶素子。
The polarization separation element is the polarization diffraction element,
The polarization diffraction element has one optical material layer so as to fill at least the concave portion of the one birefringent material layer and the birefringent material layer,
The optical material layer of the polarization diffraction element is an optically isotropic homogeneous refractive index transparent material layer,
The ordinary refractive index of the birefringent material layer n o, the extraordinary refractive index n e, the refractive index of the homogeneous refractive index transparent material layer when the n s,
When n s is to be n o and n substantially with an intermediate value of e, the wavelength lambda 0 the wavelength in which the primary diffraction efficiency is maximum among the light incident,
If the cross section made of the birefringent material is blazed,
0.7 × λ 0 / | n e -n s | ≦ d ≦ 1.3 × λ 0 / | n e -n s | a filled,
When the cross section made of the birefringent material is a pseudo blazed shape,
0.85 × λ 0 / | n e −n s | ≦ d ≦ 1.15 × λ 0 / | n e −n s |, the depth of the polarizing diffraction grating composed of the birefringent material layer The light modulation liquid crystal element according to claim 1, wherein d is set.
前記深さdが、λ/|n−n|に略等しいとき、
前記複屈折性材料からなる断面がブレーズ形状では、
0.77×λ≦λ≦1.43×λを満たし、
前記複屈折性材料からなる断面が擬似ブレーズ形状では、
0.87×λ≦λ≦1.18×λを満たすλの光が入射する請求項2に記載の光変調液晶素子。
When the depth d is approximately equal to λ 0 / | n e −n s |
If the cross section made of the birefringent material is blazed,
Satisfies 0.77 × λ 0 ≦ λ ≦ 1.43 × λ 0 ,
When the cross section made of the birefringent material is a pseudo blazed shape,
The light modulation liquid crystal device according to claim 2, wherein light having a wavelength satisfying 0.87 × λ 0 ≦ λ ≦ 1.18 × λ 0 is incident.
前記偏光分離素子は、前記偏光回折素子であり、
前記偏光回折素子は、前記複屈折性材料層を有する1対の前記透光性基板を有するとともに、1対の前記複屈折材料層の前記長手方向が一致し、
前記複屈折材料層の少なくとも凹部を充填する前記光学材料層を有し、
前記偏光回折素子の前記光学材料層は、光学的に等方性な均質屈折率透明材料層であって、
前記複屈折材料層の常光屈折率をn、異常光屈折率をn、前記均質屈折率透明材料層の屈折率をnとするとき、
一対の前記複屈折材料層の遅相軸方向が互いに直交するとともに前記屈折率nは、前記常光屈折率nまたは異常光屈折率nのいずれか一方に実質的に等しいとともに、入射する光のうち1次回折効率が最大値となる波長を波長λとするとき、
前記複屈折性材料からなる断面がブレーズ形状では、
0.7×λ/|n−n|≦d≦1.3×λ/|n−n|を満たし、
前記複屈折性材料からなる断面が擬似ブレーズ形状では、
0.85×λ/|n−n|≦d≦1.15×λ/|n−n|を満たすように、前記複屈折材料層からなる記偏光回折格子の深さdが設定されている請求項1に記載の光変調液晶素子。
The polarization separation element is the polarization diffraction element,
The polarization diffraction element has a pair of translucent substrates having the birefringent material layer, and the longitudinal directions of the pair of birefringent material layers match.
The optical material layer filling at least the recesses of the birefringent material layer;
The optical material layer of the polarization diffraction element is an optically isotropic homogeneous refractive index transparent material layer,
The ordinary refractive index of the birefringent material layer n o, the extraordinary refractive index n e, the refractive index of the homogeneous refractive index transparent material layer when the n s,
The refractive index n s with the slow axis direction are orthogonal to each other of the pair of the birefringent material layer is substantially with equal to one of the ordinary refractive index n o or the extraordinary refractive index n e, is incident When the wavelength at which the first-order diffraction efficiency is maximum among the light is the wavelength λ 0 ,
If the cross section made of the birefringent material is blazed,
0.7 × λ 0 / | n e -n o | ≦ d ≦ 1.3 × λ 0 / | n e -n o | the meet,
When the cross section made of the birefringent material is a pseudo blazed shape,
0.85 × λ 0 / | n e −n o | ≦ d ≦ 1.15 × λ 0 / | n e −n o |, the depth of the polarizing diffraction grating composed of the birefringent material layer. The light modulation liquid crystal element according to claim 1, wherein d is set.
前記深さdが、λ/|n−n|に略等しいとき、
前記複屈折性材料からなる断面がブレーズ形状では、
0.77×λ≦λ≦1.43×λを満たし、
前記複屈折性材料からなる断面が擬似ブレーズ形状では、
0.87×λ≦λ≦1.18×λを満たすλの光が入射する請求項4に記載の光変調液晶素子。
When the depth d is approximately equal to λ 0 / | n e −n o |
If the cross section made of the birefringent material is blazed,
Satisfies 0.77 × λ 0 ≦ λ ≦ 1.43 × λ 0 ,
When the cross section made of the birefringent material is a pseudo blazed shape,
The light modulation liquid crystal element according to claim 4, wherein light having a wavelength satisfying 0.87 × λ 0 ≦ λ ≦ 1.18 × λ 0 is incident.
前記偏光分離素子は、前記複屈折材料層および前記光学材料からなる層がいずれも光学的に複屈折性を示す三角柱形状の直角プリズムからなり、
2つの前記直角プリズムの遅相軸が互いに直交しているウォラストンプリズムである請求項1に記載の光変調液晶素子。
The polarization separation element is a triangular prism-shaped right-angle prism in which both the birefringent material layer and the optical material layer are optically birefringent,
The light modulation liquid crystal element according to claim 1, which is a Wollaston prism in which slow axes of the two right-angle prisms are orthogonal to each other.
前記偏光変調素子は、前記液晶単体セルと位相板からなる液晶セルであり、
前記液晶単体セルに印加する電圧がVのとき、前記波長λの光が前記液晶セルを往復するときのリタデーション値がλ/2であるとともに、
前記液晶単体セルに印加する電圧がV(V≠V)のとき、前記波長λの光が前記液晶セルを往復するときのリタデーション値がゼロである請求項1〜6いずれか1項に記載の光変調液晶素子。
The polarization modulation element is a liquid crystal cell composed of the single liquid crystal cell and a phase plate,
If the voltage applied to the liquid crystal alone cell is V 1, with a retardation value of lambda 0/2 when light of the wavelength lambda 0 to reciprocate the liquid crystal cell,
The retardation value when the light of the wavelength λ 0 reciprocates through the liquid crystal cell is zero when the voltage applied to the single liquid crystal cell is V 2 (V 1 ≠ V 2 ). The light modulation liquid crystal element according to item.
光源と、
集光レンズと、
前記集光レンズを透過した光の進行方向に請求項1〜7いずれか1項に記載の光変調液晶素子と、
前記光変調液晶素子で反射されて出射する特定の進行方向の光を受光する受光手段からなる可変光減衰器であって、
前記光変調液晶素子へ印加する電圧の大きさに応じて前記受光手段で受光する光量が変化する可変光減衰器。
A light source;
A condenser lens;
The light modulation liquid crystal element according to any one of claims 1 to 7, in a traveling direction of light transmitted through the condenser lens;
A variable optical attenuator comprising light receiving means for receiving light in a specific traveling direction reflected and emitted from the light modulation liquid crystal element;
A variable optical attenuator in which the amount of light received by the light receiving means changes according to the magnitude of a voltage applied to the light modulation liquid crystal element.
JP2008150704A 2008-06-09 2008-06-09 Optical modulation liquid crystal element and variable optical attenuator Withdrawn JP2009294604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008150704A JP2009294604A (en) 2008-06-09 2008-06-09 Optical modulation liquid crystal element and variable optical attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008150704A JP2009294604A (en) 2008-06-09 2008-06-09 Optical modulation liquid crystal element and variable optical attenuator

Publications (2)

Publication Number Publication Date
JP2009294604A true JP2009294604A (en) 2009-12-17
JP2009294604A5 JP2009294604A5 (en) 2011-02-24

Family

ID=41542812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008150704A Withdrawn JP2009294604A (en) 2008-06-09 2008-06-09 Optical modulation liquid crystal element and variable optical attenuator

Country Status (1)

Country Link
JP (1) JP2009294604A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191787A (en) * 2011-06-09 2011-09-29 Asahi Glass Co Ltd Isolator and voltage-variable attenuator
WO2013015066A1 (en) * 2011-07-25 2013-01-31 シチズンホールディングス株式会社 Optical device, projector, production method, and production support device
JP2017520787A (en) * 2014-05-27 2017-07-27 華為技術有限公司Huawei Technologies Co.,Ltd. Variable optical attenuator
KR20180099138A (en) * 2017-02-28 2018-09-05 경북대학교 산학협력단 Viewing angle controllable display
WO2019182158A1 (en) * 2018-03-23 2019-09-26 国立研究開発法人産業技術総合研究所 Light beam switching element, assembly of same, and control method for same
CN110858606A (en) * 2018-08-23 2020-03-03 三星显示有限公司 Display device and method of manufacturing the same
US20220264076A1 (en) * 2019-06-28 2022-08-18 Pcms Holdings, Inc. Optical method and system for light field (lf) displays based on tunable liquid crystal (lc) diffusers
CN118068581A (en) * 2024-04-23 2024-05-24 北京极溯光学科技有限公司 Zoom imaging device and zoom imaging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197827A (en) * 1997-01-10 1998-07-31 Matsushita Electric Ind Co Ltd Polarized light separating element and projection type display device using the same
JP2004184505A (en) * 2002-11-29 2004-07-02 Asahi Glass Co Ltd Polarization beam splitter, optical information recording device and optical information recording/reproducing device using the polarization beam splitter
JP2005003758A (en) * 2003-06-10 2005-01-06 Asahi Glass Co Ltd Reflective optical modulator and variable optical attenuator
JP2006058843A (en) * 2004-04-19 2006-03-02 Citizen Watch Co Ltd Variable optical attenuator and optical filter equipped with same
US7034979B1 (en) * 2001-11-09 2006-04-25 Ezconn Corporation Variable optical attenuator using crystal wedges

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197827A (en) * 1997-01-10 1998-07-31 Matsushita Electric Ind Co Ltd Polarized light separating element and projection type display device using the same
US7034979B1 (en) * 2001-11-09 2006-04-25 Ezconn Corporation Variable optical attenuator using crystal wedges
JP2004184505A (en) * 2002-11-29 2004-07-02 Asahi Glass Co Ltd Polarization beam splitter, optical information recording device and optical information recording/reproducing device using the polarization beam splitter
JP2005003758A (en) * 2003-06-10 2005-01-06 Asahi Glass Co Ltd Reflective optical modulator and variable optical attenuator
JP2006058843A (en) * 2004-04-19 2006-03-02 Citizen Watch Co Ltd Variable optical attenuator and optical filter equipped with same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191787A (en) * 2011-06-09 2011-09-29 Asahi Glass Co Ltd Isolator and voltage-variable attenuator
WO2013015066A1 (en) * 2011-07-25 2013-01-31 シチズンホールディングス株式会社 Optical device, projector, production method, and production support device
CN103635857A (en) * 2011-07-25 2014-03-12 西铁城控股株式会社 Optical device, projector, production method, and production support device
JPWO2013015066A1 (en) * 2011-07-25 2015-02-23 シチズンホールディングス株式会社 Optical device, projector, manufacturing method, and manufacturing support apparatus
US9285601B2 (en) 2011-07-25 2016-03-15 Citizen Holdings Co., Ltd. Optical device, projector, manufacturing method, and manufacturing support apparatus
JP2017520787A (en) * 2014-05-27 2017-07-27 華為技術有限公司Huawei Technologies Co.,Ltd. Variable optical attenuator
US9927678B2 (en) 2014-05-27 2018-03-27 Huawei Technologies Co., Ltd. Variable optical attenuator comprising a switchable polarization grating
KR101950379B1 (en) 2017-02-28 2019-02-20 경북대학교 산학협력단 Viewing angle controllable display
KR20180099138A (en) * 2017-02-28 2018-09-05 경북대학교 산학협력단 Viewing angle controllable display
WO2019182158A1 (en) * 2018-03-23 2019-09-26 国立研究開発法人産業技術総合研究所 Light beam switching element, assembly of same, and control method for same
JPWO2019182158A1 (en) * 2018-03-23 2021-01-07 国立研究開発法人産業技術総合研究所 Optical beam switching element, its assembly, and its control method
CN110858606A (en) * 2018-08-23 2020-03-03 三星显示有限公司 Display device and method of manufacturing the same
KR20200023570A (en) * 2018-08-23 2020-03-05 삼성디스플레이 주식회사 Display device and manufacturing method thereof
KR102568784B1 (en) * 2018-08-23 2023-08-22 삼성디스플레이 주식회사 Display device and manufacturing method thereof
US20220264076A1 (en) * 2019-06-28 2022-08-18 Pcms Holdings, Inc. Optical method and system for light field (lf) displays based on tunable liquid crystal (lc) diffusers
US11917121B2 (en) * 2019-06-28 2024-02-27 Interdigital Madison Patent Holdings, Sas Optical method and system for light field (LF) displays based on tunable liquid crystal (LC) diffusers
CN118068581A (en) * 2024-04-23 2024-05-24 北京极溯光学科技有限公司 Zoom imaging device and zoom imaging method

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
US11079645B2 (en) Stabilization for privacy display
JP2009294604A (en) Optical modulation liquid crystal element and variable optical attenuator
US20180231813A1 (en) Variable optical retarder
US9195092B2 (en) Polarization-independent liquid crystal display devices including multiple polarizing grating arrangements and related devices
JP4826472B2 (en) Polarizing diffractive filter and laminated polarizing diffractive filter
WO2005052674A1 (en) Optical element using liquid crystal having optical isotropy
US9927678B2 (en) Variable optical attenuator comprising a switchable polarization grating
WO2006082901A1 (en) Variable transmission light quantity element and projection display
JP4600238B2 (en) Image display device
JP4792679B2 (en) Isolator and variable voltage attenuator
JP2009294604A5 (en)
JP4013892B2 (en) Diffraction element and optical attenuator
WO2020062884A1 (en) Display panel and display device
JP4106981B2 (en) Optical attenuator
JP4269788B2 (en) Reflective light modulator and variable optical attenuator
JP2006215186A (en) Diffraction element, manufacturing method of the same, and polarization selecting device using diffraction element
JP5195024B2 (en) Diffraction element, optical attenuator, optical head device, and projection display device
KR20220145347A (en) Achromatic optical device based on birefringent materials with positive and negative birefringent dispersions
JP2010152268A5 (en)
CN110869836A (en) High-speed optical switch engine
JP2003195274A (en) Light deflector element, optical path switching device and image display device
JP5152366B2 (en) Isolator and variable voltage attenuator
JP4232523B2 (en) Optical modulator and optical attenuator
JP5150992B2 (en) Liquid crystal device and optical attenuator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120305