JP4013892B2 - Diffraction element and optical attenuator - Google Patents

Diffraction element and optical attenuator Download PDF

Info

Publication number
JP4013892B2
JP4013892B2 JP2003398504A JP2003398504A JP4013892B2 JP 4013892 B2 JP4013892 B2 JP 4013892B2 JP 2003398504 A JP2003398504 A JP 2003398504A JP 2003398504 A JP2003398504 A JP 2003398504A JP 4013892 B2 JP4013892 B2 JP 4013892B2
Authority
JP
Japan
Prior art keywords
liquid crystal
refractive index
blue phase
light
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003398504A
Other languages
Japanese (ja)
Other versions
JP2005157164A (en
Inventor
好晴 大井
篤史 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003398504A priority Critical patent/JP4013892B2/en
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to AT04819455T priority patent/ATE445860T1/en
Priority to CN2004800348207A priority patent/CN1886691B/en
Priority to KR1020067008108A priority patent/KR20060104994A/en
Priority to PCT/JP2004/017612 priority patent/WO2005052674A1/en
Priority to EP04819455A priority patent/EP1688783B1/en
Priority to DE602004023641T priority patent/DE602004023641D1/en
Publication of JP2005157164A publication Critical patent/JP2005157164A/en
Priority to US11/441,157 priority patent/US20060227283A1/en
Application granted granted Critical
Publication of JP4013892B2 publication Critical patent/JP4013892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、回折素子および光減衰器に関し、特に、回折格子の一部に液晶を用い、液晶に電圧を印加することにより液晶の実質的な屈折率を制御し、入射光を回折させて0次回折光(透過光)の光量を制御する回折素子および光減衰器に関する。   The present invention relates to a diffractive element and an optical attenuator, and in particular, a liquid crystal is used as a part of a diffraction grating, a voltage is applied to the liquid crystal to control a substantial refractive index of the liquid crystal, and incident light is diffracted to 0. The present invention relates to a diffraction element and an optical attenuator for controlling the amount of next diffracted light (transmitted light).

従来、カイラル材が含有され等方的屈折率を有するコレステリック液晶のブルー相(以下、ブルー相液晶という。)を利用し、印加電圧の大きさに応じて屈折率が等方的に変化する回折素子が開示されている(例えば、特許文献1参照。)。係る回折素子等の液晶素子100の構成例および光学系の概念的な断面図を図10に示す。従来の液晶素子100では、透明電極膜3、4がパターニングによって形成された2枚のガラス基板5、6と、その間のシール7とで、ブルー相液晶2を狭持している。   Conventionally, diffraction using a blue phase of a cholesteric liquid crystal containing a chiral material and having an isotropic refractive index (hereinafter, referred to as a blue phase liquid crystal) whose refractive index changes isotropically according to the magnitude of an applied voltage. An element is disclosed (for example, refer to Patent Document 1). FIG. 10 shows a configuration example of the liquid crystal element 100 such as a diffraction element and a conceptual cross-sectional view of the optical system. In the conventional liquid crystal element 100, the blue phase liquid crystal 2 is sandwiched between two glass substrates 5 and 6 on which transparent electrode films 3 and 4 are formed by patterning, and a seal 7 therebetween.

対向する透明電極膜3、4間には、電源8から出力された電圧が印加される。光源14から出射され、液晶素子100を直進透過して投射スクリーン15に到達する0次回折光の光量は、印加電圧の大きさに応じて変化する。係る構成の液晶素子100は、高速スイッチングが可能とされ、液晶素子100を用いて位相グリッド(すなわち位相回折格子)などが得られるとされている。   A voltage output from the power supply 8 is applied between the opposing transparent electrode films 3 and 4. The amount of 0th-order diffracted light emitted from the light source 14 and traveling straight through the liquid crystal element 100 and reaching the projection screen 15 varies depending on the magnitude of the applied voltage. The liquid crystal element 100 having such a configuration is capable of high-speed switching, and a phase grid (that is, a phase diffraction grating) or the like is obtained using the liquid crystal element 100.

ここで、屈折率が等方的なブルー相は、1〜5℃の温度範囲内でしか発現しないため、透明の発熱体である発熱透明板16をガラス基板5に形成して温度制御を行い、ブルー相を維持するようになっている。しかし、ブルー相は、上記のように極めて狭い温度範囲内でしか発現しないため、正確で困難な温度制御が必要となっている。そこで、係る温度制御の問題を解決するべく、液晶にモノマーを混合してブルー相液晶の発現温度域で紫外線を照射することによりモノマーを高分子化し、ブルー相液晶が発現する温度範囲を1〜5℃から60℃以上に拡大することを可能とする技術が開発された。以下、上記で温度範囲が拡大されたブルー相液晶を高分子安定化ブルー相液晶という。高分子安定化ブルー相液晶を用いることによって、1msec以下の高速応答が確認されている(例えば、非特許文献1)。しかし、光学的等方性を利用した入射偏光の状態に依存しないスイッチング素子の構成例は、これまで開示されていない。
米国特許4,767,194号公報 ネイチャー、物質、第1巻、2002年9月、64頁(Nature Materials,Vol.1,2002,September、P.64)
Here, since the isotropic blue phase having an isotropic refractive index appears only within a temperature range of 1 to 5 ° C., the temperature is controlled by forming the heat generating transparent plate 16 as a transparent heat generating element on the glass substrate 5. To maintain the blue phase. However, since the blue phase appears only within a very narrow temperature range as described above, accurate and difficult temperature control is required. Therefore, in order to solve the temperature control problem, the monomer is polymerized by mixing the monomer with the liquid crystal and irradiating ultraviolet rays in the temperature range of the blue phase liquid crystal. A technology has been developed that allows expansion from 5 ° C. to over 60 ° C. Hereinafter, the blue phase liquid crystal whose temperature range is expanded as described above is referred to as a polymer-stabilized blue phase liquid crystal. A high-speed response of 1 msec or less has been confirmed by using a polymer-stabilized blue phase liquid crystal (for example, Non-Patent Document 1). However, a configuration example of a switching element that does not depend on the state of incident polarization using optical isotropy has not been disclosed so far.
US Patent No. 4,767,194 Nature, Material, Vol. 1, September 2002, p. 64 (Nature Materials, Vol. 1, 2002, September, P. 64)

しかし、このような従来の回折素子および光減衰器では、パターニングして形成された電極を有する2枚の基板を必要とすると共に電極構造が複雑であり、対向する電極の位置がずれてしまうと印加電圧に応じた所望の屈折率等の性能を有する位相回折格子が得られないため、高い位置合わせ精度が必要であった。特に、入射光を効率よく大きな角度で回折させる回折格子を得るためには、隣接する電極間隔を10μm以内の精度でパターニング及び位置合わせする必要があり、実用的な光学素子を得ることは困難であった。   However, such a conventional diffractive element and optical attenuator require two substrates having electrodes formed by patterning, have a complicated electrode structure, and the positions of the opposing electrodes are shifted. Since a phase diffraction grating having performance such as a desired refractive index according to the applied voltage cannot be obtained, high alignment accuracy is required. In particular, in order to obtain a diffraction grating that efficiently diffracts incident light at a large angle, it is necessary to pattern and align the distance between adjacent electrodes with an accuracy within 10 μm, and it is difficult to obtain a practical optical element. there were.

また、対向する電極対により生成される電界が電極の無い液晶域にも生成され、それに応じて液晶の屈折率が変化するため、所望の特性を有する位相回折格子を得ることができず、回折効率が劣化する問題があった。   In addition, the electric field generated by the opposing electrode pair is also generated in the liquid crystal region where there is no electrode, and the refractive index of the liquid crystal changes accordingly, so that a phase diffraction grating having desired characteristics cannot be obtained, and diffraction is performed. There was a problem that efficiency deteriorated.

これらの問題は、ブルー相液晶が発現する温度範囲を拡張した高分子安定化ブルー相液晶を用いる場合も同様である。   These problems are the same when a polymer-stabilized blue phase liquid crystal having an extended temperature range in which the blue phase liquid crystal is developed is used.

本発明はこのような問題を解決するためになされたもので、ブルー相液晶または高分子安定化ブルー相液晶を用いて、入射偏光に依存せず、従来と同等またはそれ以上の高速光スイッチングと消光比を安定して実現できる回折素子および光減衰器を提供するものである。   The present invention has been made to solve such problems, and uses a blue phase liquid crystal or a polymer-stabilized blue phase liquid crystal, and does not depend on incident polarization, and is equivalent to or faster than conventional high-speed optical switching. A diffraction element and an optical attenuator that can stably realize an extinction ratio are provided.

以上の点を考慮して、請求項1に係る発明は、光を透過させる基板と、前記基板上に等方的な屈折率の等方性屈折率固体材料を用いて形成され、断面構造が周期的凸凹を有する格子と、前記周期的凸凹を有する格子の少なくとも凹部に充填され、屈折率が等方的に変化し、コレステリックブルー相を発現するコレステリックブルー相液晶と、前記コレステリックブルー相液晶に電圧を印加するための電極とを備え、前記格子とコレステリックブルー相液晶とによって回折格子が構成され、前記回折格子を構成する前記コレステリックブルー相液晶の屈折率が前記電極を介して印加される電圧によって変化されるようにした回折素子であって、前記コレステリックブルー相液晶は、所定の高分子材料を含有することによって前記コレステリックブルー相の発現温度範囲が拡大された高分子安定化コレステリックブルー相液晶であり、前記電極は、前記基板と前記格子との間に設けられ、1つおきに隣り合う前記格子に沿った線状の各電極が接続される2つの電極の組からなり、前記2つの電極の組を介して隣り合う前記電極間に電圧が印加されるようにした構成を有している。 In view of the above points, the invention according to claim 1 is formed using a substrate that transmits light, and an isotropic refractive index solid material having an isotropic refractive index on the substrate, and has a cross-sectional structure. A grating having periodic irregularities, a cholesteric blue phase liquid crystal in which at least a concave portion of the grating having periodic irregularities is filled, a refractive index isotropically changed, and a cholesteric blue phase is expressed; and the cholesteric blue phase liquid crystal An electrode for applying a voltage, a diffraction grating is constituted by the grating and the cholesteric blue phase liquid crystal, and a refractive index of the cholesteric blue phase liquid crystal constituting the diffraction grating is applied via the electrode a diffraction element which is to be changed by the cholesteric blue phase liquid crystal, the cholesteric by the inclusion of predetermined polymer materials A polymer-stabilized cholesteric blue phase liquid crystal in which an expression temperature range of a roux phase is expanded, and the electrodes are provided between the substrate and the lattice, and are arranged in a line along the lattice adjacent to each other Each electrode is connected to each other, and a voltage is applied between the adjacent electrodes via the two electrode sets .

この構成により、コレステリックブルー相液晶を格子の凹部に充填し、印加する電圧の大きさによってコレステリックブルー相液晶の屈折率を制御するようにしたため、入射偏光に依存せず、従来と同等またはそれ以上の高速光スイッチングと消光比を安定して得ることができる回折素子を実現できる。   With this configuration, the cholesteric blue phase liquid crystal is filled in the concave portions of the lattice, and the refractive index of the cholesteric blue phase liquid crystal is controlled by the magnitude of the applied voltage. It is possible to realize a diffraction element that can stably obtain the high-speed optical switching and the extinction ratio.

また、この構成により、コレステリックブルー相液晶として高分子安定化コレステリックブルー相液晶を用いるため、広い温度範囲で入射偏光に依存しない安定した高い消光比が得られるとともに高速光スイッチングできる回折素子を実現できる。 Also, with this configuration, a polymer-stabilized cholesteric blue phase liquid crystal is used as the cholesteric blue phase liquid crystal, so that a stable high extinction ratio independent of incident polarization can be obtained over a wide temperature range and a diffraction element capable of high-speed optical switching can be realized .

また、この構成により、等方性屈折率固体材料からなる回折格子を形成する基板面側のみに電極をパターニングして形成すればよいため、対向する基板面に電極は不要で位置合わせをする必要もないため、素子作の工程を従来よりも簡素化できる回折素子を実現できる。 Further, this configuration, since the may be formed by patterning an electrode on only the substrate surface to form a diffraction grating made of isotropic refractive index solid material, the electrode on the substrate surface facing the need to align unnecessary since there can also be realized diffractive element can be simplified than the conventional device operation made steps.

また、請求項に係る発明は、請求項1に記載の回折素子と、前記回折素子の電極を介して電圧が印加されたことにより生じた入射光の高次回折光を、前記回折素子を直進透過する入射光の0次回折光から分離し、前記0次回折光を抽出する分別手段とを備え、前記電極を介して印加された電圧の大きさに応じて前記0次回折光の光量を調整するようにした構成を有している。 According to a second aspect of the present invention, the diffraction element according to the first aspect and incident high-order diffracted light generated by applying a voltage through the electrode of the diffractive element travel straight through the diffractive element. Separation means for separating the transmitted incident light from the 0th-order diffracted light and extracting the 0th-order diffracted light, and adjusting the amount of the 0th-order diffracted light according to the magnitude of the voltage applied through the electrode. It has the structure made into.

この構成により、ブルー相液晶または高分子安定化ブルー相液晶を用いる本発明の回折素子と、分別手段とを設けたため、入射偏光に依存せず、従来と同等またはそれ以上の高速光スイッチングと消光比を安定して得ることができる光減衰器を実現できる。   With this configuration, the diffraction element of the present invention using a blue phase liquid crystal or a polymer-stabilized blue phase liquid crystal and a sorting unit are provided, so that high-speed optical switching and quenching that are equal to or higher than conventional ones are performed without depending on incident polarization. An optical attenuator that can stably obtain the ratio can be realized.

本発明は、ブルー相液晶または高分子安定化ブルー相液晶を用いることによって、入射偏光の状態に依存せず、従来と同等またはそれ以上の高速光スイッチングと消光比を安定して得ることができる効果を有する回折素子および光減衰器を提供できる。   In the present invention, by using a blue phase liquid crystal or a polymer stabilized blue phase liquid crystal, high-speed optical switching and an extinction ratio equal to or higher than those in the past can be stably obtained without depending on the state of incident polarized light. A diffraction element and an optical attenuator having an effect can be provided.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)(参考例)
図1は、本発明の第1の実施の形態に係る回折素子の断面構造を概念的に示す図である。図1に示す回折素子10は、透光性基板5、6の片面に透明電極膜3、4がそれぞれ成膜され、透明電極膜3、4間に、略直方体の等方性屈折率固体材料が平行に周期的に配列されて格子2Aを成し、格子2Aを形成する各等方性屈折率固体材料間の領域が等方性屈折率液晶2Bによって占められた回折格子1が形成され、透明電極膜3、4とシール7によって等方性屈折率液晶2Bを密封するように構成される。
(First embodiment) (Reference example)
FIG. 1 is a diagram conceptually showing a cross-sectional structure of the diffraction element according to the first embodiment of the present invention. A diffractive element 10 shown in FIG. 1 has transparent electrode films 3 and 4 formed on one side of translucent substrates 5 and 6, respectively, and a substantially rectangular parallelepiped isotropic refractive index solid material between the transparent electrode films 3 and 4. Are arranged in parallel and periodically to form a grating 2A, and a diffraction grating 1 in which a region between each isotropic refractive index solid material forming the grating 2A is occupied by an isotropic refractive index liquid crystal 2B is formed, The isotropic refractive index liquid crystal 2 </ b> B is sealed by the transparent electrode films 3 and 4 and the seal 7.

ここで、等方性屈折率固体材料とは、入射光の偏光方向に関わらず屈折率nが一定であり複屈折性の無い透明材料をいい、等方性屈折率固体材料として、SiOやSiNなどの無機材料を用いるのでもよいし、ポリイミドや紫外線硬化樹脂などの有機物材料を用いるのでもよい。また、回折格子1を構成する格子2Aと等方性屈折率液晶2Bの周期的な配列パターン(以下、回折格子パターンという。)は、1μmから100μm程度の所望の膜厚dに成膜した等方性屈折率固体材料を、フォトリソグラフィやドライエッチングなどの微細加工技術を用いて加工して得られる。感光性ポリイミドなどの感光性材料を格子2A(等方性屈折率固体材料)として用いると、回折格子パターンに対応したマスクを用いて露光および現像を行うだけで格子形状に加工できるため、回折格子パターンの作製工程が簡略化でき、好適である。 Here, the isotropic refractive index solid material, regardless of the polarization direction of incident light refractive index n s is good the constant and birefringence without transparent material, as isotropic refractive index solid material, SiO 2 Alternatively, an inorganic material such as SiN or SiN may be used, or an organic material such as polyimide or an ultraviolet curable resin may be used. Further, a periodic arrangement pattern (hereinafter referred to as a diffraction grating pattern) of the grating 2A and the isotropic refractive index liquid crystal 2B constituting the diffraction grating 1 is formed to have a desired film thickness d of about 1 μm to 100 μm. An isotropic refractive index solid material is obtained by processing using a fine processing technique such as photolithography or dry etching. When a photosensitive material such as photosensitive polyimide is used as the grating 2A (isotropic refractive index solid material), it can be processed into a grating shape simply by performing exposure and development using a mask corresponding to the diffraction grating pattern. The pattern production process can be simplified, which is preferable.

次に、等方性屈折率液晶2Bの密封は、従来の液晶素子と同様に、透明電極膜4が成膜された透光性基板6の片面にシール7を印刷塗布し、透光性基板5にシール材を圧着固化することによりセル化する。そして、シールの一部に設けられた注入口(図示せず)から印加電圧Vの大きさに応じて屈折率n(V)が等方的に変化する等方性屈折率液晶2Bを注入して格子2Aの等方性屈折率固体材料間の領域に等方性屈折率液晶2Bが充填され、注入口を封止して回折素子10が完成する。ここで、格子2Aの等方性屈折率固体材料の透光性基板5に垂直な方向の厚さdが等方性屈折率液晶2Bの層厚を規定するため、従来の液晶素子で用いられるギャップ制御材は用いなくともよい。   Next, the sealing of the isotropic refractive index liquid crystal 2B is performed by printing and applying a seal 7 on one side of the transparent substrate 6 on which the transparent electrode film 4 is formed, as in the conventional liquid crystal element. 5 is formed into a cell by pressure-solidifying the sealing material. Then, an isotropic refractive index liquid crystal 2B in which the refractive index n (V) isotropically changed according to the magnitude of the applied voltage V is injected from an injection port (not shown) provided in a part of the seal. Then, the region between the isotropic refractive index solid materials of the grating 2A is filled with the isotropic refractive index liquid crystal 2B, and the inlet is sealed to complete the diffraction element 10. Here, the thickness d of the isotropic refractive index solid material of the grating 2A in the direction perpendicular to the translucent substrate 5 defines the layer thickness of the isotropic refractive index liquid crystal 2B, and is used in the conventional liquid crystal element. It is not necessary to use a gap control material.

等方性屈折率液晶2Bとして用いる液晶は、印加電圧Vの大きさに応じて入射光に対する屈折率が等方的に変化する材料であれば何れでもよい。等方性屈折率液晶2Bとしてブルー相液晶を用いた場合、1msec以下の高速応答性が実現するため好ましい。また、等方性屈折率液晶2Bとして高分子安定化ブルー相液晶を用いた場合、ブルー相が発現する温度範囲が拡大されため、等方性屈折率液晶2Bをブルー相に保つための温度制御が容易になり、さらに好ましい。高分子安定化ブルー相液晶に用いられる材料および作製方法については、非特許文献1等に開示されており、その説明を省略する。以下では、特に断る場合を除いて、凸凹状の周期性を有する格子2Aの凹部には、屈折率が等方的に変化し、コレステリックブルー相を発現する高分子安定化コレステリックブルー相液晶を含むブルー相液晶が充填されるものとする。   The liquid crystal used as the isotropic refractive index liquid crystal 2B may be any material as long as the refractive index with respect to incident light changes isotropically according to the magnitude of the applied voltage V. When a blue phase liquid crystal is used as the isotropic refractive index liquid crystal 2B, it is preferable because a high-speed response of 1 msec or less is realized. In addition, when a polymer-stabilized blue phase liquid crystal is used as the isotropic refractive index liquid crystal 2B, the temperature range in which the blue phase appears is expanded, and thus temperature control for keeping the isotropic refractive index liquid crystal 2B in the blue phase. Is more preferable. The materials used for the polymer-stabilized blue phase liquid crystal and the manufacturing method thereof are disclosed in Non-Patent Document 1 and the like, and the description thereof is omitted. In the following, unless otherwise specified, the concave portion of the grating 2A having the irregular periodicity includes a polymer-stabilized cholesteric blue phase liquid crystal in which the refractive index changes isotropically and expresses a cholesteric blue phase. It shall be filled with blue phase liquid crystal.

電源8から出力された電圧Vは、透明電極膜3、4を介して等方性屈折率液晶2Bに印可され、等方性屈折率液晶2Bの配向性を制御することによって屈折率を制御するために用いられる。   The voltage V output from the power supply 8 is applied to the isotropic refractive index liquid crystal 2B through the transparent electrode films 3 and 4, and the refractive index is controlled by controlling the orientation of the isotropic refractive index liquid crystal 2B. Used for.

以下、本発明の第1の実施の形態に係る回折素子10の電圧応答の例について説明する。図2は、本発明の第1の実施の形態に係る回折素子10の電圧応答の一例を説明するための説明図である。図2(a)は印加電圧V=0の場合を、図2(b)は±1次回折光が最大(すなわち0次回折光(透過光)が最小)となる電圧Vmが印加された場合の電圧応答の例について説明するための説明図である。以下では、0次回折光以外の回折光を高次回折光ともいう。   Hereinafter, an example of the voltage response of the diffraction element 10 according to the first embodiment of the present invention will be described. FIG. 2 is an explanatory diagram for explaining an example of a voltage response of the diffraction element 10 according to the first embodiment of the present invention. 2A shows the case where the applied voltage V = 0, and FIG. 2B shows the voltage when the voltage Vm at which ± 1st order diffracted light is maximum (that is, 0th order diffracted light (transmitted light) is minimum) is applied. It is explanatory drawing for demonstrating the example of a response. Hereinafter, diffracted light other than the 0th-order diffracted light is also referred to as high-order diffracted light.

図1に示すように略直方体の格子2Aと等方性屈折率液晶2Bとが交互に周期的に配列された構造を有する回折格子1において、格子2Aの幅と等方性屈折率液晶2Bの幅との比が1:1をなすときに、波長λの入射光が回折素子10を直進透過する割合を示す0次回折効率ηは、η=cos(π×△n×d/λ)で近似的に記述される。ここで、△nは回折格子1を構成する等方性屈折率液晶2Bの屈折率n(V)と格子2Aの屈折率nとの差、すなわち△n=n(V)−nである。 As shown in FIG. 1, in the diffraction grating 1 having a structure in which a substantially rectangular parallelepiped grating 2A and an isotropic refractive index liquid crystal 2B are alternately arranged periodically, the width of the grating 2A and the isotropic refractive index liquid crystal 2B When the ratio to the width is 1: 1, the 0th-order diffraction efficiency η 0 indicating the rate at which incident light of wavelength λ travels straight through the diffractive element 10 is η 0 = cos 2 (π × Δn × d / λ) is approximately described. Here, △ n is the difference between the refractive index n s of the refractive index n (V) and grating 2A isotropic refractive index liquid crystal 2B constituting the diffraction grating 1, ie △ n = n (V) -n s is there.

したがって、電圧を印加しない時にn(0)=nとなるように格子2Aの等方性屈折率固体材料および等方性屈折率液晶2Bを選定することにより、図2(a)に示すように、0次回折効率ηは100%となり、入射光は直進透過し、高次回折光発生に伴う光量の損失をほぼなくすることができる。一方、印加電圧Vを増大することにより、n(V)とnの差(Δn)が増加するため、0次回折効率ηが低下し、△n×d=λ/2となる印加電圧Vmにおいて、図2(b)に示すように、0次回折効率ηは略ゼロにでき、±1次回折光を最大とできる。 Therefore, by selecting the n (0) = n s become as isotropic refractive index solid material and isotropic refractive index liquid crystal 2B grating 2A when no voltage is applied, as shown in FIG. 2 (a) In addition, the 0th-order diffraction efficiency η 0 is 100%, and the incident light is transmitted in a straight line, so that it is possible to almost eliminate the loss of light amount due to the generation of high-order diffracted light. On the other hand, by increasing the applied voltage V, the difference between the n (V) and n s ([Delta] n) is increased, the zero-order diffraction efficiency eta 0 is decreased, △ n × d = λ / 2 become the applied voltage At Vm, as shown in FIG. 2B, the zero-order diffraction efficiency η 0 can be made substantially zero, and the ± first-order diffracted light can be maximized.

回折素子を直進透過する0次回折光と直進透過しない回折光(高次回折光)とを分離し、直進透過光のみを抽出する分別手段としては、例えばレンズや集光鏡などの集光素子がある。光源から放射された光をレンズや集光鏡などの集光素子を用いて光検出器の受光部に集光する光学系において、本発明の回折素子を光源と集光素子による集光点との間の光路中に配置することにより、回折素子内の電極間に印加する電圧値に応じて集光点に集光される光量を調整できる光減衰器となる。集光点位置に、例えば光検出器の受光面を配置し、光信号光量を検出する。   As a separating means for separating the 0th-order diffracted light that passes straight through the diffraction element and the diffracted light that does not pass straight through (high-order diffracted light) and extracts only the straight-passed transmitted light, there is a light collecting element such as a lens or a condenser mirror. . In an optical system for condensing light emitted from a light source on a light receiving portion of a photodetector using a condensing element such as a lens or a condensing mirror, the diffraction element of the present invention is a condensing point by the light source and the condensing element. By arranging in the optical path between the two, an optical attenuator that can adjust the amount of light condensed at the condensing point according to the voltage value applied between the electrodes in the diffraction element. For example, a light receiving surface of a photodetector is disposed at the condensing point position, and the amount of light signal is detected.

すなわち、回折素子内の電極間印加電圧の大きさに応じて生成された高次回折光(例えば、±1次回折光。)は、集光素子により光検出器の受光面に集光されないが、回折格子により回折されない0次回折光は光検出器の受光面に集光される。その結果、電極間印加電圧の大きさに応じて0次回折光量が変化するため、光検出器の信号光量が可変な光減衰器となる。   That is, high-order diffracted light (for example, ± 1st-order diffracted light) generated according to the applied voltage between the electrodes in the diffractive element is not condensed on the light receiving surface of the photodetector by the condensing element. Zero-order diffracted light that is not diffracted by the grating is collected on the light receiving surface of the photodetector. As a result, since the 0th-order diffracted light quantity changes according to the magnitude of the applied voltage between the electrodes, an optical attenuator in which the signal light quantity of the photodetector is variable.

ここで、高い消光比を得るためには、直進透過光(0次回折光)と高次回折光を分離することが必要で、指向性の鋭い光束を発する光源と回折素子を直進透過した光を光検出器の微少な受光面に集光する集光素子を用いる構成が好ましい。なお、光源と回折素子の間、または光検出器と回折素子との間に光ファイバや光導波路などの光伝送路が介在してもよい。   Here, in order to obtain a high extinction ratio, it is necessary to separate linearly transmitted light (0th-order diffracted light) and high-order diffracted light, and light that has been transmitted through the diffractive element and light source that emits a light beam with a sharp directivity is transmitted. A configuration using a condensing element that condenses light on a minute light receiving surface of the detector is preferable. An optical transmission line such as an optical fiber or an optical waveguide may be interposed between the light source and the diffraction element or between the photodetector and the diffraction element.

上記の分別手段として凸レンズ11の集光素子と開口絞り12を用いた構成例の断面図を図3に示す。回折素子10の直進透過光(0次回折光)は、凸レンズの集光点位置に置かれた開口絞り12の開口部を通過し、高次回折光は、開口絞り12の開口部周辺に集光されて開口部を通過できないため、強度変調された出射光が得られる。   FIG. 3 shows a cross-sectional view of a configuration example in which the condensing element of the convex lens 11 and the aperture stop 12 are used as the sorting means. The linearly transmitted light (0th order diffracted light) of the diffraction element 10 passes through the opening of the aperture stop 12 placed at the condensing point position of the convex lens, and the high order diffracted light is condensed around the opening of the aperture stop 12. Therefore, the intensity-modulated outgoing light can be obtained.

すなわち、印加電圧を0からVmに、またはVmから0に切り換えることにより、高い消光比を有する高速応答の光スイッチが実現できる。また、0からVmの間の電圧を印加することにより、0次回折効率ηが100%から0%まで変化する光減衰器を実現できる。 That is, by switching the applied voltage from 0 to Vm or from Vm to 0, a high-speed response optical switch having a high extinction ratio can be realized. Also, by applying a voltage between 0 and Vm, an optical attenuator in which the 0th-order diffraction efficiency η 0 changes from 100% to 0% can be realized.

次に、等方性屈折率固体材料の断面形状が鋸波状の回折格子21を用いた回折素子20の断面図を図4に示す。ここで、回折格子21の格子22Aを構成する等方性屈折率固体材料の鋸歯のもっとも厚い部分の膜厚をd、格子ピッチをPとする。回折素子20は、回折格子の断面形状が回折素子10と異なる以外、回折素子10と同じ構成である。したがって、図1のものと同じ要素は、同じ符号が付してある。   Next, FIG. 4 shows a cross-sectional view of the diffraction element 20 using the diffraction grating 21 having a sawtooth cross section of the isotropic refractive index solid material. Here, d is the film thickness of the thickest portion of the sawtooth of the isotropic refractive index solid material constituting the grating 22A of the diffraction grating 21, and P is the grating pitch. The diffraction element 20 has the same configuration as that of the diffraction element 10 except that the cross-sectional shape of the diffraction grating is different from that of the diffraction element 10. Accordingly, the same elements as those in FIG. 1 are denoted by the same reference numerals.

このとき、波長λの入射光が回折素子20を直進透過する割合を示す0次回折効率ηは、η={sin(π×△n×d/λ)/(π×△n×d/λ)}で近似的に記述される。また、回折角度θがsinθ=λ/Pで規定される1次回折光の回折効率ηは、η={sin(π×△n×d/λ)/(π−π×△n×d/λ)}で近似的に記述される。したがって、△n=0のときη=100%となり、△n×d=λのときη=100%となる。すなわち、n(V1)=nとなる電圧V1と、n(V2)=n+λ/dなる電圧V2とを切り換えることにより、回折素子20の出射光の進行方向を入射光の方向と角度θ傾斜した方向にスイッチングできる。 At this time, the 0th-order diffraction efficiency η 0 indicating the rate at which incident light of wavelength λ travels straight through the diffractive element 20 is η 0 = {sin (π × Δn × d / λ) / (π × Δn × d / Λ)} 2 approximately. Further, the diffraction efficiency η 1 of the first -order diffracted light whose diffraction angle θ is defined by sin θ = λ / P is η 1 = {sin (π × Δn × d / λ) / (π−π × Δn × d / Λ)} 2 approximately. Accordingly, η 0 = 100% when Δn = 0, and η 1 = 100% when Δn × d = λ. That is, by switching between the voltage V1 where n (V1) = ns and the voltage V2 where n (V2) = ns + λ / d, the traveling direction of the emitted light of the diffraction element 20 is changed with respect to the direction of the incident light. It is possible to switch in a direction inclined by θ.

例えば、図5に断面を示すように、回折素子20の光出射側に凸レンズ11を配置して回折素子20の透過光を集光するとともに、0次回折光の集光点位置と1次回折光の集光点位置に光ファイバの光伝送部13A、13Bを配置し、透明電極膜3、4間の印加電圧をV1とV2の間で切り替えることによって、光伝送路を切り替えることができる。   For example, as shown in a cross section in FIG. 5, the convex lens 11 is arranged on the light emitting side of the diffraction element 20 to collect the transmitted light of the diffraction element 20, and the condensing point position of the 0th-order diffracted light and the first-order diffracted light The optical transmission path can be switched by disposing the optical transmission parts 13A and 13B of the optical fiber at the condensing point position and switching the applied voltage between the transparent electrode films 3 and 4 between V1 and V2.

回折素子10および回折素子20は入射光を透過する回折素子の構成例であるが、回折素子を構成する透光性基板の片面に光反射膜を形成することにより、反射型回折素子とできる。   The diffractive element 10 and the diffractive element 20 are configuration examples of a diffractive element that transmits incident light. However, a reflective diffractive element can be formed by forming a light reflecting film on one surface of a translucent substrate constituting the diffractive element.

図6に、透光性基板5と透明電極膜3との間に光反射膜9を設けた構成、すなわち、透光性基板5の片面に光反射膜9を形成し、さらにその上に透明電極膜3を成膜した構成の回折素子30の断面図を示す。回折素子30は、透光性基板5と透明電極膜3との間に光反射膜9が形成されている以外、回折素子10と同じ構成になっているが、入射光を反射して回折させる反射型の回折素子となっている。すなわち、図1と同じ要素は、同じ符号を付してある。   FIG. 6 shows a configuration in which a light reflecting film 9 is provided between the light transmitting substrate 5 and the transparent electrode film 3, that is, a light reflecting film 9 is formed on one surface of the light transmitting substrate 5, and further transparent on the light reflecting film 9. A sectional view of a diffraction element 30 having a configuration in which an electrode film 3 is formed is shown. The diffractive element 30 has the same configuration as the diffractive element 10 except that the light reflecting film 9 is formed between the translucent substrate 5 and the transparent electrode film 3, but reflects and diffracts incident light. It is a reflection type diffraction element. That is, the same elements as those in FIG.

光反射膜9は、アルミや金などの金属膜でもよいし、高屈折率誘電体と低屈折率誘電体を交互に各膜の光学膜厚が入射光の1/4波長程度となるように積層した光学多層膜からなる光反射膜でもよい。光反射膜9として金属反射膜を用いる場合、等方性屈折率液晶2Bに電圧を印加するための電極膜としても機能するため、透明電極膜3を省略することができる。光学多層反射膜を用いる場合、透光性基板5上に形成された透明電極膜3の上に、光学多層反射膜を光反射膜9として形成してもよい。   The light reflecting film 9 may be a metal film such as aluminum or gold, or alternatively, a high refractive index dielectric and a low refractive index dielectric are alternately arranged so that the optical film thickness of each film is about ¼ wavelength of incident light. A light reflecting film made of a laminated optical multilayer film may be used. When a metal reflective film is used as the light reflective film 9, the transparent electrode film 3 can be omitted because it functions also as an electrode film for applying a voltage to the isotropic refractive index liquid crystal 2B. When the optical multilayer reflective film is used, the optical multilayer reflective film may be formed as the light reflective film 9 on the transparent electrode film 3 formed on the translucent substrate 5.

このような反射型の回折素子30とした場合、入射光は回折格子1を往復するため、図1および図4に示すような透過型の回折素子に比べて±1次回折光が最大となり、0次回折効率ηが略ゼロとなるために必要な屈折率差△nは半分ですむため、印加電圧Vmの低減につながる。あるいは、回折格子1の格子2Aの膜厚dを半分にしても透過型の回折素子と同等の0次回折効率ηの電圧依存性となるため、回折格子の作製時間を短縮できる。 In the case of such a reflective diffractive element 30, incident light travels back and forth through the diffraction grating 1, so that ± 1st-order diffracted light becomes maximum as compared with a transmissive diffractive element as shown in FIGS. 1 and 4. Since the refractive index difference Δn necessary for the next diffraction efficiency η 0 to be substantially zero is half, the applied voltage Vm is reduced. Alternatively, even if the film thickness d of the grating 2A of the diffraction grating 1 is halved, the voltage dependency of the 0th-order diffraction efficiency η 0 equivalent to that of the transmission type diffraction element is obtained, so that the manufacturing time of the diffraction grating can be shortened.

図7は、回折素子30を用いた光減衰器の構成例を示す断面図である。図7において、光ファイバの光伝送部13から出射された光は、凸レンズ11により平行光となって回折素子30に垂直に入射するように配置されている。回折素子30により回折されないで出射する反射光は、再び凸レンズ11を透過して元の光ファイバの光伝送部13に集光され光ファイバ内に伝搬する。一方、回折素子30により回折されて出射する反射光は、再び凸レンズ11を透過して元の光ファイバの光伝送部13に集光されないため、光ファイバ内を伝搬しない。したがって、印加電圧の大きさに応じて光ファイバに帰還する光量を調整できる光減衰器が実現できる。   FIG. 7 is a cross-sectional view showing a configuration example of an optical attenuator using the diffraction element 30. In FIG. 7, the light emitted from the optical transmission unit 13 of the optical fiber is arranged so as to be collimated by the convex lens 11 and perpendicularly incident on the diffraction element 30. The reflected light emitted without being diffracted by the diffractive element 30 passes through the convex lens 11 again, is collected by the optical transmission unit 13 of the original optical fiber, and propagates into the optical fiber. On the other hand, the reflected light diffracted by the diffractive element 30 is transmitted through the convex lens 11 again and is not condensed on the optical transmission unit 13 of the original optical fiber, and therefore does not propagate through the optical fiber. Therefore, an optical attenuator that can adjust the amount of light returning to the optical fiber according to the magnitude of the applied voltage can be realized.

なお、本実施例の回折格子において、電圧印加時の偏光依存性をより有効になくするために、ブルー層液晶として正の誘電率異方性を有する液晶分子を用いることが好ましい。   In the diffraction grating of this embodiment, it is preferable to use liquid crystal molecules having positive dielectric anisotropy as the blue layer liquid crystal in order to more effectively eliminate the polarization dependency when a voltage is applied.

以上説明したように、本発明の第1の実施の形態に係る回折素子は、ブルー相液晶を格子の凹部に充填し、印加する電圧によってブルー相液晶の屈折率を制御するようにしたため、入射偏光に依存せず、従来と同等またはそれ以上の高速光スイッチングと消光比を安定して得ることができる。   As described above, the diffraction element according to the first embodiment of the present invention fills the concave portion of the grating with the blue phase liquid crystal and controls the refractive index of the blue phase liquid crystal by the applied voltage. High-speed optical switching and extinction ratio equivalent to or higher than those of the prior art can be stably obtained without depending on polarization.

また、ブルー相液晶として高分子安定化ブルー相液晶を用いることにより、広い温度範囲で入射偏光に依存しない安定した高い消光比が得られるとともに高速光スイッチングできる。   In addition, by using a polymer-stabilized blue phase liquid crystal as the blue phase liquid crystal, a stable high extinction ratio that does not depend on incident polarized light can be obtained in a wide temperature range and high-speed optical switching can be performed.

また、等方性屈折率液晶の対向する面に電極を設けるようにしたため、電極を格子形状に応じてパターニングすることやパターンの位置合わせを必要としない。   In addition, since the electrodes are provided on the opposite surfaces of the isotropic refractive index liquid crystal, it is not necessary to pattern the electrodes according to the lattice shape or to align the patterns.

また、本発明の第1の実施の形態に係る光減衰器は、高分子安定化ブルー層液晶を含むブルー相液晶を用いる本発明の回折素子と、分別手段とを設けたため、入射偏光に依存せず、従来と同等またはそれ以上の高速光スイッチングと消光比を安定して得ることができる光減衰器を実現できる。   In addition, the optical attenuator according to the first embodiment of the present invention is provided with the diffraction element of the present invention using a blue phase liquid crystal including a polymer-stabilized blue layer liquid crystal and a sorting unit, and therefore depends on incident polarization. Therefore, it is possible to realize an optical attenuator that can stably obtain a high-speed optical switching and an extinction ratio equivalent to or higher than those of the prior art.

(第2の実施の形態)
図8は、本発明の第2の実施の形態に係る回折素子の断面図であり、図9は、この回折素子の平面図である。本発明の第2の実施の形態に係る回折素子40は、本発明の第1の実施の形態に係る回折素子10から透明電極膜4を除き、透明電極膜3の代わりにパターニングされた透明電極膜3A、3Bが設けられた構成となっている。ここで、透明電極膜3A、3Bは、透光性基板5と格子2Aとの間に挟まれるように形成されている。その他の構成部分については、本発明の第1の実施の形態に係る回折素子10と同様であり、その説明を省略する。したがって、図1の要素と同じものは、同じ符号を付してある。
(Second Embodiment)
FIG. 8 is a cross-sectional view of a diffraction element according to the second embodiment of the present invention, and FIG. 9 is a plan view of this diffraction element. The diffractive element 40 according to the second embodiment of the present invention is a transparent electrode patterned in place of the transparent electrode film 3 except for the transparent electrode film 4 from the diffractive element 10 according to the first embodiment of the present invention. The film 3A, 3B is provided. Here, the transparent electrode films 3A and 3B are formed so as to be sandwiched between the translucent substrate 5 and the grating 2A. Other components are the same as those of the diffraction element 10 according to the first embodiment of the present invention, and the description thereof is omitted. Accordingly, the same elements as those in FIG. 1 are denoted by the same reference numerals.

回折格子1に形成された線状の各透明電極3A、3Bは、図8に示すように、1つおきに接続された2つの電極の組に分けられる。具体的には、1つおきに形成された、例えば透明電極膜3Aからなる組と、透明電極膜3Bからなる組に分けられ、これらの組をなす電極の間に電圧が印加され、隣り合う電極間に電圧が印加されるようになっている。このように、隣り合う電極間に電圧を印加すると、回折格子1の等方性屈折率液晶2BにY軸方向の電界が発生するため、電圧Vの大きさに応じて液晶2の屈折率が等方的に変化する。その結果、本発明の第1の実施の形態に係る回折素子において説明した電圧応答性と同等の応答性が得られる。なお、本実施例の回折格子において、電圧印加時の偏光依存性をより有効になくするために、ブルー層液晶として負の誘電率異方性を有する液晶分子を用いることが好ましい。   As shown in FIG. 8, each of the linear transparent electrodes 3A and 3B formed on the diffraction grating 1 is divided into a pair of two electrodes connected every other. Specifically, every other pair, for example, composed of a transparent electrode film 3A and a group composed of a transparent electrode film 3B are divided, and a voltage is applied between the electrodes forming these groups and adjacent to each other. A voltage is applied between the electrodes. As described above, when a voltage is applied between adjacent electrodes, an electric field in the Y-axis direction is generated in the isotropic refractive index liquid crystal 2B of the diffraction grating 1, so that the refractive index of the liquid crystal 2 varies depending on the magnitude of the voltage V. Isotropic change. As a result, a response equivalent to the voltage response described in the diffraction element according to the first embodiment of the present invention is obtained. In the diffraction grating of the present embodiment, it is preferable to use liquid crystal molecules having negative dielectric anisotropy as the blue layer liquid crystal in order to more effectively eliminate the polarization dependency when a voltage is applied.

図8に示す回折素子40は、透明電極膜3A、3Bが格子2Aと透光性基板5とが接する部分(以下、格子2Aの底面という。)にのみ形成された例であるが、格子2Aの等方性屈折率液晶2Bに接する側面にも透明電極膜が形成されていて、格子2Aの底面に形成された透明電極膜と導通する構成であってもよい。このような電極構造とすることにより、格子2Aの層厚dが厚い場合でも、等方性屈折率液晶2Bの厚さ方向に均一なY方向の電界を発生することができ、格子ピッチPを短くして発生する電界強度を増大することができるため、比較的低電圧で大きな光路長差△n×d(格子2Aの光路長と等方性屈折率液晶2Bの光路長との差)が得られ、直進透過する0次回折光の大きな変化が達成できる。   The diffraction element 40 shown in FIG. 8 is an example in which the transparent electrode films 3A and 3B are formed only at a portion where the grating 2A and the translucent substrate 5 are in contact (hereinafter referred to as the bottom surface of the grating 2A). The transparent electrode film may also be formed on the side surface in contact with the isotropic refractive index liquid crystal 2B, and may be electrically connected to the transparent electrode film formed on the bottom surface of the grating 2A. By adopting such an electrode structure, even when the layer thickness d of the grating 2A is large, a uniform electric field in the Y direction can be generated in the thickness direction of the isotropic refractive index liquid crystal 2B, and the grating pitch P is Since the electric field strength generated by shortening can be increased, a large optical path length difference Δn × d (difference between the optical path length of the grating 2A and the optical path length of the isotropic refractive index liquid crystal 2B) can be obtained at a relatively low voltage. A large change in the 0th-order diffracted light that is obtained and transmitted in a straight line can be achieved.

また、上記の光学多層膜を光反射膜として成膜した透光性基板5上に、透明電極膜3Aおよび3Bを形成することにより、図6に示す回折素子30と同様に反射型回折素子としての電圧応答が得られる。   Further, by forming the transparent electrode films 3A and 3B on the translucent substrate 5 on which the optical multilayer film is formed as a light reflecting film, a reflective diffractive element similar to the diffractive element 30 shown in FIG. 6 is obtained. The voltage response is obtained.

本発明の第2の実施の形態に係る回折素子の構成とすることによって、電極および回折格子の加工形成は透光性基板5上のみで済むため、部材数の低減および作製工程が簡略化できる。また、本発明の第1および第2の実施の形態に係る回折素子において、回折格子パターンを空間的に分割したり、直線以外に空間的に曲がった形状や格子ピッチを分布させるいわゆるホログラム格子パターンとしたりすることにより、複数の回折光を発生させたり回折光の波面を変換できるため、回折光を信号光検出等に利用する場合に有効となる。   With the configuration of the diffractive element according to the second embodiment of the present invention, the electrode and the diffraction grating can be processed and formed only on the translucent substrate 5, so that the number of members can be reduced and the manufacturing process can be simplified. . In the diffraction element according to the first and second embodiments of the present invention, a so-called hologram grating pattern that spatially divides the diffraction grating pattern or distributes a spatially bent shape or grating pitch other than a straight line. By doing so, it is possible to generate a plurality of diffracted light and convert the wavefront of the diffracted light, which is effective when the diffracted light is used for signal light detection or the like.

本発明の回折素子および光減衰器のさらなる特徴については、以下に示す実施例により具体的に説明する。   Further features of the diffraction element and the optical attenuator of the present invention will be specifically described with reference to the following examples.

本例の回折素子10の断面図を図1に示す。ガラスでできた透光性基板5、6の片面にITOからなる透明電極膜3、4を成膜する。さらに、透光性基板(ガラス)5の透明電極膜(ITO)3が形成された面にポリイミドをスピンコートして塗布する。その後、スピンコート後のポリイミドを焼成固化し、波長633nmにおける屈折率nが1.54で、膜厚dが7μmの等方性屈折率層を形成する。等方性屈折率層として形成したポリイミド膜をフォトリソグラフィとドライエッチングにより、格子2Aを形成する。格子2Aは、略直方体の等方性屈折率固体材料が平行かつ周期的凸凹状に配列されたように形成され、透光性基板(ガラス)5に垂直な方向(図1に示すZ方向)に厚さが7μmで、略直方体の配列の周期が最も短い方向(図1に示すY方向)の等方性屈折率固体材料の幅と等方性屈折率液晶2Bの幅の比が1:1、略直方体の配列の周期である格子ピッチPが20μmとなるように形成する。 A sectional view of the diffraction element 10 of this example is shown in FIG. Transparent electrode films 3 and 4 made of ITO are formed on one side of translucent substrates 5 and 6 made of glass. Further, polyimide is spin-coated on the surface of the translucent substrate (glass) 5 on which the transparent electrode film (ITO) 3 is formed. Thereafter, by firing solidified polyimide spin coated, the refractive index n s at a wavelength of 633nm is 1.54, the film thickness d to form an isotropic refractive index layer of 7 [mu] m. A lattice 2A is formed by photolithography and dry etching of a polyimide film formed as an isotropic refractive index layer. The grating 2A is formed such that isotropic solid materials having a substantially rectangular parallelepiped shape are arranged in parallel and periodic irregularities, and is perpendicular to the translucent substrate (glass) 5 (Z direction shown in FIG. 1). Further, the ratio of the width of the isotropic refractive index solid material to the width of the isotropic refractive index liquid crystal 2B in the direction (Y direction shown in FIG. 1) in which the thickness is 7 μm and the period of the arrangement of the substantially rectangular parallelepiped is the shortest is 1: 1. It is formed so that the lattice pitch P, which is the period of the arrangement of substantially rectangular parallelepipeds, is 20 μm.

次に、シール材を用いて透光性基板(ガラス)6の透明電極膜(ITO)4が形成された面にシール7を印刷塗布し、透光性基板(ガラス)5に圧着固化してセル化する。セル化によってシール7ができたら、シール7の一部に設けられた注入口(図示せず)から、カイラル材と液晶モノマーと重合開始材を正の誘電率異方性を有するネマティック液晶に混合して得られる液晶を、周期性を有する格子2Aの凹部に注入して充填し、等方性屈折率液晶2Bを形成する。   Next, a seal 7 is printed and applied to the surface of the translucent substrate (glass) 6 on which the transparent electrode film (ITO) 4 is formed using a sealing material, and then pressed and solidified on the translucent substrate (glass) 5. Convert to cell. When the seal 7 is formed by cell formation, a chiral material, a liquid crystal monomer, and a polymerization initiator are mixed into a nematic liquid crystal having positive dielectric anisotropy from an injection port (not shown) provided in a part of the seal 7. The liquid crystal obtained in this manner is injected and filled into the recesses of the periodic lattice 2A to form an isotropic refractive index liquid crystal 2B.

非特許文献1に記載された材料および製法と同様に、液晶相がブルー相となるように温度調整した状態で、液晶が注入されたセルに紫外線を照射してモノマーを高分子化させ、ブルー相の発現する温度範囲が室温から50℃となる高分子安定化ブルー相液晶を形成し、等方性屈折率液晶2Bとする。さらに、シール7の一部に設けられた注入口を接着剤で封止して回折素子10となる。   In the same manner as the material and the manufacturing method described in Non-Patent Document 1, in a state where the temperature is adjusted so that the liquid crystal phase becomes a blue phase, the cell into which the liquid crystal is injected is irradiated with ultraviolet rays to polymerize the monomer, and the blue A polymer-stabilized blue phase liquid crystal in which the temperature range of the phase is from room temperature to 50 ° C. is formed, which is referred to as isotropic refractive index liquid crystal 2B. Further, the injection port provided in a part of the seal 7 is sealed with an adhesive to form the diffraction element 10.

透明電極間隔10μmのセル内に形成された高分子安定化ブルー相液晶のみからなる実験用素子を用いて性能を測定した結果、高分子安定化ブルー相液晶の屈折率n(V)は、1kHzの矩形波形の電圧印加に伴い、n(0)=1.54からn(150V)=1.49まで変化し、屈折率が約0.05、等方的に変化し、実験用素子の応答速度は約1msecであった。一般に、液晶の屈折率は印加電界の大きさに応じて変化するため、電極間隔が狭いほど同じ屈折率変化が低電圧で得られる。また、応答速度は、電極間隔の2乗に略比例し、電極間隔が狭いほど高速となる。   As a result of measuring performance using an experimental element composed only of a polymer-stabilized blue phase liquid crystal formed in a cell having a transparent electrode interval of 10 μm, the refractive index n (V) of the polymer-stabilized blue phase liquid crystal is 1 kHz. As the rectangular waveform voltage is applied, n (0) = 1.54 changes to n (150V) = 1.49, the refractive index changes isotropically about 0.05, and the response of the experimental element The speed was about 1 msec. In general, since the refractive index of liquid crystal changes according to the magnitude of the applied electric field, the same refractive index change can be obtained at a lower voltage as the electrode interval is narrower. Further, the response speed is substantially proportional to the square of the electrode interval, and the higher the electrode interval, the higher the response speed.

すなわち、本実施例の回折素子10を構成する電極の間隔が、格子2Aを構成する等方性屈折率固体材料の厚さ(等方性屈折率液晶2Bの厚さに等しい)d(=7μm)であることから、実験用素子の屈折率を実現するための印加電圧は、上記実験用素子の7/10程度となり、電極間の間隔が狭くなった分だけ、応答速度も速くなり1msec以下となる。   That is, the distance between the electrodes constituting the diffraction element 10 of the present embodiment is the thickness of the isotropic refractive index solid material constituting the grating 2A (equal to the thickness of the isotropic refractive index liquid crystal 2B) d (= 7 μm). Therefore, the applied voltage for realizing the refractive index of the experimental element is about 7/10 of that of the experimental element, and the response speed is increased by 1 minsec or less because the distance between the electrodes is reduced. It becomes.

格子2Aの凹部に充填された等方性屈折率液晶2Bの屈折率n(V)と格子2Aの屈折率nの差△nは、電圧非印加時にはn(0)=nのため△n=0であるが、105V印加時には△n=0.05となり、格子2Aの光路長と等方性屈折率液晶2Bの光路長との光路長差△n×d=0.35μmが発生する。その結果、波長λ=633nmのレーザ光を回折素子10に入射させると、V=0では、図2(a)に示すように直進透過する0次回折光のみが得られ、電圧Vの増加とともに高次回折光が発生して直進透過光が減少する。遂には、△n×dがλ/2となるVm(100V以下)で図2(b)に示すように直進透過光がほぼゼロとなる。 Difference △ n of the refractive index n s of the refractive index n (V) and grating 2A isotropic refractive index liquid crystal 2B filled in the recess of the grating. 2A, n (0) at the time of non-voltage application = for n s △ When n = 0, Δn = 0.05 when 105 V is applied, and an optical path length difference Δn × d = 0.35 μm between the optical path length of the grating 2A and the optical path length of the isotropic refractive index liquid crystal 2B is generated. . As a result, when a laser beam having a wavelength of λ = 633 nm is incident on the diffraction element 10, only 0th-order diffracted light that passes straight through is obtained at V = 0, as shown in FIG. Next-order diffracted light is generated and linearly transmitted light is reduced. Finally, at Vm (100 V or less) where Δn × d is λ / 2, as shown in FIG. 2B, the linearly transmitted light becomes almost zero.

したがって、図3に示すように、凸レンズ11の集光点位置に開口絞りの開口部12を配置し、直進透過する0次回折光以外の高次回折光を遮断することにより、印加電圧の大きさに応じて強度変調された出射光が得られる。格子2Aおよび等方性屈折率液晶2Bは、何れも入射光の偏光に依存しない等方性屈折率を有するため、入射光の偏光に依存しない電圧応答性を示す回折素子が得られると共に、出射光の偏光方向も変化しないため、広範な用途に適用した回折素子が実現できる。   Therefore, as shown in FIG. 3, the aperture 12 of the aperture stop is disposed at the condensing point position of the convex lens 11, and the higher order diffracted light other than the 0th order diffracted light that is transmitted straight through is blocked, thereby increasing the magnitude of the applied voltage. Accordingly, the intensity-modulated outgoing light is obtained. Since both the grating 2A and the isotropic refractive index liquid crystal 2B have an isotropic refractive index that does not depend on the polarization of incident light, a diffractive element that exhibits voltage response independent of the polarization of incident light is obtained. Since the polarization direction of incident light does not change, a diffraction element applied to a wide range of applications can be realized.

図8に断面図を示す回折素子40において、パターニングされた透明電極膜3A、3B上に、それぞれの光学膜厚(屈折率×膜厚)が波長λ=633nmに対してλ/4となるようにSiO膜(低屈折率誘電体として)とTa膜(高屈折率誘電体として)を交互に16層積層して不図示の光反射膜(以下、誘電体多層反射膜という。)を形成し、反射型の回折素子とする。格子2Aおよび等方性屈折率液晶2Bが形成された層を入射光は往復するため、格子2Aの膜厚dは実施例1の半分である3.5μmとしている。また、低電圧で等方性屈折率液晶2Bに実効的に高い電界を印加するため、格子ピッチPを10μmとし、隣り合う透明電極膜3Aと3Bの間隔が5μmとなるように加工する。また、等方性屈折率液晶2Bとして、カイラル材とモノマーと重合開始材を負の誘電率異方性を有するネマティック液晶に混合して用いる。上記の構成部以外の構成部は、本発明の第2の実施の形態で説明した回折素子40および実施例1の回折素子10で説明したものと同様である。 In the diffraction element 40 whose sectional view is shown in FIG. 8, the optical film thickness (refractive index × film thickness) is λ / 4 with respect to the wavelength λ = 633 nm on the patterned transparent electrode films 3A and 3B. In addition, 16 layers of SiO 2 films (as low refractive index dielectrics) and Ta 2 O 5 films (as high refractive index dielectrics) are alternately stacked to form a light reflection film (not shown) (hereinafter referred to as a dielectric multilayer reflection film). ) To form a reflective diffraction element. Since incident light reciprocates through the layer in which the grating 2A and the isotropic refractive index liquid crystal 2B are formed, the film thickness d of the grating 2A is set to 3.5 μm, which is half of that in the first embodiment. Further, in order to effectively apply a high electric field to the isotropic refractive index liquid crystal 2B at a low voltage, the lattice pitch P is set to 10 μm, and processing is performed so that the distance between the adjacent transparent electrode films 3A and 3B is 5 μm. Further, as the isotropic refractive index liquid crystal 2B, a chiral material, a monomer, and a polymerization initiator are mixed and used in a nematic liquid crystal having negative dielectric anisotropy. The constituent parts other than the above constituent parts are the same as those described in the diffraction element 40 described in the second embodiment of the present invention and the diffraction element 10 in Example 1.

このようにして形成した本実施例2の回折素子は、電極間隔dが実施例1の実験用素子の半分に相当する5μmであるため、印加電圧をほぼ半分にすることができ、応答速度も1msec以下となる。   In the diffraction element of Example 2 thus formed, the electrode interval d is 5 μm corresponding to half of the experimental element of Example 1, so that the applied voltage can be almost halved and the response speed is also high. 1 msec or less.

具体的には、電圧非印加時にはn(0)=nのため屈折率差△n=0であるが、75V印加時には△n=0.05となり、反射型のため2×△n×d=0.35μmの光路長差が発生する。その結果、波長λ=633nmのレーザ光を回折素子に入射させると、V=0では誘電体多層反射膜で通常の反射の法則に従って反射する0次回折光(以下、正規反射光といい、この反射を正規反射という。)のみであるが、電圧Vの増加とともに高次回折光が発生して正規反射光が減少する。遂には、△n×dがλ/4となるVm(75V程度)となり、正規反射光がほぼゼロとなる。 Specifically, although the de-energized state is n (0) = refractive index difference for n sn = 0, at the time of 75V is applied △ n = 0.05 next, 2 × △ n × d for reflective = 0.35 μm optical path length difference occurs. As a result, when laser light having a wavelength of λ = 633 nm is incident on the diffraction element, 0th-order diffracted light (hereinafter referred to as regular reflected light, which is reflected by the dielectric multilayer reflective film in accordance with the normal reflection law when V = 0) Is referred to as regular reflection.) However, as the voltage V increases, higher-order diffracted light is generated and regular reflected light decreases. Eventually, Δn × d becomes Vm (about 75 V) at which λ / 4, and the regular reflection light becomes almost zero.

したがって、図7に示す構成おいて、反射型の回折素子30の代わりに本実施例2の回折素子を用い、凸レンズ11の集光点位置に光ファイバ13の光出入射端を配置し、本実施例2の回折素子で正規反射する0次回折光のみを光ファイバ13で伝送することにより、印加電圧に応じて強度変調された反射光が光ファイバ13に戻り、光ファイバ13中を帰還伝搬することになる。   Therefore, in the configuration shown in FIG. 7, the diffractive element of the second embodiment is used instead of the reflective diffractive element 30, and the light incident / incident end of the optical fiber 13 is arranged at the condensing point position of the convex lens 11. By transmitting only the 0th-order diffracted light normally reflected by the diffraction element of the second embodiment through the optical fiber 13, the reflected light whose intensity is modulated according to the applied voltage returns to the optical fiber 13 and propagates in the optical fiber 13 in a feedback manner. It will be.

以上説明したように、本発明の第2の実施の形態に係る回折素子は、等方性屈折率固体材料からなる格子を形成する基板面側のみに電極をパターニングして形成すればよいため、対向する基板面に電極は不要で位置合わせをする必要もないため、素子作の工程を従来よりも簡素化できる。 As described above, the diffraction element according to the second embodiment of the present invention may be formed by patterning the electrode only on the substrate surface side on which the grating made of the isotropic refractive index solid material is formed. since the substrate surface facing electrode does not need to be an unnecessary and alignment can be simplified than the conventional device operation made steps.

また、本発明の第2の実施の形態に係る光減衰器は、基板面側のみに電極をパターニングした回折素子と、分別手段とを設けたため、入射偏光の状態に依存せず、従来と同等またはそれ以上の高速光スイッチングと消光比を安定して得ることができると共に、素子作の工程を従来よりも簡素化できる。 In addition, the optical attenuator according to the second embodiment of the present invention is provided with the diffraction element having the electrode patterned only on the substrate surface side and the separating means, so that it does not depend on the state of incident polarized light and is equivalent to the conventional one. or it is possible to a more high-speed optical switching may be the extinction ratio stable, it can be simplified than the conventional process made device operation.

本発明にかかる回折素子および光減衰器は、入射偏光に依存せず、従来と同等またはそれ以上の高速光スイッチングと消光比を安定して得ることができるという効果が有用な回折素子および光減衰器等の用途にも適用できる。   The diffractive element and the optical attenuator according to the present invention do not depend on the incident polarized light, and the diffractive element and the optical attenuation are effective in that high-speed optical switching and extinction ratio equivalent to or higher than those of the conventional one can be stably obtained. It can also be used for purposes such as vessels.

本発明の第1の実施の形態に係る回折素子の断面構造を概念的に示す図The figure which shows notionally the cross-section of the diffraction element which concerns on the 1st Embodiment of this invention 本発明の第1の実施の形態に係る回折素子の電圧応答の一例を説明するための説明図Explanatory drawing for demonstrating an example of the voltage response of the diffraction element which concerns on the 1st Embodiment of this invention 分別手段として凸レンズの集光素子と開口絞りを用いた構成を概念的に示す断面図Sectional drawing which shows notionally the structure using the condensing element of a convex lens and an aperture stop as a classification means 等方性屈折率固体材料の断面形状が鋸波状の回折格子を用いた回折素子の断面構造を概念的に示す図The figure which shows notionally the cross-sectional structure of the diffraction element using the diffraction grating whose cross-sectional shape of an isotropic refractive index solid material is a sawtooth wave shape 図4に示す回折素子の動作の一例を説明するための説明図Explanatory drawing for demonstrating an example of operation | movement of the diffraction element shown in FIG. 透光性基板と透明電極膜との間に光反射膜を設けた構成の回折素子の断面構造を概念的に示す図The figure which shows notionally the cross-section of the diffraction element of the structure which provided the light reflection film between the translucent substrate and the transparent electrode film 図6に示す回折素子を用いた光減衰器の一例の断面構造を概念的に示す図The figure which shows notionally the cross-section of an example of the optical attenuator using the diffraction element shown in FIG. 本発明の第2の実施の形態に係る回折素子の断面構造を概念的に示す図The figure which shows notionally the cross-section of the diffraction element which concerns on the 2nd Embodiment of this invention 図8に示す回折素子の平面構造を概念的に示す図The figure which shows notionally the planar structure of the diffraction element shown in FIG. 従来の回折素子の断面構造を概念的に示す図A diagram conceptually showing the cross-sectional structure of a conventional diffraction element

符号の説明Explanation of symbols

1、21 回折格子
2A、22A 格子
2B、22B 等方性屈折率液晶
3、3A、3B、4 透明電極膜
5、6 透光性基板(ガラス)
7 シール
8 電源
9 光反射膜
10、20、30、40 回折素子
11 凸レンズ
13、13A、13B 光ファイバの光伝送部
14 光源
15 投射スクリーン
100 液晶素子
1, 21 Diffraction grating 2A, 22A Grating 2B, 22B Isotropic refractive index liquid crystal 3, 3A, 3B, 4 Transparent electrode film 5, 6 Translucent substrate (glass)
DESCRIPTION OF SYMBOLS 7 Seal 8 Power supply 9 Light reflecting film 10, 20, 30, 40 Diffraction element 11 Convex lens 13, 13A, 13B Optical fiber optical transmission part 14 Light source 15 Projection screen 100 Liquid crystal element

Claims (2)

光を透過させる基板と、
前記基板上に等方的な屈折率の等方性屈折率固体材料を用いて形成され、断面構造が周期的凸凹を有する格子と、
前記周期的凸凹を有する格子の少なくとも凹部に充填され、屈折率が等方的に変化し、コレステリックブルー相を発現するコレステリックブルー相液晶と、
前記コレステリックブルー相液晶に電圧を印加するための電極とを備え、
前記格子とコレステリックブルー相液晶とによって回折格子が構成され、前記回折格子を構成する前記コレステリックブルー相液晶の屈折率が前記電極を介して印加される電圧によって変化されるようにした回折素子であって、
前記コレステリックブルー相液晶は、所定の高分子材料を含有することによって前記コレステリックブルー相の発現温度範囲が拡大された高分子安定化コレステリックブルー相液晶であり、
前記電極は、前記基板と前記格子との間に設けられ、1つおきに隣り合う前記格子に沿った線状の各電極が接続される2つの電極の組からなり、
前記2つの電極の組を介して隣り合う前記電極間に電圧が印加されるようにした回折素子。
A substrate that transmits light;
A grating formed on the substrate using an isotropic refractive index solid material having an isotropic refractive index, the cross-sectional structure of which has periodic irregularities;
A cholesteric blue phase liquid crystal that fills at least a concave portion of the grating having the periodic irregularities, has a refractive index isotropically changed, and exhibits a cholesteric blue phase;
An electrode for applying a voltage to the cholesteric blue phase liquid crystal,
It consists diffraction grating by said grating and cholesteric blue phase liquid crystal, met diffraction element refractive index of the cholesteric blue phase liquid crystal has to be changed by a voltage applied through the electrodes constituting the diffraction grating And
The cholesteric blue phase liquid crystal is a polymer-stabilized cholesteric blue phase liquid crystal in which an expression temperature range of the cholesteric blue phase is expanded by containing a predetermined polymer material,
The electrode is provided between the substrate and the grid, and consists of a set of two electrodes to which linear electrodes along the grid adjacent to each other are connected,
A diffraction element in which a voltage is applied between adjacent electrodes via a set of the two electrodes.
請求項1に記載の回折素子と、前記回折素子の電極を介して電圧が印加されたことにより生じた入射光の高次回折光を、前記回折素子を直進透過する入射光の0次回折光から分離し、前記0次回折光を抽出する分別手段とを備え、
前記電極を介して印加された電圧の大きさに応じて前記0次回折光の光量を調整するようにした光減衰器。
The high-order diffracted light of incident light generated by applying a voltage via the diffraction element according to claim 1 and an electrode of the diffractive element is separated from the 0th-order diffracted light of the incident light passing straight through the diffractive element. And a fractionating means for extracting the 0th-order diffracted light,
An optical attenuator configured to adjust the light amount of the 0th-order diffracted light according to the magnitude of the voltage applied through the electrode.
JP2003398504A 2003-11-27 2003-11-28 Diffraction element and optical attenuator Expired - Fee Related JP4013892B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003398504A JP4013892B2 (en) 2003-11-28 2003-11-28 Diffraction element and optical attenuator
CN2004800348207A CN1886691B (en) 2003-11-27 2004-11-26 Optical element using liquid crystal having optical isotropy
KR1020067008108A KR20060104994A (en) 2003-11-27 2004-11-26 Optical element using liquid crystal having optical isotropy
PCT/JP2004/017612 WO2005052674A1 (en) 2003-11-27 2004-11-26 Optical element using liquid crystal having optical isotropy
AT04819455T ATE445860T1 (en) 2003-11-27 2004-11-26 OPTICAL ELEMENT COMPRISING A LIQUID CRYSTAL WITH OPTICAL ISOTROPY
EP04819455A EP1688783B1 (en) 2003-11-27 2004-11-26 Optical element using liquid crystal having optical isotropy
DE602004023641T DE602004023641D1 (en) 2003-11-27 2004-11-26 OPTICAL ELEMENT WITH A LIQUID CRYSTAL WITH OPTICAL ISOTROPY
US11/441,157 US20060227283A1 (en) 2003-11-27 2006-05-26 Optical element employing liquid crystal having optical isotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398504A JP4013892B2 (en) 2003-11-28 2003-11-28 Diffraction element and optical attenuator

Publications (2)

Publication Number Publication Date
JP2005157164A JP2005157164A (en) 2005-06-16
JP4013892B2 true JP4013892B2 (en) 2007-11-28

Family

ID=34723332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398504A Expired - Fee Related JP4013892B2 (en) 2003-11-27 2003-11-28 Diffraction element and optical attenuator

Country Status (1)

Country Link
JP (1) JP4013892B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600238B2 (en) * 2005-10-05 2010-12-15 セイコーエプソン株式会社 Image display device
JP2007213650A (en) * 2006-02-07 2007-08-23 Funai Electric Co Ltd Optical pickup
KR101479996B1 (en) 2008-02-21 2015-01-08 삼성디스플레이 주식회사 Method for manufacturing display device
KR101696446B1 (en) * 2009-05-28 2017-01-13 코닌클리케 필립스 엔.브이. Autostereoscopic display device
KR101701420B1 (en) * 2009-05-29 2017-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
JP5395684B2 (en) * 2010-01-18 2014-01-22 スタンレー電気株式会社 Optical deflection device
JP5379053B2 (en) * 2010-03-26 2013-12-25 スタンレー電気株式会社 Optical deflection device
US8928846B2 (en) * 2010-05-21 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device having dielectric film over and in contact with wall-like structures
JP5706112B2 (en) * 2010-08-20 2015-04-22 スタンレー電気株式会社 Liquid crystal shutter element
JP5751787B2 (en) * 2010-09-28 2015-07-22 スタンレー電気株式会社 Light deflection liquid crystal element, projection display, and shake correction imaging apparatus
US9612445B2 (en) * 2012-11-27 2017-04-04 Merck Patent Gmbh Lens element
CN105446048B (en) 2014-05-27 2017-06-20 华为技术有限公司 Adjustable optical attenuator
WO2018175653A1 (en) 2017-03-21 2018-09-27 Magic Leap, Inc. Display system with spatial light modulator illumination for divided pupils
JP7281134B2 (en) * 2019-08-06 2023-05-25 学校法人 工学院大学 OPTICAL ELEMENT MANUFACTURING METHOD AND OPTICAL ELEMENT

Also Published As

Publication number Publication date
JP2005157164A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
EP1688783B1 (en) Optical element using liquid crystal having optical isotropy
KR101330860B1 (en) Liquid crystal element, optical head device, and variable optical modulation element
JP4013892B2 (en) Diffraction element and optical attenuator
KR101105186B1 (en) Polarizing diffraction element and optical head device
US20070229955A1 (en) Diffraction device
JP4508048B2 (en) Liquid crystal lens and optical head device
WO2012160740A1 (en) Optical diffraction element, optical pickup, and method for fabricating optical diffraction element
JP2006252638A (en) Polarization diffraction element and optical head apparatus
JP4792679B2 (en) Isolator and variable voltage attenuator
JP5195024B2 (en) Diffraction element, optical attenuator, optical head device, and projection display device
JP4269788B2 (en) Reflective light modulator and variable optical attenuator
US7835252B2 (en) Optical head apparatus
JP4106981B2 (en) Optical attenuator
JP2008134652A (en) Optical deflection apparatus
KR101097078B1 (en) Diffraction element and optical head device
JP2005055773A (en) Polarizing diffraction grating
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP4783750B2 (en) Beam splitting element
JP4232523B2 (en) Optical modulator and optical attenuator
JP5152366B2 (en) Isolator and variable voltage attenuator
KR20050103921A (en) Optical attenuator and optical head device
JP4999485B2 (en) Beam splitting element and beam splitting method
JP3601182B2 (en) Optical head device and manufacturing method thereof
JP2010009690A (en) Optical head device
US20020109917A1 (en) Polarization insensitive variable optical attenuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees