JP5195024B2 - Diffraction element, optical attenuator, optical head device, and projection display device - Google Patents

Diffraction element, optical attenuator, optical head device, and projection display device Download PDF

Info

Publication number
JP5195024B2
JP5195024B2 JP2008137280A JP2008137280A JP5195024B2 JP 5195024 B2 JP5195024 B2 JP 5195024B2 JP 2008137280 A JP2008137280 A JP 2008137280A JP 2008137280 A JP2008137280 A JP 2008137280A JP 5195024 B2 JP5195024 B2 JP 5195024B2
Authority
JP
Japan
Prior art keywords
light
phase difference
area
diffraction
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008137280A
Other languages
Japanese (ja)
Other versions
JP2009282472A (en
Inventor
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008137280A priority Critical patent/JP5195024B2/en
Publication of JP2009282472A publication Critical patent/JP2009282472A/en
Application granted granted Critical
Publication of JP5195024B2 publication Critical patent/JP5195024B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、入射する光に対して直進透過する光を安定して遮断したり、入射する光のうち互いに直交する偏光成分の直進透過率の比率で表す偏光消光比を高くしたりする回折素子、該回折素子を用いる光減衰器、光ヘッド装置および投射型表示装置に関する。   The present invention provides a diffractive element that stably blocks light that is transmitted in a straight line with respect to incident light, or increases the polarization extinction ratio expressed by the ratio of the linear transmittance of polarization components orthogonal to each other in the incident light. The present invention relates to an optical attenuator, an optical head device, and a projection display device using the diffraction element.

回折格子構造を有する光学素子(以下、回折素子という)は、光記録媒体を記録または再生する光ヘッド装置、プロジェクタなどの投影装置において多く利用されている。回折素子に入射する光の直進透過光の光量と回折光の光量との比率を変えて制御することによって、例えば直進透過光の光量を制御することができる。例えば非特許文献1に記載される回折素子は、ガラスやプラスティック等の等方性透明材料の表面を加工し、断面が図22(a)に示す矩形あるいは図22(b)に示す鋸歯または図22(c)に示す鋸歯を階段状に近似した形状で、断面に直交する方向に直線状あるいは曲線状である格子が周期的に連続した構造を有する。   Optical elements having a diffraction grating structure (hereinafter referred to as diffraction elements) are widely used in projection apparatuses such as optical head apparatuses and projectors that record or reproduce optical recording media. By changing the ratio of the amount of light transmitted through the diffracted light and the amount of light transmitted through the diffracted light, for example, the amount of light transmitted through the light can be controlled. For example, the diffractive element described in Non-Patent Document 1 processes the surface of an isotropic transparent material such as glass or plastic, and the cross section is a rectangle shown in FIG. 22 (a) or a sawtooth or a figure shown in FIG. 22 (b). The sawtooth shown in FIG. 22 (c) has a shape approximating a staircase, and has a structure in which lattices that are linear or curved in a direction perpendicular to the cross section are periodically continued.

ここで、波長λの入射光に対する直進透過光が最小となる完全回折の条件は、図22(c)に示すN段の階段状ブレーズ回折格子の場合は凹凸部の最大透過位相差が2π×(N−1)/Nであることが知られている。すなわち、図22(a)矩形回折格子構造を有する回折素子ではπ、図22(b)の鋸歯ブレーズ回折格子構造を有する回折素子では2πとなる。   Here, the condition of the perfect diffraction that minimizes the linearly transmitted light with respect to the incident light of the wavelength λ is that the maximum transmission phase difference of the concavo-convex part is 2π × in the case of the N-stage stepped blazed diffraction grating shown in FIG. It is known that (N-1) / N. That is, the diffraction element having the rectangular diffraction grating structure in FIG. 22A is π, and the diffraction element having the sawtooth blazed diffraction grating structure in FIG. 22B is 2π.

また、このほかの回折格子構造を有する回折素子として、偏光性の回折格子構造を積層する回折素子とすることにより、単一の偏光性の回折格子構造からなる回折素子よりも得られる消光比を改善できることが記載されている(特許文献1)。このような積層構造とすることにより再現性よく消光比の高い回折素子(複層回折型偏光子)が実現できている。さらに、この複層回折型偏光子を液晶素子に一体化することにより、印加電圧に応じて直進透過光を調整できる可変光減衰器の消光比が向上することが報告されている。   In addition, as a diffraction element having another diffraction grating structure, a diffraction element having a polarizing diffraction grating structure is used to obtain an extinction ratio obtained from a diffraction element having a single polarizing diffraction grating structure. It is described that it can be improved (Patent Document 1). With such a laminated structure, a diffraction element (multilayer diffraction polarizer) having a high extinction ratio with high reproducibility can be realized. Furthermore, it has been reported that the extinction ratio of a variable optical attenuator that can adjust the straight transmitted light according to the applied voltage is improved by integrating the multilayer diffraction polarizer into a liquid crystal element.

国際公開03/019247号International Publication No. 03/019247 小野雄三、塩野照弘他著、「回折光学入門」、(株)オプトロニクス社、平成9年5月20日、p11,p64−65Yuzo Ono, Teruhiro Shiono et al., “Introduction to Diffraction Optics”, Optronics Inc., May 20, 1997, p11, p64-65

しかし、非特許文献1の回折素子では、特定の波長の光に対して直進透過光を大きく低減することができるが、例えば光源となる半導体レーザの個別素子のばらつきや温度変動にともなう波長変動が生じると直進透過光が発現してしまう。その結果、使用環境などによって安定して直進透過光を低減することができない、といった課題があった。また、特許文献1の複層回折型偏光子は、1層の回折格子構造からなる回折素子に対して偏光消光比は高くなるものの、広い波長帯域の入射光に対して安定したさらに高いレベルの偏光消光比を得ることができていないという課題があった。   However, in the diffraction element of Non-Patent Document 1, it is possible to greatly reduce the linearly transmitted light with respect to light of a specific wavelength. However, for example, variations in individual elements of a semiconductor laser serving as a light source and wavelength fluctuations due to temperature fluctuations. When it occurs, straight transmitted light appears. As a result, there has been a problem that the linearly transmitted light cannot be reduced stably depending on the use environment or the like. In addition, the multilayer diffractive polarizer of Patent Document 1 has a higher polarization extinction ratio than a diffractive element having a single-layer diffraction grating structure, but has a higher level that is stable with respect to incident light in a wide wavelength band. There was a problem that the polarization extinction ratio could not be obtained.

本発明は上述の実情に鑑み、単一の回折格子形成面を用いて安定して直進透過光を低減できる回折素子を提供することを目的とする。さらに、安定して高い偏光消光比が実現できる回折素子およびそれを用いた可変光減衰機能を有する回折素子および可変光減衰器、光ヘッド装置および投射型表示装置を提供することを目的とする。   An object of the present invention is to provide a diffractive element that can stably reduce linearly transmitted light by using a single diffraction grating forming surface in view of the above-described circumstances. It is another object of the present invention to provide a diffractive element capable of stably realizing a high polarization extinction ratio, a diffractive element having the variable light attenuation function using the diffractive element, a variable optical attenuator, an optical head device, and a projection display device.

本発明は、波長λの光が入射して光の位相を変調して出射する回折素子であって、前記回折素子は、透光性基板上に回折格子が形成され、前記回折格子は単位領域が周期的に配列されて構成され、前記単位領域は、前記波長λの光に対して位相が異なって透過する3以上の区画に分割されており、前記単位領域を透過する前記波長λの光の前記単位領域あたりの位相の平均値とそれぞれの前記区画を透過する前記波長λの光の位相と、の差である位相差がπの整数倍であり、前記区画は、前記位相差がゼロの小領域と、前記位相差が+nπとなる小領域および、前記位相差が−nπとなる小領域からなる少なくとも3以上の小領域のいずれかであり(n≧1の整数)、前記位相差が+nπとなる前記小領域の面積と、前記位相差が−nπとなる前記小領域の面積と、が実質的に等しい回折素子を提供する。   The present invention relates to a diffractive element in which light having a wavelength λ is incident and modulates and emits the phase of the light, and the diffractive element has a diffraction grating formed on a translucent substrate, and the diffraction grating has a unit region. Are arranged in a periodic manner, and the unit region is divided into three or more sections that are transmitted in different phases with respect to the light of the wavelength λ, and the light of the wavelength λ that is transmitted through the unit region. The phase difference, which is the difference between the average value of the phase per unit region and the phase of the light of the wavelength λ transmitted through each section, is an integer multiple of π, and the section has zero phase difference And the phase difference is at least three or more small regions (integers of n ≧ 1), the phase difference being a small region where the phase difference is + nπ and the small region where the phase difference is −nπ. Is the area of the small region where + nπ, and the phase difference is −nπ. The area of the region, but provide substantially equal diffraction element.

また、前記単位領域は、前記位相差がゼロである1つの小領域と前記位相差が+πずつ異なるm個の小領域と前記位相差が−πずつ異なるm個の小領域からなり(m≧1の整数)、前記位相差がjπとなる小領域の面積をSで表したとき(jは−m〜mの整数)、iは(−m+1)〜(m−1)の整数として、S−m:…:S:…:Sの比率が、1:…:(2m)!/{(i+m)!×(m−i)!}:…:1、である上記に記載の回折素子を提供する。 In addition, the unit region includes one small region where the phase difference is zero, m small regions whose phase difference is different by + π, and m small regions whose phase difference is different by −π (m ≧ 1), when the area of the small region where the phase difference is jπ is represented by S j (j is an integer of −m to m), i is an integer of (−m + 1) to (m−1), S -m: ...: S i: ...: ratio of S m is, 1: ...: (2m) ! / {(I + m)! X (mi)! }: ...: 1 The diffraction element as described above is provided.

また、前記単位領域は、面積Sからなる前記位相差がゼロの小領域、面積S+1からなる前記位相差がπの小領域、面積S−1からなる前記位相差が−πの小領域からなり、前記面積S−1:前記面積S:前記面積S+1の比が1:2:1である上記に記載の回折素子を提供する。 Further, the unit region includes a small region having a phase difference of zero having an area S 0, a small region having a phase difference of π having an area S +1, and a small region having a phase difference of −π having an area S −1. And the ratio of the area S −1 : the area S 0 : the area S +1 is 1: 2: 1.

この構成により、波長λで入射する光および波長λよりずれた波長に対しても光の直進透過率を大きく低減することができるとともに、比較的作製が容易である回折格子構造を有する回折素子を実現できる。   With this configuration, a diffraction element having a diffraction grating structure that can greatly reduce the straight-line transmittance of light incident at a wavelength λ and a wavelength shifted from the wavelength λ and is relatively easy to manufacture. realizable.

また、前記単位領域は、面積Sからなる前記位相差がゼロの小領域、面積S+2からなる前記位相差が2πの小領域、面積S+1からなる前記位相差がπの小領域、面積S−1からなる前記位相差が−πの小領域、面積S−2からなる前記位相差が−2πの小領域からなり、
前記面積S−2:前記面積S−1:前記面積S:前記面積S+1:前記面積S+2の比が1:4:6:4:1である上記に記載の回折素子を提供する。
Further, the unit region includes a small region having a phase difference of zero having an area S 0, a small region having a phase difference of 2π having an area S +2 , a small region having a phase difference of π having an area S +1 , and an area The phase difference consisting of S −1 is a small region of −π, the phase difference consisting of an area S −2 is a small region of −2π,
The area S -2: the area S -1: the area S 0: the area S +1: the ratio of the area S +2 is 1: 4: 6: 4: provides a diffractive element according to the 1.

この構成により、3つの小領域の回折格子形状の回折素子よりもさらに波長λよりもずれた波長で入射する光に対しても直進透過率を低減させる回折素子を実現できる。   With this configuration, it is possible to realize a diffractive element that reduces the straight transmittance with respect to light incident at a wavelength that is further shifted from the wavelength λ as compared with the diffraction elements having the diffraction grating shape of the three small regions.

また、前記回折格子は、複屈折性を有する複屈折性材料と等方性透明材料とが、前記回折格子の凸部と凹部を構成してなる偏光回折格子であって、前記複屈折性材料の常光屈折率nまたは異常光屈折率n(n≠n)のいずれか一方の屈折率が等方性透明材料の屈折率nと等しい上記に記載の回折素子を提供する。また、前記偏光回折格子は、格子の厚さ方向の段差の値がいずれも前記段差の最小値dの自然数倍であるとともに、リタデーション値|n−n|×dが前記波長λの(p+1/2)倍(pは0または正の整数)である上記に記載の回折素子を提供する。また、前記偏光回折格子を2個積層し、それぞれの前記偏光回折格子の複屈折性材料の常光屈折率nまたは異常光屈折率nと等方性透明材料の屈折率nとが一致する方向を、前記2個の偏光回折格子で同じとする上記に記載の回折素子を提供する。 Further, the diffraction grating is a polarization diffraction grating in which a birefringent material having birefringence and an isotropic transparent material constitute a convex part and a concave part of the diffraction grating, and the birefringent material providing a diffraction element according to the ordinary refractive index n o or the extraordinary refractive index n e (n o ≠ n e ) one of the equal refractive index n s of the refractive index is isotropic transparent material of. Furthermore, the polarization diffraction grating, together with any value of the level difference in the thickness direction of the grating is a natural number times the minimum value d of the step, the retardation value | n e -n o | × d is the wavelength λ The diffraction element described above is provided which is (p + 1/2) times (p is 0 or a positive integer). Furthermore, the polarization diffraction grating laminated two, the refractive index n s of each ordinary refractive index n o or the extraordinary refractive index n e and isotropic transparent material of the polarization grating of the birefringent material matches The diffraction element according to the above, wherein the two polarization diffraction gratings have the same direction to be performed.

この構成において、前記偏光回折格子の複屈折性材料の常光屈折率nまたは異常光屈折率nと前記等方性透明材料の屈折率nとが一致する方向を、前記2個の偏光回折格子で同じとすることにより、入射する波長λの光の偏光方向によって光の直進透過率を変えることができ、さらに、第1の偏光方向の光と、第1の偏光方向と直交する第2の偏光方向の光とで透過する光の偏光消光比を大きくする回折素子を実現できる。 In this arrangement, the direction in which the refractive index n s of the ordinary refractive index n o or the extraordinary refractive index n e and the isotropic transparent material of the birefringent material of the polarization grating coincide, the two polarization By making the diffraction grating the same, it is possible to change the linear transmittance of the light according to the polarization direction of the incident light having the wavelength λ, and further, the light having the first polarization direction is orthogonal to the first polarization direction. Accordingly, it is possible to realize a diffractive element that increases the polarization extinction ratio of light transmitted through the light having the polarization direction of 2.

また、2個の前記偏光回折格子の間に、電極への電圧印加により前記波長λの光に対してリタデーション値をゼロからλ/2の間で変化させる液晶層を配置し、前記偏光回折格子の常光屈折率nまたは異常光屈折率nと等方性透明材料の屈折率nとが一致する方向を、前記2個の偏光回折格子で互いに直交するまたは同じとする上記に記載の回折素子を提供する。 Further, a liquid crystal layer that changes a retardation value between zero and λ / 2 with respect to light having the wavelength λ by applying a voltage to an electrode is disposed between the two polarizing diffraction gratings, The normal light refractive index n o or the extraordinary light refractive index n e and the direction in which the refractive index n s of the isotropic transparent material coincides are orthogonal to or the same in the two polarization diffraction gratings as described above A diffractive element is provided.

また、前記偏光回折格子と反射性の基板との間に、電極への電圧印加により前記波長λの光に対してリタデーション値をゼロからλ/4の間で変化させる液晶層を配置した上記に記載の回折素子を提供する。さらに、上記に記載の回折素子を直進透過または正規反射する出射方向の光を伝搬し、前記出射方向と異なる方向へ出射する光を遮断する機構を備え、前記液晶層に印加される電圧の大きさに応じて伝搬する光量が変化する光減衰器を提供する。   In addition, a liquid crystal layer is disposed between the polarization diffraction grating and the reflective substrate so as to change a retardation value between zero and λ / 4 with respect to light having the wavelength λ by applying a voltage to the electrode. The described diffraction element is provided. In addition, it has a mechanism for propagating light in the emission direction that travels straight through or regularly reflects through the diffraction element described above, and blocks the light emitted in a direction different from the emission direction, and the magnitude of the voltage applied to the liquid crystal layer Provided is an optical attenuator in which the amount of light that propagates in response to the change.

この構成により、液晶セルで入射する波長λの光の偏光状態を制御よく変化させることにより、直進透過する光の効率を制御することができる回折素子を実現できるとともに、該回折素子の制御性を利用した光減衰器を実現することができる。   With this configuration, it is possible to realize a diffractive element capable of controlling the efficiency of light traveling straight by changing the polarization state of light of wavelength λ incident on the liquid crystal cell with good control, and to control the diffractive element. A utilized optical attenuator can be realized.

また、少なくとも波長λの光を出射する光源と、前記光源と光ディスクとの間に順に配置されたビームスプリッタおよび対物レンズと、前記ビームスプリッタと前記光ディスクとの間に配置された、波長λの光に対して1/4波長の位相差を生じる1/4波長板と、前記光ディスクからの戻り光を、前記ビームスプリッタを経由して受光する光検出器を備える光ヘッド装置であって、前記光源と前記ビームスプリッタとの間の光路中に上記に記載の回折素子が配される光ヘッド装置を提供する。   In addition, a light source that emits at least light having a wavelength λ, a beam splitter and an objective lens that are sequentially disposed between the light source and the optical disc, and a light that has a wavelength λ that is disposed between the beam splitter and the optical disc. An optical head device including a quarter-wave plate that generates a phase difference of ¼ wavelength with respect to the optical disc, and a photodetector that receives return light from the optical disc via the beam splitter. An optical head device is provided in which the above-described diffraction element is disposed in an optical path between the beam splitter and the beam splitter.

この構成により、光源から光ディスクへ向かう光路では特定の直線偏光方向の光のみを透過するとともに、光ディスクから反射された光は効率よく回折することにより光源への戻り光を低減でき、光源の発振を安定させることができる。   With this configuration, in the optical path from the light source to the optical disk, only light in a specific linear polarization direction is transmitted, and the light reflected from the optical disk can be efficiently diffracted to reduce the return light to the light source, thereby oscillating the light source. It can be stabilized.

さらに、光源と、表示する画像に応じて前記光源から出射された可視光を変調する液晶ライトバルブと、前記光源と前記液晶ライトバルブとの間の光路中に配置され光の偏光状態を変える第1の偏光手段と、前記液晶ライトバルブの光を出射する側に配置され光の偏光状態を変える第2の偏光手段と、前記液晶ライトバルブにより生成された画像を拡大投影する投影手段と、を備えた投射型表示装置において、前記第1の偏光手段および前記第2の偏光手段のうちの少なくとも一方の偏光手段が、上記に記載の回折素子で構成される投射型表示装置を提供する。   And a light source, a liquid crystal light valve that modulates visible light emitted from the light source according to an image to be displayed, and a light path disposed between the light source and the liquid crystal light valve to change the polarization state of the light. 1 polarizing means, second polarizing means arranged on the light emitting side of the liquid crystal light valve for changing the polarization state of the light, and projecting means for enlarging and projecting the image generated by the liquid crystal light valve, In the projection display apparatus provided, at least one of the first polarizing means and the second polarizing means is provided with the above-described diffraction element.

この構成により、光量の大きい光に対して光吸収を伴わず、特定の直線偏光を回折することなく効率よく透過し、それと直交する直線偏光を効率よく回折し、偏光に応じて直進透過光を制御できる偏光手段となるため、偏光手段で発生する発熱を低減することができ、投射型表示装置の安定した動作および高い品質を得ることができる。   With this configuration, light with a large amount of light does not absorb light, efficiently transmits specific linearly polarized light without diffracting it, efficiently diffracts linearly polarized light orthogonal thereto, and transmits straightly transmitted light according to the polarization. Since the polarizing means can be controlled, heat generated by the polarizing means can be reduced, and stable operation and high quality of the projection display device can be obtained.

本発明は、単一の回折格子形成面を有する回折素子を実現することにより入射する光の直進透過光を低減する効果を有する回折素子および該回折素子を用いた光減衰器、光ヘッド装置および投射型表示装置を提供できるものである。   The present invention provides a diffractive element having an effect of reducing linearly transmitted light of incident light by realizing a diffractive element having a single diffraction grating forming surface, an optical attenuator using the diffractive element, an optical head device, and A projection display device can be provided.

(第1の実施態様)
例えば図1に示すように、透過光の位相を空間的に変調する単位領域10が周期的に配列した回折素子100を考える。この単位領域10は、同相で波長λの光が入射するとき、透過光の位相が異なる(2N+1)の奇数の領域(Nは自然数)からなり、図1の例では3つの小領域からなる。なお、図1、図2の単位領域10は、X−Y平面で4つの幾何学的な区画に分かれている。この区画は、その区画内では位相が同じあり、1つの単位領域内において複数の区画が同じ位相を有していてもよい。したがって、単位領域10の場合は、4つの区画から構成されていて、3つの小領域からなることになる。次に、単位領域10の全体を透過する波長λの透過光の単位領域あたりの平均位相に対する、区画ごとに透過する光の位相で表される位相差を考える。このとき、同じ位相差を有する複数の区画がある場合、幾何学的に分離している場合でも1つの小領域とする。そして、複数の小領域のうち透過光の位相差ゼロの小領域の透過光複素振幅をU(0)、位相差がφ(m)の小領域の透過光複素振幅をU(m)とする。ただし、mは整数で、−Nから+Nの値とする。図2の単位領域10は、N=1であって、具体的にU(0)、U(−1)、U(+1)の透過光複素振幅を有する3つの小領域からなる例を示すものである。この場合、U(0)を有する2個の区画は幾何学的に分離しているが、これらをまとめて1つの小領域としているものである。
(First embodiment)
For example, as shown in FIG. 1, consider a diffraction element 100 in which unit regions 10 for spatially modulating the phase of transmitted light are periodically arranged. This unit region 10 is composed of odd regions (N is a natural number) of (2N + 1) having different phases of transmitted light when light having the same phase and wavelength λ is incident, and is composed of three small regions in the example of FIG. 1 and 2 is divided into four geometric sections on the XY plane. This section has the same phase in the section, and a plurality of sections may have the same phase in one unit region. Accordingly, the unit area 10 is composed of four sections and is composed of three small areas. Next, consider the phase difference expressed by the phase of the light transmitted in each section with respect to the average phase per unit area of the transmitted light of wavelength λ transmitted through the entire unit region 10. At this time, if there are a plurality of sections having the same phase difference, even if they are geometrically separated, they are set as one small region. Then, the transmitted light complex amplitude of a small region where the phase difference of transmitted light is zero among a plurality of small regions is U (0), and the transmitted light complex amplitude of a small region whose phase difference is φ (m) is U (m). . However, m is an integer and is a value from -N to + N. The unit region 10 in FIG. 2 shows an example in which N = 1 and specifically includes three small regions having transmitted light complex amplitudes of U (0), U (−1), and U (+1). It is. In this case, the two sections having U (0) are geometrically separated, but they are combined into one small region.

小領域ごとに上記の位相差を異なるようにするためには、例えば、等方性屈折率nを有する透明基板に格子状に凹凸部を形成し、簡単のため周囲媒体を空気として、透明基板面に対して垂直方向から波長λの光が入射するとき、|n−1|・d=(m+λ/2)となるように、位相差の異なる小領域間の凹部の段差dを決定するようにする。なお、凹凸部の段差と接触する媒体は空気に限らず別の透明材料であってもよく、透明基板上に格子状に凹凸部を有する光学材料の層を形成してもよい。また、位相差を発現するために凹凸を形成する材料は等方性材料であっても複屈折性を有する材料であってもよい。以下に、本発明の回折素子の作用について説明する。 In order to be different the phase difference of the in each small region, for example, an uneven portion is formed in a grid pattern on a transparent substrate having an isotropic refractive index n s, the surrounding medium for simplicity as an air, transparent When light of wavelength λ is incident on the substrate surface from the vertical direction, the step d of the concave portion between the small regions having different phase differences is determined so as to be | n s -1 | · d = (m + λ / 2). To do. Note that the medium in contact with the step of the concavo-convex portion is not limited to air, but may be another transparent material, or an optical material layer having concavo-convex portions in a lattice shape may be formed on a transparent substrate. Further, the material for forming the unevenness in order to develop the phase difference may be an isotropic material or a material having birefringence. The operation of the diffraction element of the present invention will be described below.

上記のように単位領域が周期的に配列した回折素子に波長λの光が透過するとき回折光が発生する。透過光の透過光複素振幅空間分布は、例えば「光波電子工学」(小山次郎・西原浩著、コロナ社発行、1978年出版)の第3章に記載されている。この単位領域が光損失のない透明材料からなる場合、位相差φ(m)の小領域の透過光複素振幅U(m)は(1)式で表わされる。
U(m)=exp{jφ(m)} ・・・ (1)
なお、jは虚数単位である。ここでいう周期的という意味は、単位領域がいずれかの方向において周期的に繰り返し配置されていることを意味する。たとえば、図1の回折素子100のようにX−Y平面において単位領域10をX方向およびY方向に配列している状態であったり、後述する図3の回折素子200のように帯状の単位領域20がX方向にピッチPxで配列している状態であったりしていてもよい。なお、図3の回折素子200では、Y方向は任意のピッチPyで繰り返されているとしてもよい。したがって、周期的というのは少なくとも一方向に単位領域が配列をなしているものであればよい。また、光が回折素子に入射する領域を有効領域としたとき、有効領域は、回折素子100で単位領域10が少なくとも3×3以上配列した構成であって、回折素子200では少なくとも単位領域20のPxが3以上配列した構成であるとよい。
As described above, diffracted light is generated when light having a wavelength λ is transmitted through a diffraction element in which unit regions are periodically arranged. The transmitted light complex amplitude spatial distribution of transmitted light is described in, for example, Chapter 3 of “Optical Wave Electronics” (by Jiro Koyama and Hiroshi Nishihara, published by Corona, published in 1978). When this unit region is made of a transparent material with no light loss, the transmitted light complex amplitude U (m) in a small region having a phase difference φ (m) is expressed by the following equation (1).
U (m) = exp {jφ (m)} (1)
J is an imaginary unit. Here, the term “periodic” means that the unit areas are periodically and repeatedly arranged in any direction. For example, the unit regions 10 are arranged in the X direction and the Y direction on the XY plane as in the diffraction element 100 in FIG. 1, or a band-shaped unit region as in the diffraction element 200 in FIG. 20 may be arranged in the X direction at a pitch Px. In the diffraction element 200 of FIG. 3, the Y direction may be repeated at an arbitrary pitch Py. Therefore, the term “periodic” is sufficient as long as unit regions are arranged in at least one direction. In addition, when an area where light is incident on the diffraction element is an effective area, the effective area has a configuration in which at least 3 × 3 or more unit areas 10 are arranged in the diffraction element 100, and the diffraction element 200 has at least the unit area 20. It is preferable that three or more Px are arranged.

ここで、mの符号の正負が異なる小領域において、単位領域の全体に対する各小領域の面積比率S(m)が等しい場合、直進透過する0次回折光の複素振幅Aは(2)式で表わされる。
A=S(0)
+[exp{jφ(−1)}+exp{jφ(+1)}]×S(1)
+[exp{jφ(−2)}+exp{jφ(+2)}]×S(2)+…
+[exp{jφ(−N)}+exp{jφ(+N)}]×S(N) ・・・(2)
なお、φ(0)=0である。
Here, in a small region where the sign of m is different, if the area ratio S (m) of each small region to the whole unit region is equal, the complex amplitude A of the 0th-order diffracted light that is transmitted straight is expressed by the following equation (2). It is.
A = S (0)
+ [Exp {jφ (−1)} + exp {jφ (+1)}] × S (1)
+ [Exp {jφ (−2)} + exp {jφ (+2)}] × S (2) +.
+ [Exp {jφ (−N)} + exp {jφ (+ N)}] × S (N) (2)
Note that φ (0) = 0.

さらに、mの符号の正負が異なる小領域において、前記位相差φ(m)の絶対値が等しく符号が互いに逆の場合、(2)式は、
A=S(0)
+2×[cos{φ(1)}×S(1)
+cos{φ(2)}×S(2)+…
+cos{φ(N)}×S(N)] ・・・ (3)
となる。
Further, in a small region where the sign of m is different, the absolute value of the phase difference φ (m) is equal and the signs are opposite to each other,
A = S (0)
+ 2 × [cos {φ (1)} × S (1)
+ Cos {φ (2)} × S (2) +
+ Cos {φ (N)} × S (N)] (3)
It becomes.

ここで、(3)式において、φ(m)=mπ(但し、mは整数)の場合、cos{φ(m)}=(−1)のため、(3)式は、
A=[S(0)+2×{−S(1)+S(2)−…
+(−1)×S(N)}] ・・・ (4)
となる。
Here, in the equation (3), when φ (m) = mπ (where m is an integer), since cos {φ (m)} = (− 1) m , the equation (3) is
A = [S (0) + 2 × {−S (1) + S (2) −...
+ (− 1) N × S (N)}] (4)
It becomes.

すなわち、(4)式がゼロとなる小領域の面積比率S(m)の条件、
S(0)=2×{S(1)−S(2)+…−(−1)×S(N)} ・・・ (5)
を満たし、かつφ(m)=mπのとき、0次回折光である直進透過光の複素振幅Aはゼロとなる。
That is, the condition of the area ratio S (m) of the small region in which the expression (4) becomes zero,
S (0) = 2 × {S (1) −S (2) +... − (− 1) N × S (N)} (5)
And φ (m) = mπ, the complex amplitude A of the linearly transmitted light that is the 0th-order diffracted light is zero.

例えば、位相差φ(m)がmπからδ、φ(−m)が−mπから−δだけずれた位相差を有する場合、(3)式は、
A=2×{1−cos(δ)}×S(1)
−2×{1−cos(δ)}×S(2)+…
−2(−1)×{1−cos(δ)}×S(N)
=4×{sin(δ/2)}
×{S(1)−S(2)+…−(−1)×S(N)} ・・・ (6)
で表される。
For example, when the phase difference φ (m) has a phase difference shifted from mπ to δ and φ (−m) shifted from −mπ to −δ, the expression (3) is
A = 2 × {1-cos (δ)} × S (1)
-2 × {1-cos (δ)} × S (2) +
-2 (-1) N * {1-cos ([delta])} * S (N)
= 4 × {sin (δ / 2)} 2
X {S (1) -S (2) + ...- (-1) N xS (N)} (6)
It is represented by

また、(5)式の条件より、この時の複素振幅Aは、
A=−2×S(0)×{sin(δ/2)} ・・・ (7)
となる。
From the condition of equation (5), the complex amplitude A at this time is
A = −2 × S (0) × {sin (δ / 2)} 2 (7)
It becomes.

また、複素振幅Aの絶対値の二乗が光強度のため、直進透過光の光強度Iは、
={2×S(0)}×{sin(δ/2)} ・・・ (8)
で表される。
Moreover, since the square of the absolute value of the complex amplitude A of the light intensity, the light intensity I A of the rectilinear transmitted light,
I A = {2 × S (0)} 2 × {sin (δ / 2)} 4 (8)
It is represented by

なお、従来の回折格子構造(図示せず)として、格子の凹凸断面形状が矩形状で単位領域が凹部と凸部の2領域からなる場合、直進透過光がゼロとなる条件は凹部と凸部の面積比が1:1かつ2領域の波長λの透過光の位相差がπであることが知られている。この場合、2領域の波長λの透過光の位相差がπからδだけずれた場合、0次回折光である直進透過光の複素振幅Bは、
B=1/2+exp{j(π+δ)}/2
=(−j)×exp(jδ/2)×sin(δ/2) ・・・ (9)
で表される。
In addition, as a conventional diffraction grating structure (not shown), when the concave-convex cross-sectional shape of the grating is rectangular and the unit region is composed of two regions of a concave portion and a convex portion, the condition that the linearly transmitted light is zero is the concave portion and the convex portion. It is known that the phase difference of the transmitted light of the wavelength λ in the two areas is 1: 1 and the area ratio of π is π. In this case, when the phase difference of the transmitted light having the wavelength λ in the two regions is shifted from π by δ, the complex amplitude B of the straight transmitted light that is the 0th-order diffracted light is
B = 1/2 + exp {j (π + δ)} / 2
= (− J) × exp (jδ / 2) × sin (δ / 2) (9)
It is represented by

したがって、直進透過光の光強度Iは、
={sin(δ/2)} ・・・ (10)
で表される。
Accordingly, the light intensity I B of the rectilinear transmitted light,
I B = {sin (δ / 2)} 2 (10)
It is represented by

従来の他の回折格子構造(図示せず)として、格子のX方向の凹凸断面形状が鋸歯状でY方向が直線状のブレーズ型回折格子構造の場合、直進透過光がゼロとなる条件は波長λの透過光の単位領域のX方向の位相差が2πX(Xは格子周期Pxで規格化され、0≦X≦1の範囲の値)で記述される場合であることが知られている。ここで、波長λの透過光の位相差におけるXに対する係数が2πからδだけずれた場合、直進透過光の複素振幅Cは、
C=[exp{j(2π+δ)}−1]/(2π+δ)
=2j/(2π+δ)×exp(jδ/2)×sin(δ/2) ・・・ (11)
で表される。
As another conventional diffraction grating structure (not shown), when the concavo-convex cross-sectional shape of the grating in the X direction is serrated and the Y direction is linear, the condition that the linearly transmitted light is zero is the wavelength It is known that the phase difference in the X direction of the unit region of the transmitted light of λ is described by 2πX (X is normalized by the grating period Px and is a value in the range of 0 ≦ X ≦ 1). Here, when the coefficient for X in the phase difference of the transmitted light having the wavelength λ is shifted from 2π to δ, the complex amplitude C of the straight transmitted light is
C = [exp {j (2π + δ)} − 1] / (2π + δ)
= 2j / (2π + δ) × exp (jδ / 2) × sin (δ / 2) (11)
It is represented by

したがって、直進透過光の光強度Iは、
={2/(2π+δ)}×{sin(δ/2)} ・・・ (12)
で表される。ここで(8)式と(10)式および(12)式を比較すると、透過光の位相差のずれ量δに対する直進透過光の光強度において、sin(δ/2)の、べき数が本発明の回折格子構造では4乗に対して従来の回折格子構造では2乗となっている。
Therefore, the light intensity I c of the straight transmitted light is
I C = {2 / (2π + δ)} 2 × {sin (δ / 2)} 2 (12)
It is represented by Here, when the formula (8) is compared with the formulas (10) and (12), the power of sin (δ / 2) in the light intensity of the linearly transmitted light with respect to the shift amount δ of the phase difference of the transmitted light is In the diffraction grating structure of the present invention, the power of the conventional diffraction grating structure is squared to the fourth power.

その結果、位相差のずれ量δが生じても、本発明の回折格子構造では直進透過光の光強度はゼロに近い小さな値を維持することができる。ここで位相差のずれ量δの要因として、小領域の透過光の位相差φ(m)=mπとなる入射光の波長λが異なる場合、回折格子形状の加工など作製時の製造ばらつきに起因して位相差がmπからずれた場合などが想定される。すなわち、本発明の回折格子を用いることにより、広い波長帯域で入射する光に対して直進透過光の光強度が小さな値を維持できる。また、製造ばらつきがあっても直進透過光の光強度を小さな値に維持できるため、安定した特性が実現できる。   As a result, even if the phase difference deviation amount δ occurs, the light intensity of the linearly transmitted light can be maintained at a small value close to zero in the diffraction grating structure of the present invention. Here, as a factor of the phase difference deviation amount δ, when the wavelength λ of the incident light in which the phase difference φ (m) = mπ of the transmitted light in the small region is different, it is caused by manufacturing variations in manufacturing such as processing of the diffraction grating shape. Thus, a case where the phase difference deviates from mπ is assumed. In other words, by using the diffraction grating according to the present invention, the light intensity of the linearly transmitted light can be kept small with respect to light incident in a wide wavelength band. Moreover, even if there is a manufacturing variation, the light intensity of the straight transmitted light can be maintained at a small value, so that stable characteristics can be realized.

なお、(6)式から(8)式は位相差φ(m)がmπから+δ、φ(−m)が−mπから−δだけずれた場合に適用されるが、m毎にずれ量δが異なる場合も従来の回折格子に比べて同様の効果が期待できる。次に、本発明の回折格子構造の具体的な構成例と作用について説明する。   The equations (6) to (8) are applied when the phase difference φ (m) is shifted from mπ to + δ and φ (−m) is shifted from −mπ to −δ. Similar effects can be expected compared to conventional diffraction gratings even when the values are different. Next, a specific configuration example and operation of the diffraction grating structure of the present invention will be described.

具体的に図1に示す本発明の第1の実施態様にかかる回折素子100の構成を説明する。回折素子100は、透光性基板1の表面に、X方向の周期構造の格子ピッチPxでY方向の周期構造の格子ピッチPyの単位領域10から形成されている。図2に単位領域10の平面図を示す。上記の説明のように、単位領域10は4つの等しい面積の区画かつ波長λの透過光の位相が異なる3つの小領域に分割され、単位領域の全体を透過する波長λの透過光の平均位相に対する透過光の位相差が、ゼロとなる透過光複素振幅U(0)の小領域、−πとなる透過光複素振幅U(−1)の小領域、πとなる透過光複素振幅U(+1)の小領域からなる。単位領域10はPx分割幅をx1とx2、Py分割幅をy1とy2で得られる区画の面積が等しくなるようにx1=x2およびy1=y2で4つの区画から構成されている。その結果、U(−1)とU(0)とU(+1)の面積比は1:2:1となる。   Specifically, the structure of the diffraction element 100 according to the first embodiment of the present invention shown in FIG. 1 will be described. The diffraction element 100 is formed on the surface of the translucent substrate 1 from unit regions 10 having a grating pitch Px having a periodic structure in the X direction and a grating pitch Py having a periodic structure in the Y direction. FIG. 2 shows a plan view of the unit region 10. As described above, the unit region 10 is divided into four equal area sections and three small regions having different phases of the transmitted light having the wavelength λ, and the average phase of the transmitted light having the wavelength λ transmitted through the entire unit region. Transmitted light complex amplitude U (0) where the phase difference of transmitted light is zero, transmitted light complex amplitude U (−1) is small where −π, and transmitted light complex amplitude U (+1 where π is π. ). The unit area 10 is composed of four sections with x1 = x2 and y1 = y2 so that the areas of the sections obtained by the Px divided widths x1 and x2 and the Py divided widths y1 and y2 are equal. As a result, the area ratio of U (−1), U (0), and U (+1) is 1: 2: 1.

このとき、(3)式においてφ(1)=π+δとすると、(8)式より直進透過光の光強度Iは、
={sin(δ/2)} ・・・ (13)
となる。なお、U(0)とU(−1)とU(+1)の面積比S(−1):S(0):S(+1)は1:2:1が最適値であるが、最適値に対して、S(0)は±2%以内、S(−1)およびS(+1)は±5%以内の範囲で面積が最適値からずれた場合でも所望の効果が得られる。
At this time, (3) When φ (1) = π + δ In Equation, the light intensity I A of the straight transmission light (8) below,
I A = {sin (δ / 2)} 4 (13)
It becomes. The area ratio S (−1): S (0): S (+1) of U (0), U (−1), and U (+1) is an optimum value of 1: 2: 1. On the other hand, even when the area deviates from the optimum value within the range of ± 2% for S (0) and within ± 5% for S (−1) and S (+1), the desired effect can be obtained.

(第2の実施態様)
図3は本発明の第2の実施態様にかかる回折素子200の構成を示す平面図である。回折素子200は、透光性基板1の表面に、X方向の周期構造の格子ピッチPxでY方向は直線状構造の単位領域20から形成されている。図4に単位領域20の平面図を示す。第1の実施態様と同様に、単位領域20は波長λの透過光の位相が異なる3つの小領域に分割され、単位領域の全体を透過する波長λの透過光の平均位相に対する透過光の位相差が、ゼロとなる透過光複素振幅U(0)の小領域、−πとなる透過光複素振幅U(−1)の小領域、πとなる透過光複素振幅U(+1)の小領域からなる。単位領域20はPx分割幅をx1とx2とx3で、x1=x3=0.5×x2となるように3分割されて3つの区画に分割されている。その結果、U(−1)とU(0)とU(+1)の面積比は1:2:1となる。このとき、(3)式においてφ(1)=π+δとすると、(8)式より直進透過光の光強度Iは第1の実施態様と同様に前記の(13)式となる。
(Second Embodiment)
FIG. 3 is a plan view showing the configuration of the diffraction element 200 according to the second embodiment of the present invention. The diffractive element 200 is formed on the surface of the translucent substrate 1 from unit regions 20 having a lattice pitch Px with a periodic structure in the X direction and a linear structure in the Y direction. FIG. 4 shows a plan view of the unit region 20. As in the first embodiment, the unit region 20 is divided into three small regions having different phases of the transmitted light having the wavelength λ, and the transmitted light level relative to the average phase of the transmitted light having the wavelength λ transmitted through the entire unit region. From a small region of the transmitted light complex amplitude U (0) where the phase difference is zero, a small region of the transmitted light complex amplitude U (−1) where the phase difference is −π, and a small region of the transmitted light complex amplitude U (+1) where the phase difference is π. Become. The unit area 20 is divided into three sections with Px division widths of x1, x2, and x3 so that x1 = x3 = 0.5 * x2. As a result, the area ratio of U (−1), U (0), and U (+1) is 1: 2: 1. At this time, (3) When φ (1) = π + δ in equation becomes (8) than the light intensity of the linear transmitted light I A is said as in the first embodiment (13).

図5に単位領域20のX方向の断面模式図を示す。また凹凸の形状は、透光性基板1の表面を直接微細加工して格子2を形成してもよいし、透光性基板1の表面に誘電体膜を成膜し、誘電体膜を格子2の形状に加工してもよい。格子2の微細加工法としては、フォトマスクを用いたフォトリソグラフィとドライエッチングする、あるいは、格子2の転写型を用いて透光性基板1の表面を直接成形加工する、または、透光性基板1の表面にコートされた透光性樹脂に格子を転写成形してもよい。透過光複素振幅U(0)の小領域に対する透過光複素振幅U(−1)およびU(+1)の小領域の格子2の深さをd(−1)とd(+1)とし、格子2を構成する材料の屈折率をn、格子2と接する空気などの等方性透明材料3の屈折率をnとすると、波長λの入射光に対する透過光複素振幅U(0)、U(−1)およびU(+1)の小領域の位相差は
φ(0)=0、
φ(−1)=2π×(n−n)×{−d(−1)}/λ、
φ(+1)=2π×(n−n)×d(+1)/λ、
となる。ここで、
φ(+1)=−φ(−1)=π、
とするためには、格子2の小領域の格子深さを、d(−1)=d(+1)=λ/{2×(n−n)}とすればよい。第1の実施態様における単位領域10からなる回折素子100の格子の小領域の格子深さの加工も同様である。
FIG. 5 is a schematic cross-sectional view of the unit region 20 in the X direction. The concave and convex shapes may be obtained by directly finely processing the surface of the translucent substrate 1 to form the lattice 2, or forming a dielectric film on the surface of the translucent substrate 1, You may process into the shape of 2. As a fine processing method of the grating 2, photolithography using a photomask and dry etching are performed, or the surface of the translucent substrate 1 is directly formed by using a transfer mold of the grating 2, or the translucent substrate is used. The lattice may be transferred and molded on a light-transmitting resin coated on the surface of 1. The depth of the grating 2 in the small area of the transmitted light complex amplitude U (−1) and U (+1) with respect to the small area of the transmitted light complex amplitude U (0) is defined as d (−1) and d (+1). the refractive index of the material of n, when the isotropic refractive index of the transparent material 3, such as air in contact with the grating 2 and n s the wavelength transmitted light complex amplitude to incident light of λ U (0), U ( - 1) and the phase difference of the small region of U (+1) is φ (0) = 0,
φ (−1) = 2π × (n− ns ) × {−d (−1)} / λ,
φ (+1) = 2π × (n− ns ) × d (+1) / λ,
It becomes. here,
φ (+1) = − φ (−1) = π,
In order to achieve this, the lattice depth of the small region of the lattice 2 may be d (−1) = d (+1) = λ / {2 × (n− ns )}. The same applies to the processing of the grating depth of the small area of the grating of the diffraction element 100 composed of the unit area 10 in the first embodiment.

第1および第2の実施態様の単位領域は何れも透過光複素振幅の異なるU(−1)、U(0)、U(+1)の3つの小領域からなり、その面積比が1:2:1であれば直進透過光の光強度Iは同じ数式にて表記されるため、第1および第2の実施態様以外の分割パターンであってもよい。 The unit regions of the first and second embodiments are each composed of three small regions U (−1), U (0), U (+1) having different transmitted light complex amplitudes, and the area ratio is 1: 2. : because the light intensity I a of the rectilinear transmitted light if 1 is denoted by the same formula may be a division pattern other than the first and second embodiments.

第1および第2の実施態様を比較して説明する。単位領域10と単位領域20のPxとPyの長さを同じとすると、単位領域10からなる回折素子100では主に(X、Y)方向に対して(±1次回折光、±1次回折光)がX方向およびY方向と45°の角度をなす方向に発生するが、単位領域20からなる回折素子200では主にX方向の±1次回折光が発生する。本発明の回折素子によって生成される回折光を利用する場合、このような特徴を考慮して光学系を設計すればよい。また、回折素子100の区画の最小寸法がPx/2またはPy/2に対して、回折素子200の区画の最小寸法はPx/4のため、回折素子100は作製の容易性がある。   The first and second embodiments will be described in comparison. If the lengths of Px and Py of the unit region 10 and the unit region 20 are the same, the diffraction element 100 comprising the unit region 10 mainly has (± first-order diffracted light, ± first-order diffracted light) in the (X, Y) direction. Are generated in directions that form an angle of 45 ° with the X direction and the Y direction, but the diffraction element 200 including the unit region 20 mainly generates ± first-order diffracted light in the X direction. When utilizing the diffracted light generated by the diffractive element of the present invention, the optical system may be designed in consideration of such characteristics. Further, since the minimum dimension of the section of the diffractive element 100 is Px / 2 or Py / 2, the minimum dimension of the section of the diffractive element 200 is Px / 4. Therefore, the diffractive element 100 can be easily manufactured.

(第3の実施態様)
図6は本発明の第3の実施態様である回折素子の単位領域30の構成を示す平面図である。単位領域30は6つの区画に分割されるとともに、波長λの透過光の位相が異なる5つの小領域に分割され、単位領域の全体を透過する波長λの透過光の平均位相に対する透過光の位相差が、ゼロとなる透過光複素振幅U(0)の小領域、−2πとなる透過光複素振幅U(−2)の小領域、−πとなる透過光複素振幅U(−1)の小領域、πとなる透過光複素振幅U(+1)の小領域、2πとなる透過光複素振幅U(+2)の小領域からなる。
(Third embodiment)
FIG. 6 is a plan view showing the configuration of the unit region 30 of the diffraction element according to the third embodiment of the present invention. The unit region 30 is divided into six sections and is divided into five small regions having different phases of transmitted light of wavelength λ, and the level of transmitted light with respect to the average phase of transmitted light of wavelength λ transmitted through the entire unit region. A small region of the transmitted light complex amplitude U (0) where the phase difference is zero, a small region of the transmitted light complex amplitude U (−2) where the phase difference is −2π, and a small region of the transmitted light complex amplitude U (−1) where the phase difference is −π. An area consists of a small area of the transmitted light complex amplitude U (+1) that becomes π, and a small area of the transmitted light complex amplitude U (+2) that becomes 2π.

図6に示すように、単位領域30はPx分割幅がx1とx2とx3とx4、Py分割幅をy1とy2とy3とy4で6つの区画に分割され、x1=x2=x3=x4=Px/4かつy1=y2=y3=y4=Py/4となるように5つの透過光複素振幅が異なる小領域から構成されている。ここで、透過光複素振幅U(−2)とU(−1)とU(0)とU(+1)とU(+2)の面積比S(−2):S(−1):S(0):S(+1):S(+2)は、1:4:6:4:1である。   As shown in FIG. 6, the unit area 30 is divided into six sections with a Px division width of x1, x2, x3, and x4 and a Py division width of y1, y2, y3, and y4, and x1 = x2 = x3 = x4 = It is composed of five small regions with different transmitted light complex amplitudes such that Px / 4 and y1 = y2 = y3 = y4 = Py / 4. Here, the transmitted light complex amplitudes U (−2), U (−1), U (0), U (+1), and U (+2) area ratios S (−2): S (−1): S ( 0): S (+1): S (+2) is 1: 4: 6: 4: 1.

このとき、(3)式においてφ(1)=π+δ、φ(2)=2π+δとすると、(8)式より直進透過光の光強度Iは、
=(3/4)×{sin(δ/2)} ・・・ (14)
で表される。第1および第2の実施態様に比べて小領域の数の増加に伴い透過光複素振幅U(0)の面積比が低下するため、直進透過光の光強度Iは比率として(3/4)倍になり、有効に低下する。
In this case, in (3) φ (1) = π + δ , φ (2) = When 2 [pi + [delta], the light intensity I A of the straight transmission light (8) below,
I A = (3/4) 2 × {sin (δ / 2)} 4 (14)
It is represented by Since the area ratio of the transmitted light complex amplitude U with an increase in the number of small areas (0) in comparison with the first and second embodiment is reduced, the light intensity I A of the rectilinear transmitted light as a ratio (3/4 ) will double, to decrease effectively.

また、(3)式においてφ(1)=π+δ、φ(2)=2(π+δ)とすると、(8)式より直進透過光の光強度Iは、
={sin(δ/2)} ・・・ (15)
で表される。第1および第2の実施態様に比べてsin(δ/2)の、べき数が大きなため、位相差の設計値からのずれ量δに対する直進透過光の光強度Iが有効に低下する。
Further, in (3) φ (1) = π + δ , when the φ (2) = 2 (π + δ), the light intensity I A of the straight transmission light (8) below,
I A = {sin (δ / 2)} 8 (15)
It is represented by For sin ([delta] / 2) as compared with the first and second embodiments, the number should large, the light intensity I A of the straight transmission light with respect to the deviation amount [delta] from the design value of the phase difference is reduced effectively.

なお、U(−2)とU(−1)とU(0)とU(+1)とU(+2)の面積比S(−2):S(−1):S(0):S(+1):S(+2)は1:4:6:4:1が最適値であるが、最適値に対して、S(0)は±2%以内、S(−1)およびS(+1)およびS(−2)およびS(+2)は±5%以内の範囲で面積が最適値からずれた場合でも所望の効果が得られる。   Note that the area ratio S (−2): S (−1): S (0): S (U (−2), U (−1), U (0), U (+1), and U (+2). +1): S (+2) is an optimum value of 1: 4: 6: 4: 1, but S (0) is within ± 2% of the optimum value, and S (−1) and S (+1) And S (−2) and S (+2) can obtain a desired effect even when the area deviates from the optimum value within a range of ± 5%.

ここで、単位領域が3以上の奇数個の小領域からなる場合、単位領域の平均の位相差をゼロとし、位相差がゼロとなる小領域の面積をS、位相差がπずつ異なるm個の小領域の面積をS、位相差が−πずつ異なるm個の小領域をS−mとすると、
−m: … :S: … :Sの比率は、2m個からk個を選ぶ組み合わせで表される二項分布の関係である、2m!/{k!×(2m−k)!}を、k=0〜2mの間の整数、とするときの関係を満たす。ここで、j=−m〜mの間の整数として位相差がjπ異なる小領域の面積をSjとすると、
(2m)!/{(j+m)!×(m−j)!} ・・・ (16)
で表すことができる。したがって、単位領域が7個または9個の小領域から構成される場合であっても(16)式の面積比を満たすように設計するとよい。
Here, when the unit region is composed of an odd number of small regions of 3 or more, the average phase difference of the unit regions is zero, the area of the small region where the phase difference is zero is S 0 , and the phase difference is different by π. subregions area of the S m, the phase difference is the m different small areas by -π and S -m,
The ratio of S −m :...: S 0 :...: S m is a binomial distribution represented by a combination of selecting 2 k from 2 m. / {K! × (2m-k)! } Is an integer between k = 0 and 2 m. Here, assuming that the area of a small region having a phase difference of jπ as an integer between j = −m and m is Sj,
(2m)! / {(J + m)! × (m−j)! } (16)
Can be expressed as Therefore, even when the unit region is composed of 7 or 9 small regions, it is preferable to design so as to satisfy the area ratio of equation (16).

(第4の実施態様)
図7は本発明の第4の実施態様である回折素子の単位領域40の構成を示す平面図である。単位領域40は5つの区画に分割されるとともに、波長λの透過光の位相が異なる5つの小領域に分割され、単位領域の全体を透過する波長λの透過光の平均位相に対する透過光の位相差が、ゼロとなる透過光複素振幅U(0)の小領域、−2πとなる透過光複素振幅U(−2)の小領域、−πとなる透過光複素振幅U(−1)の小領域、πとなる透過光複素振幅U(+1)の小領域、2πとなる透過光複素振幅U(+2)の小領域からなる。
(Fourth embodiment)
FIG. 7 is a plan view showing the configuration of the unit region 40 of the diffraction element according to the fourth embodiment of the present invention. The unit region 40 is divided into five sections, and is divided into five small regions having different phases of the transmitted light having the wavelength λ, and the level of the transmitted light with respect to the average phase of the transmitted light having the wavelength λ transmitted through the entire unit region. A small region of the transmitted light complex amplitude U (0) where the phase difference is zero, a small region of the transmitted light complex amplitude U (−2) where the phase difference is −2π, and a small region of the transmitted light complex amplitude U (−1) where the phase difference is −π. An area consists of a small area of the transmitted light complex amplitude U (+1) that becomes π, and a small area of the transmitted light complex amplitude U (+2) that becomes 2π.

図7に示すように、単位領域40はPx分割幅がx1とx2とx3とx4とx5で、x1=x5=(1/4)×x2=(1/4)×x4=(1/6)×x3=となるように5分割されて5つの区画を構成している。これらの区画はそれぞれ1つの小領域とされている。その結果、U(−2)とU(−1)とU(0)とU(+1)とU(+2)の面積比は1:4:6:4:1となる。このとき、(3)式においてφ(1)=π+δ、φ(2)=2π+δとすると、(8)式より直進透過光の光強度Iは第3の実施態様と同様に(14)式となる。また、(3)式においてφ(1)=π+δ、φ(2)=2(π+δ)とすると、(8)式より直進透過光の光強度Iは第3の実施態様と同様に前記(15)式となる。 As shown in FIG. 7, the unit region 40 has Px division widths x1, x2, x3, x4, and x5, and x1 = x5 = (1/4) × x2 = (1/4) × x4 = (1/6). ) × x3 = is divided into five so as to form five sections. Each of these sections is a small area. As a result, the area ratio of U (−2), U (−1), U (0), U (+1), and U (+2) is 1: 4: 6: 4: 1. At this time, (3) phi in formula (1) = π + δ, φ (2) = When 2π + δ, (8) as in the third embodiment the light intensity I A of the straight transmission light from the equation (14) It becomes. Further, (3) phi in formula (1) = π + δ, φ (2) = 2 if ([pi + [delta]) to the light intensity I A of the straight transmission light from the equation (8) above as in the third embodiment ( 15).

図8に単位領域40のX方向の断面模式図を示す。第2の実施態様と同様の部分は同じ番号を付して説明の重複を避ける。図8に示す格子2に追加された透過光複素振幅U(−2)およびU(+2)の小領域の格子2の深さをd(−2)とd(+2)とすると、波長λの入射光に対する透過光複素振幅U(−2)とU(+2)の小領域の位相差は次式で表わされる。
φ(−2)=2π×(n−n)×{−d(−2)}/λ、
φ(+2)=2π×(n−n)×d(+2)/λ、
ここで、φ(+2)=−φ(−2)=2πとするためには、格子2の小領域の格子深さを、d(−2)=d(+2)=λ/(n−n)とすればよい。
FIG. 8 is a schematic cross-sectional view of the unit region 40 in the X direction. The same parts as those in the second embodiment are denoted by the same numbers to avoid duplication of explanation. When the depth of the grating 2 in the small region of the transmitted light complex amplitudes U (−2) and U (+2) added to the grating 2 shown in FIG. 8 is d (−2) and d (+2), The phase difference between the small areas of the transmitted light complex amplitudes U (−2) and U (+2) with respect to the incident light is expressed by the following equation.
φ (−2) = 2π × (n− ns ) × {−d (−2)} / λ,
φ (+2) = 2π × (n− ns ) × d (+2) / λ,
Here, in order to set φ (+2) = − φ (−2) = 2π, the lattice depth of the small region of the lattice 2 is d (−2) = d (+2) = λ / (n−n). s ).

第3の実施態様における単位領域30の格子の小領域の格子深さの加工も同様である。また、第3と第4の実施態様の単位領域は何れも透過光複素振幅の異なるU(−2)、U(−1)、U(0)、U(+1)、U(+2)の5つの小領域からなり、その面積比が1:4:6:4:1であれば直進透過光の光強度Iは同じ数式にて表記されるため、分割パターンはこれに限らず、第3と第4の実施態様以外の分割パターンであってもよい。 The same applies to the processing of the lattice depth of the small region of the lattice of the unit region 30 in the third embodiment. The unit areas of the third and fourth embodiments are U (−2), U (−1), U (0), U (+1), and U (+2) 5 having different transmitted light complex amplitudes. one of made small regions, the area ratio is 1: 4: 6: 4: because the light intensity I a of the rectilinear transmitted light if 1 is denoted by the same formula, division pattern is not limited to this, the third And a division pattern other than the fourth embodiment.

(第5の実施態様)
図9は本発明の第5の実施態様である回折素子300の平面図を示し、図10は回折素子300の単位領域50の構成を示す断面模式図である。回折素子300の構成および単位領域50を示す平面図は、第2の実施態様を示す図3および図4と同様である。透光性基板1aの片面に、常光屈折率nおよび異常光屈折率n(n≠n)の複屈折性材料を用いて複屈折性材料層を、その進相軸(常光屈折率を示す方向)が図10のX方向に揃うように形成する。次に複屈折性材料層を厚さごとに3つの小領域に分割し、各小領域の複屈折性材料層の厚さがゼロ、d(−1)、d(−1)+d(+1)で、Px分割幅がそれぞれx1とx2とx3で、x1=x3=(1/2)×x2となるよう加工し、複屈折性材料層からなる格子4を形成する。
(Fifth embodiment)
FIG. 9 is a plan view of a diffraction element 300 according to the fifth embodiment of the present invention, and FIG. 10 is a schematic cross-sectional view showing the structure of the unit region 50 of the diffraction element 300. The plan view showing the configuration of the diffraction element 300 and the unit region 50 is the same as FIG. 3 and FIG. 4 showing the second embodiment. On one surface of the transparent substrate 1a, a birefringent material layer using a birefringent material of the ordinary refractive index n o and extraordinary refractive index n e (n o ≠ n e ), the fast axis (the ordinary refractive The direction indicating the rate) is aligned with the X direction in FIG. Next, the birefringent material layer is divided into three small regions for each thickness, and the thickness of the birefringent material layer in each small region is zero, d (−1), d (−1) + d (+1) Then, the Px division widths are x1, x2, and x3, respectively, and processing is performed so that x1 = x3 = (1/2) × x2, thereby forming a grating 4 made of a birefringent material layer.

次いで、前記格子4の少なくとも凹部に複屈折性材料の常光屈折率nまたは異常光屈折率nに等しい屈折率nの等方性透明材料5を充填し、透光性基板1bに接着して単位領域50からなる回折素子300を構成する。ここで、少なくとも凹部にという意味は、凹部のみが充填されていてもよいし、凹凸部を埋めるように充填されていてもよい。なお、等方性透明材料とは、屈折率が等方的な透明材料のことである。複屈折性材料としては、水晶やLiNbOなどの複屈折結晶や、例えばポリカーボネートなどの有機フィルムを延伸させた複屈折フィルムや、複屈折を有する液晶モノマーを一方向に配向させた後に重合固化させた高分子液晶などが用いられる。図10に示す第5の実施態様は複屈折性材料として高分子液晶を用いる場合の例に相当する。 Then, adhered to at least the recess was filled with isotropic transparent material 5 of the ordinary refractive index n o or the extraordinary refractive index n e is equal refractive index n s of the birefringent material, light-transmissive substrate 1b of the grid 4 Thus, the diffraction element 300 including the unit region 50 is configured. Here, at least the meaning of the concave portion may be filled only with the concave portion or may be filled so as to fill the concave and convex portion. The isotropic transparent material is a transparent material having an isotropic refractive index. Examples of the birefringent material include birefringent crystals such as crystal and LiNbO 3 , birefringent films obtained by stretching an organic film such as polycarbonate, and liquid crystal monomers having birefringence are oriented in one direction and then solidified by polymerization. Polymer liquid crystal or the like is used. The fifth embodiment shown in FIG. 10 corresponds to an example in which a polymer liquid crystal is used as the birefringent material.

ここで、回折素子300の入射光の波長λに対して、
|n−n|×d(−1)=|n−n|×d(+1)=λ/2、
となるようにd(−1)およびd(+1)を調整する。このようにして作製された回折素子300において、n=nの場合はX方向の直線偏光を、n=nの場合はY方向の直線偏光を第1の偏光方向とすると、第1の偏光方向の光が回折素子300に入射するとき、光は回折作用をせず直進透過する。
Here, for the wavelength λ of the incident light of the diffraction element 300,
| N e −n o | × d (−1) = | n e −n o | × d (+1) = λ / 2,
D (−1) and d (+1) are adjusted so that In the diffraction element 300 that is fabricated in this manner, the n o = n linearly polarized light in the X direction in the case of s, the case of n e = n s a first polarization direction linearly polarized light in the Y direction, the When light having a polarization direction of 1 is incident on the diffraction element 300, the light passes straight without being diffracted.

一方、第1の偏光方向に対して直交する第2の偏光方向の光が回折素子300に入射するとき回折作用をし、波長λの入射光に対する透過光複素振幅U(0)、U(−1)およびU(+1)の小領域の位相差は次式で記述される。
φ(0)=0、
φ(−1)=2π×|n−n|×{−d(−1)}/λ=−π、
φ(+1)=2π×|n−n|×d(+1)/λ=+π、
また、U(−1)とU(0)とU(+1)の面積比は1:2:1となる。
On the other hand, when light having a second polarization direction orthogonal to the first polarization direction is incident on the diffraction element 300, the diffraction effect occurs, and transmitted light complex amplitudes U (0), U (− The phase difference between the subregions 1) and U (+1) is described by the following equation.
φ (0) = 0,
φ (−1) = 2π × | n e −n o | × {−d (−1)} / λ = −π,
φ (+1) = 2π × | n e −n o | × d (+1) / λ = + π,
Further, the area ratio of U (−1), U (0), and U (+1) is 1: 2: 1.

その結果、広い入射光の波長帯域に対して、第1の偏光方向の入射光に対しては高い直進透過率が得られるとともに、第2の偏光方向の入射光に対しては安定して直進透過光を遮断する機能が得られる。すなわち、入射する光のうち互いに直交する偏光成分の直進透過率の比率で表す偏光消光比が高い回折素子が実現できる。本実施態様の回折素子300では第2の実施態様と同様の3つの小領域からなる単位領域について説明したが、第1から第4の実施態様のいずれかの小領域のからなる単位領域としても構わない。   As a result, for a wide wavelength band of incident light, a high linear transmittance is obtained for incident light in the first polarization direction, and a straight line is stably obtained for incident light in the second polarization direction. A function of blocking transmitted light is obtained. That is, it is possible to realize a diffraction element having a high polarization extinction ratio represented by the ratio of the linear transmittance of polarized light components orthogonal to each other in incident light. In the diffractive element 300 of this embodiment, the unit region composed of the three small regions similar to the second embodiment has been described, but the unit region composed of any of the small regions of the first to fourth embodiments may be used. I do not care.

(第6の実施態様)
図11は本発明の第6の実施態様である回折素子400の構成を示す斜視図であり、図12は、単位領域60の構成を示す斜視図である。この例は、偏光回折格子を2個積層し、それぞれの偏光回折格子の複屈折性材料の常光屈折率nまたは異常光屈折率nと等方性透明材料の屈折率nとが一致する方向を、2個の偏光回折格子で同じ方向とした例である。単位領域60は、第5の実施態様の単位領域50の偏光回折格子と同じ格子形状の2種の格子4a、4bを、格子の長手方向が直交するように対向させてできた空隙を、等方性透明材料5を用いて充填した構造である。ここで、格子4aと4bの常光屈折率nおよび異常光屈折率nは同じ方向、すなわち、格子4aと4bの進相軸および遅相軸はX−Y面からみて一致するように設定する。
(Sixth embodiment)
FIG. 11 is a perspective view showing the configuration of a diffraction element 400 according to the sixth embodiment of the present invention, and FIG. 12 is a perspective view showing the configuration of the unit region 60. This example, the polarization diffraction grating and two stacked, the refractive index n s of the ordinary refractive index n o or the extraordinary refractive index n e and isotropic transparent material of each birefringent material polarization grating matches This is an example in which the same direction is set by two polarization diffraction gratings. The unit region 60 is a gap formed by opposing two types of gratings 4a and 4b having the same grating shape as the polarization diffraction grating of the unit region 50 of the fifth embodiment so that the longitudinal directions of the gratings are orthogonal to each other. The structure is filled with the isotropic transparent material 5. Here, the ordinary refractive index of the grating 4a and 4b n o and extraordinary index n e is the same direction, i.e., set to the fast axis and slow axis of the grating 4a and 4b are consistent when viewed from X-Y plane To do.

回折素子400にZ方向から光が入射すると、入射光のうち等方性透明材料5の屈折率nと格子4a、4bの屈折率が一致する第1の偏光方向の成分の光は透過し、屈折率が異なる第2の偏光方向の成分の光は回折される。ここで、第2の偏光方向の光が入射して回折される回折光は2つの偏光回折格子の両方で発生するため、単一の偏光回折格子を備える回折素子300と比べて第2の偏光方向の直進透過光が減少して遮断機能が向上する。その結果、1つの偏光回折格子からなる構造に対してさらに高い偏光消光比を有する回折素子が実現できる。 When light is incident from the Z direction in the diffraction element 400, the component of the light in the first polarization direction in which the refractive index n s and grating 4a, the refractive index of 4b matches the out isotropic transparent material 5 of the incident light is transmitted The light components of the second polarization direction having different refractive indexes are diffracted. Here, since the diffracted light that is diffracted by the incident light of the second polarization direction is generated by both of the two polarization diffraction gratings, the second polarization is compared with the diffraction element 300 including a single polarization diffraction grating. Directly transmitted light in the direction is reduced and the blocking function is improved. As a result, it is possible to realize a diffraction element having a higher polarization extinction ratio with respect to a structure composed of one polarization diffraction grating.

(第7の実施態様)
図13は本発明の第7の実施態様である回折素子500の構成を示す断面模式図である。この例は、2個の偏光回折格子の間に、電極への電圧印加により前記波長λの光に対してリタデーション値をゼロからλ/2の間で変化させる液晶層を配置し、偏光回折格子の複屈折性材料の常光屈折率nまたは異常光屈折率nと等方性透明材料の屈折率nとが一致する方向を、2個の偏光回折格子で互いに直交するまたは同じとしたものである。第7の実施態様で示す回折素子500は、第5の実施態様の単位領域50からなる回折素子300と同じ格子形状の2個の格子504aと504bが等方性透明材料505で充填され、それぞれ透光性基板501aと501bを介して液晶セル510の光入射側と光出射側に接合されている。なお、透光性基板と複屈折材料の格子と等方性透明材料が一体化された部分を偏光回折格子部といい、ここでは、300aおよび300bがそれに相当する。ここで、格子504aの複屈折材料の常光屈折率nとなる方向(進相軸)がX方向で格子長手方向をX方向とし、格子504bの複屈折材料の常光屈折率nとなる方向(進相軸)がY方向で格子長手方向をY方向とし、等方性透明材料505の屈折率nと格子504aおよび504bの複屈折材料の常光屈折率nとが一致する構成とする。
(Seventh embodiment)
FIG. 13 is a schematic cross-sectional view showing the configuration of a diffraction element 500 according to the seventh embodiment of the present invention. In this example, a liquid crystal layer that changes a retardation value between zero and λ / 2 with respect to light having the wavelength λ by applying a voltage to an electrode is disposed between two polarization diffraction gratings. the direction in which the refractive index n s of the ordinary refractive index n o or the extraordinary refractive index n e and isotropic transparent material of the birefringent material matches were to or the same mutually orthogonal two polarization grating Is. In the diffraction element 500 shown in the seventh embodiment, two gratings 504a and 504b having the same grating shape as the diffraction element 300 including the unit region 50 of the fifth embodiment are filled with an isotropic transparent material 505, respectively. The liquid crystal cell 510 is bonded to the light incident side and the light emitting side through the light transmitting substrates 501a and 501b. A portion where the translucent substrate, the birefringent material grating, and the isotropic transparent material are integrated is referred to as a polarization diffraction grating portion, and here, 300a and 300b correspond thereto. Here, the lattice longitudinally ordinary refractive index n o and consisting direction (fast axis) is the X-direction of the birefringent material of the gratings 504a and the X direction, the ordinary refractive index n o of the birefringent material of the grating 504b direction (fast axis) of the grating longitudinal direction and Y direction in the Y direction, a structure in which the ordinary refractive index n o of the refractive index n s and grating 504a and 504b of the birefringent material of the isotropic transparent material 505 matches .

液晶セル510は、透光性基板501cと501dの片面に形成された透明電極506aと506bの上に、例えば液晶分子の配向方向がX方向からY方向に45°の角度をなして揃うように配向膜(図示せず)が形成され、シール508を用いて液晶507が層厚dLCとなるよう密封されている。液晶507は屈折率異方性Δnと誘電率異方性Δεを有し、透明電極506aと506bに印加される電圧に応じて液晶分子の配向方向が変化する。誘電率異方性Δεが正の場合、電圧非印加時に液晶507が前記45°方向で透光性基板に平行方向に揃う配向膜を使用すると、印加電圧の増加とともに液晶分子が透光性基板に垂直となるZ軸方向に揃う。誘電率異方性Δεが負の場合、前記と同様の配向膜を用い、必要に応じて配向膜表面を垂直配向処理すると、電圧非印加時に液晶507が透光性基板に垂直に配向し、印加電圧の増加とともに液晶分子が上記45°方向で透光性基板に平行方向に配向する。 The liquid crystal cell 510 is arranged on the transparent electrodes 506a and 506b formed on one side of the translucent substrates 501c and 501d so that, for example, the alignment direction of liquid crystal molecules is aligned at an angle of 45 ° from the X direction to the Y direction. alignment film (not shown) is formed, the liquid crystal 507 with the seal 508 is sealed to the layer thickness d LC. The liquid crystal 507 has a refractive index anisotropy Δn and a dielectric anisotropy Δε, and the orientation direction of the liquid crystal molecules changes according to the voltage applied to the transparent electrodes 506a and 506b. When the dielectric anisotropy Δε is positive, when an alignment film is used in which the liquid crystal 507 is aligned in the 45 ° direction parallel to the translucent substrate when no voltage is applied, the liquid crystal molecules are translucent as the applied voltage increases. Are aligned in the Z-axis direction perpendicular to. When the dielectric anisotropy Δε is negative, the alignment film similar to the above is used, and if necessary, the alignment film surface is vertically aligned. When no voltage is applied, the liquid crystal 507 is aligned vertically to the translucent substrate, As the applied voltage is increased, the liquid crystal molecules are aligned in the direction of 45 ° parallel to the translucent substrate.

特定の印加電圧において液晶層中の分子が上記45°方向で透光性基板に平行方向に傾斜する時に生成されるリタデーション値Rが、入射光の波長λに対してλ/2となるように液晶507の層厚dLCを調整する。これにより、液晶セル510は1/2波長板として機能し、X方向の直線偏光がZ方向に進行して入射するとY方向の直線偏光となって出射する。一方、液晶層中の分子が透光性基板に垂直なZ方向に揃う時はリタデーション値Rがゼロとなるため、X方向の直線偏光が入射すると同じ直線偏光のまま出射する。このように、液晶507への印加電圧に応じてリタデーション値Rがゼロからλ/2まで変化するため、X方向とY方向の直線偏光の出射光成分が変化する。 The retardation value R generated when the molecules in the liquid crystal layer are tilted in the 45 ° direction in the direction parallel to the translucent substrate at a specific applied voltage is set to λ / 2 with respect to the wavelength λ of incident light. The layer thickness d LC of the liquid crystal 507 is adjusted. Thereby, the liquid crystal cell 510 functions as a half-wave plate, and when the linearly polarized light in the X direction travels in the Z direction and enters, it is emitted as the linearly polarized light in the Y direction. On the other hand, when the molecules in the liquid crystal layer are aligned in the Z direction perpendicular to the translucent substrate, the retardation value R becomes zero, so that when the linearly polarized light in the X direction is incident, the same linearly polarized light is emitted. Thus, since the retardation value R changes from zero to λ / 2 according to the voltage applied to the liquid crystal 507, the outgoing light components of the linearly polarized light in the X direction and the Y direction change.

なお、液晶507は液晶層内で一方向に液晶分子を配向させたホモジニアス配向以外にツイスト配向としてもよい。液晶はネマティック液晶が一般的だが、スメクティック液晶やコレステリック液晶を用いてもよい。また、液晶セルを構成する基板と回折素子を構成する基板を共通の基板としてもよい。また、液晶セル510に位相板(図示せず)を一体化した構成としてもよい。このとき、位相板の進相軸方向およびリタデーション値と液晶セル510のリタデーション値を適宜設定することにより、位相板一体化液晶セル全体のリタデーション値がλの自然数倍およびλ/2の奇数倍となる電圧を調整できるため電圧設定の設計自由度が増す。   Note that the liquid crystal 507 may have a twist alignment other than the homogeneous alignment in which liquid crystal molecules are aligned in one direction in the liquid crystal layer. A nematic liquid crystal is generally used as the liquid crystal, but a smectic liquid crystal or a cholesteric liquid crystal may be used. Further, the substrate constituting the liquid crystal cell and the substrate constituting the diffraction element may be a common substrate. In addition, a configuration in which a phase plate (not shown) is integrated with the liquid crystal cell 510 may be adopted. At this time, the retardation value of the phase plate integrated liquid crystal cell as a whole is multiplied by a natural number of λ and an odd number of λ / 2 by appropriately setting the phase axis direction and retardation value of the phase plate and the retardation value of the liquid crystal cell 510. Therefore, the degree of freedom in designing the voltage setting is increased.

このようにして得られた回折素子500にX方向の直線偏光が入射した場合、偏光回折格子部300aおよび液晶セル510を直進透過する。例えば、液晶セル510でX方向の直線偏光の成分とY方向の直線偏光の成分が発現するとき、偏光回折格子部300bによりX方向の直線偏光は回折されて、Y方向の直線偏光は直線透過する。液晶セル510を透過する光の偏光状態は印加する電圧によって制御できるので、液晶セル510のリタデーション値Rが印加電圧に応じてλ/2からゼロに変化すると、入射光の光量に対する出射光の光量の比で表される直進透過率が100%からゼロまで変化する可変光減衰器が得られる。なお、偏光回折格子部300aが無い場合、入射光にY方向の偏光方向の成分の光が混在して液晶セル510に入射すると直進透過光の消光比を大きくすることができなくなる。そのため、液晶セル510の入射側に偏光回折格子部300aを配置してY方向の偏光成分の光が入射しても偏光回折格子部300aで回折させることができるので偏光消光比の低下を抑制することができる。   When linearly polarized light in the X direction is incident on the diffractive element 500 obtained in this way, it passes through the polarization diffraction grating portion 300a and the liquid crystal cell 510 in a straight line. For example, when the liquid crystal cell 510 generates a linearly polarized light component in the X direction and a linearly polarized light component in the Y direction, the linearly polarized light in the X direction is diffracted by the polarization diffraction grating unit 300b, and the linearly polarized light in the Y direction is linearly transmitted. To do. Since the polarization state of the light transmitted through the liquid crystal cell 510 can be controlled by the applied voltage, when the retardation value R of the liquid crystal cell 510 changes from λ / 2 to zero according to the applied voltage, the amount of outgoing light with respect to the amount of incident light A variable optical attenuator in which the straight-line transmittance expressed by the ratio is changed from 100% to zero is obtained. In the case where the polarization diffraction grating portion 300a is not provided, when the incident light includes a component of the polarization component in the Y direction and enters the liquid crystal cell 510, the extinction ratio of the linearly transmitted light cannot be increased. For this reason, the polarization diffraction grating unit 300a is arranged on the incident side of the liquid crystal cell 510, and even if light of the polarization component in the Y direction is incident, it can be diffracted by the polarization diffraction grating unit 300a. be able to.

偏光回折格子部において直進透過光と回折光とを分離する光学系の一例として図14に光ファイバによる伝送手段の断面模式図を示す。図14では、回折素子500に平行光を入射させ、出射する光のうち回折素子500を直進透過する光の成分は集光レンズ11によって開口部を有する受光系として光ファイバ12の開口部に集光させるものである。一方、回折素子500により回折されて出射した光は集光レンズ11により光ファイバ12の開口部と異なる位置に集光されるため、光ファイバ12中を伝搬することができない。このように回折素子500の液晶セル510に印加する電圧を制御することによって回折素子500を直進透過する光強度を制御することができる。なお、偏光回折格子部300aにはX方向の直線偏光が入るように図示したが、Y方向の直線偏光が入るものであってもよく、それに合わせて偏光回折格子504aと等方性透明材料505の屈折率を調整することによって実現できる組み合わせを自由に設定できる。例えば等方性透明材料の屈折率nを複屈折性材料の異常光屈折率nに合わせる設定、高分子液晶を用いる場合、配向方向を回折格子の長手方向またはそれと直交する方向という設定が可能である。 FIG. 14 shows a schematic cross-sectional view of a transmission means using an optical fiber as an example of an optical system that separates linearly transmitted light and diffracted light in the polarization diffraction grating portion. In FIG. 14, the component of the light that enters parallel light into the diffractive element 500 and goes straight through the diffractive element 500 is collected in the opening of the optical fiber 12 by the condenser lens 11 as a light receiving system having an opening. It is what makes it light. On the other hand, the light diffracted and emitted by the diffractive element 500 is condensed at a position different from the opening of the optical fiber 12 by the condenser lens 11, and therefore cannot propagate through the optical fiber 12. In this way, by controlling the voltage applied to the liquid crystal cell 510 of the diffractive element 500, the light intensity that passes straight through the diffractive element 500 can be controlled. Although the polarization diffraction grating unit 300a is illustrated so as to receive linearly polarized light in the X direction, linear polarization in the Y direction may be input, and the polarization diffraction grating 504a and the isotropic transparent material 505 are accordingly matched. A combination that can be realized by adjusting the refractive index of the lens can be freely set. For example approximate the refractive index n s of the isotropic transparent material to the extraordinary refractive index n e of the birefringent material settings, when using a polymer liquid crystal, setting of longitudinal or perpendicular to the direction of the alignment direction grating Is possible.

(第8の実施態様)
図15は本発明の第8の実施態様である回折素子600の構成を示す断面模式図である。この例は、偏光回折格子と反射性の基板との間に電極への電圧印加により前記波長λの光に対してリタデーション値をゼロからλ/4の間で変化させる液晶層を配置したものである。第7の実施態様で示す偏光回折格子部300bが液晶セルと光反射層が一体化された反射型液晶セル610の光入出射側に接合されている。また、第7の実施態様の回折素子500で重複する部分は同じ番号を付して説明の重複を避ける。
(Eighth embodiment)
FIG. 15 is a schematic sectional view showing the structure of a diffraction element 600 according to the eighth embodiment of the present invention. In this example, a liquid crystal layer is disposed between a polarizing diffraction grating and a reflective substrate so that a retardation value is changed between zero and λ / 4 with respect to light having the wavelength λ by applying a voltage to the electrode. is there. The polarization diffraction grating portion 300b shown in the seventh embodiment is joined to the light incident / exit side of the reflective liquid crystal cell 610 in which the liquid crystal cell and the light reflecting layer are integrated. Moreover, the same number is attached | subjected to the part which overlaps with the diffraction element 500 of a 7th embodiment, and duplication of description is avoided.

次に反射型液晶セル610について説明する。反射型液晶セル610が第7の実施態様の液晶セル510との相違する点は、まず、光反射層609が透光性基板601の表面に形成されている点である。そしてもう一つは、特定の印加電圧において液晶層中の分子が上記45°方向で透光性基板に平行方向に配向するときに生成されるリタデーション値Rが入射光の波長λに対してλ/4となるように液晶607の層厚dLCを調整されている点で、他の構成は液晶セル510と同様である。この例では、透光性基板601の内面に光反射層609を設けているが、外面側に反射層を設けたり、基板自体を反射性基板としたり、透光性基板601の外部に反射板を設けてもよい。 Next, the reflective liquid crystal cell 610 will be described. The difference between the reflective liquid crystal cell 610 and the liquid crystal cell 510 of the seventh embodiment is that a light reflecting layer 609 is first formed on the surface of the translucent substrate 601. The other is that the retardation value R generated when the molecules in the liquid crystal layer are aligned in the 45 ° direction in the direction parallel to the translucent substrate at a specific applied voltage is λ with respect to the wavelength λ of the incident light. / 4 to become so in that it is adjusted to the layer thickness d LC of the liquid crystal 607, the other structure is the same as the liquid crystal cell 510. In this example, the light reflecting layer 609 is provided on the inner surface of the translucent substrate 601, but a reflecting layer is provided on the outer surface side, the substrate itself is used as a reflecting substrate, or a reflecting plate is provided outside the translucent substrate 601. May be provided.

反射型液晶セル610のY方向の直線偏光で入射する光は光反射層609により反射されて液晶層を2回透過するため、光の往復で2倍のリタデーション値Rの波長板として機能する。その結果、液晶507へ印加する電圧の大きさに応じてリタデーション値Rがゼロからλ/4まで変化するとX方向とY方向の直線偏光で出射する光の成分が変化する。このようにして得られた回折素子600にY方向の直線偏光が入射した場合、偏光回折格子部300bおよび反射型液晶セル610の液晶607の層を直進透過し、光反射層609により反射されて液晶層を2回透過して偏光回折格子部300bに再び入射する。   Light incident as linearly polarized light in the Y direction of the reflective liquid crystal cell 610 is reflected by the light reflecting layer 609 and passes through the liquid crystal layer twice, so that it functions as a wave plate having a retardation value R that is twice as large as the light reciprocates. As a result, when the retardation value R changes from zero to λ / 4 according to the magnitude of the voltage applied to the liquid crystal 507, the component of light emitted as linearly polarized light in the X direction and the Y direction changes. When linearly polarized light in the Y direction is incident on the diffraction element 600 obtained in this way, it passes straight through the polarizing diffraction grating portion 300b and the liquid crystal 607 layer of the reflective liquid crystal cell 610, and is reflected by the light reflecting layer 609. The light passes through the liquid crystal layer twice and is incident again on the polarization diffraction grating unit 300b.

そして、再び入射した光は偏光回折格子部300bによりX方向の直線偏光は回折されてY方向の直線偏光のみが直線透過する。したがって、反射型液晶セル610のリタデーション値Rが印加電圧に応じてλ/4からゼロに変化すると、直進透過率がゼロから100%まで変化する可変光減衰器が得られる。   Then, the incident light is diffracted by the polarization diffraction grating unit 300b, so that only the linearly polarized light in the Y direction is linearly transmitted. Therefore, when the retardation value R of the reflective liquid crystal cell 610 changes from λ / 4 to zero according to the applied voltage, a variable optical attenuator whose linear transmittance changes from zero to 100% is obtained.

偏光回折格子部において直進透過光と回折光とを分離する光学系の一例として図16に光ファイバによる伝送手段の断面模式図を示す。光ファイバ12の開口部から出射した発散光を、集光レンズ11を用いて平行光化して回折素子600に入射させ、光反射層609で反射して再び集光レンズ11に入射する光のうち直進透過する成分を光ファイバ12の開口部に集光させて光ファイバ中を伝搬させるものである。一方、回折素子600により回折されて出射した光は集光レンズ11により光ファイバ12の開口部と異なる位置に集光されるため、光ファイバ中を帰還して伝搬することができない。   FIG. 16 is a schematic cross-sectional view of a transmission means using an optical fiber as an example of an optical system that separates linearly transmitted light and diffracted light in the polarization diffraction grating portion. The divergent light emitted from the opening of the optical fiber 12 is collimated using the condenser lens 11 and incident on the diffraction element 600, reflected by the light reflecting layer 609, and again incident on the condenser lens 11. The component that passes straight through is condensed at the opening of the optical fiber 12 and propagates through the optical fiber. On the other hand, the light diffracted and emitted by the diffractive element 600 is condensed by the condenser lens 11 at a position different from the opening of the optical fiber 12, and therefore cannot be fed back through the optical fiber.

(第9の実施態様)
図17は本発明の第9の実施態様である光ヘッド装置700の構成を示す模式図である。光ディスクとしてDVD用の波長660nm波長帯の光を出射する半導体レーザとCD用の波長785nm波長帯の光を出射する半導体レーザが集積化された2波長レーザ光源13から出射する紙面垂直方向の偏光方向の直線偏光の発散光が、本発明の回折素子300に入射して直進透過する。さらに、ビームスプリッタ14を反射した一部の光は集光レンズ15により平行光化され、1/4波長板16により円偏光となって透過し、対物レンズ17により光ディスク18の情報記録面に集光される。
(Ninth Embodiment)
FIG. 17 is a schematic diagram showing a configuration of an optical head device 700 according to the ninth embodiment of the present invention. Polarization direction in the direction perpendicular to the paper surface emitted from a two-wavelength laser light source 13 in which a semiconductor laser that emits light in the wavelength band of 660 nm for DVD and a semiconductor laser that emits light in the wavelength band of 785 nm are integrated as an optical disk The linearly polarized divergent light is incident on the diffractive element 300 of the present invention and is transmitted in a straight line. Further, a part of the light reflected from the beam splitter 14 is collimated by the condenser lens 15, is transmitted as circularly polarized light by the quarter wavelength plate 16, and is collected on the information recording surface of the optical disk 18 by the objective lens 17. To be lighted.

情報記録面で反射された光は対物レンズ17により平行光化されて1/4波長板16に入射し、紙面平行方向の直線偏光となって透過する。さらに、集光レンズ15により、ビームスプリッタ14を透過する光は光検出器19の受光面に集光される。また、ビームスプリッタ14を紙面平行方向の直線偏光で反射する一部の光は回折素子300に入射して回折され、2波長レーザ光源13の発光点に帰還する光が遮断される。   The light reflected by the information recording surface is collimated by the objective lens 17 and enters the quarter-wave plate 16 to be transmitted as linearly polarized light in the direction parallel to the paper surface. Further, the light passing through the beam splitter 14 is collected on the light receiving surface of the photodetector 19 by the condenser lens 15. Further, a part of the light reflected from the beam splitter 14 by the linearly polarized light in the direction parallel to the paper surface enters the diffraction element 300 and is diffracted, and the light returning to the light emitting point of the two-wavelength laser light source 13 is blocked.

従来の回折素子では、波長660nmと波長785nmの両方のレーザ波長に対して充分低い直進透過率を実現できないため、光源13の発光点に光ディスクで反射されて帰還する光が発生するため、光源のレーザ発振を不安定にするといった問題があった。特に、光ディスクへの情報記録に用いられる高出力の2波長の光を発する光源13おいてレーザ発振が不安定な場合、記録エラーの原因となるためとくに光ディスクで反射されてく光源に到達する戻り光の遮断が必要となる。このため、本発明の回折素子300を用いることにより、広い波長帯域の戻り光の直線偏光に対して高い直線透過光遮断機能が発現するため、2波長の光を発する光源13のレーザ発振を安定化することができる。なお、ここでは、回折素子300を用いたが、これに限らず本願発明の偏光回折格子を有する他の回折素子を用いてもよい。   Since the conventional diffraction element cannot realize a sufficiently low linear transmittance for both laser wavelengths of 660 nm and 785 nm, light reflected from the optical disk at the light emitting point of the light source 13 is generated and returned. There was a problem of making laser oscillation unstable. In particular, when laser oscillation is unstable in the light source 13 that emits high-power two-wavelength light used for information recording on the optical disc, it causes a recording error, and thus the return light that reaches the light source that is reflected by the optical disc. It is necessary to shut off. For this reason, by using the diffraction element 300 of the present invention, a high linear transmitted light blocking function is exhibited with respect to the linearly polarized light of the return light in a wide wavelength band, so that the laser oscillation of the light source 13 that emits light of two wavelengths is stabilized. Can be Although the diffraction element 300 is used here, the present invention is not limited to this, and other diffraction elements having the polarization diffraction grating of the present invention may be used.

(第10の実施態様)
図18は、本発明の第10の実施態様である投射型液晶表示装置800の構成を示す模式図である。投射用光源31は可視光を出射する光源であり、出射された可視光は偏光型回折素子32によりY方向の直線偏光が透過し、X方向の直線偏光は回折される。また、ダイクロイックプリズム38は、後述する青色光および赤色光は反射し、緑色光は透過する機能を有している。ダイクロイックミラー33では波長420〜480nmの青色光を透過し、全反射ミラー35aで反射されて青色用の透過画像を形成する液晶ライトバルブ36Bに入射する。液晶ライトバルブ36Bにより形成されたY方向の直線偏光成分の画像は偏光型回折素子37BによりY方向の直線偏光が透過し、それと直交する直線偏光成分は回折され、ダイクロイックプリズム38の青色波長反射面で反射され、透過光は投射レンズ40の開口絞り39の開口部に集光される。
(Tenth embodiment)
FIG. 18 is a schematic diagram showing a configuration of a projection type liquid crystal display device 800 according to the tenth embodiment of the present invention. The projection light source 31 is a light source that emits visible light, and the emitted visible light is transmitted through the polarization diffraction element 32 as linearly polarized light in the Y direction and diffracted in the X direction. The dichroic prism 38 has a function of reflecting blue light and red light, which will be described later, and transmitting green light. The dichroic mirror 33 transmits blue light having a wavelength of 420 to 480 nm, is reflected by the total reflection mirror 35a, and enters the liquid crystal light valve 36B that forms a blue transmission image. The image of the linearly polarized light component in the Y direction formed by the liquid crystal light valve 36B is transmitted through the linearly polarized light in the Y direction by the polarization type diffraction element 37B, and the linearly polarized light component orthogonal thereto is diffracted, and the blue wavelength reflecting surface of the dichroic prism 38 The transmitted light is collected at the opening of the aperture stop 39 of the projection lens 40.

次に、波長520〜560nmの緑色光はダイクロイックミラー33およびダイクロイックミラー34で反射された後、緑色用の透過画像を形成する液晶ライトバルブ36Gに入射する。液晶ライトバルブ36Gにより形成されたX方向の直線偏光成分の画像は偏光型回折素子37GによりX方向の直線偏光が透過し、それと直交する直線偏光成分は回折され、ダイクロイックプリズム38を透過し、透過光は投射レンズ40の開口絞り39の開口部に集光される。   Next, green light having a wavelength of 520 to 560 nm is reflected by the dichroic mirror 33 and the dichroic mirror 34, and then enters the liquid crystal light valve 36G that forms a green transmission image. The X-direction linearly polarized light component image formed by the liquid crystal light valve 36G is transmitted by the polarizing diffraction element 37G, and the linearly polarized light component orthogonal thereto is diffracted and transmitted through the dichroic prism 38. The light is collected at the opening of the aperture stop 39 of the projection lens 40.

さらに、波長610〜670nmの赤色光はダイクロイックミラー33で反射され、ダイクロイックミラー34を透過し、2個の全反射ミラー35bおよび35cで反射された後、赤色用の透過画像を形成する液晶ライトバルブ36Rに入射する。液晶ライトバルブ36Rにより形成されたY方向の直線偏光成分の画像は偏光型回折素子37RによりY方向の直線偏光が透過し、それと直交する直線偏光成分は回折され、ダイクロイックプリズム38の赤色波長反射面で反射され、透過光は投射レンズ40の開口絞り39の開口部に集光される。   Further, the red light having a wavelength of 610 to 670 nm is reflected by the dichroic mirror 33, passes through the dichroic mirror 34, is reflected by the two total reflection mirrors 35 b and 35 c, and then forms a transmission image for red. Incident on 36R. The image of the linearly polarized light component in the Y direction formed by the liquid crystal light valve 36R is transmitted through the linearly polarized light in the Y direction by the polarization type diffraction element 37R, and the linearly polarized light component orthogonal thereto is diffracted, and the red wavelength reflecting surface of the dichroic prism 38 The transmitted light is collected at the opening of the aperture stop 39 of the projection lens 40.

液晶ライトバルブ36B、36Gおよび36Rで生成された青色、緑色および赤色の透過光はダイクロイックプリズム38により光軸が揃うように合成され、投射レンズ40により液晶ライトバルブの合成画像がスクリーン41に結像される。一方、偏光型回折素子32および37B、37G、37Rによって回折された光は開口絞り39の開口部を透過できず遮断されるため、スクリーン41に結像されない。この偏光型回折素子32および37B、37G、37Rの位置に本願発明の偏光回折格子を有する透過型の回折素子いずれも配置することができるが、コントラストが大きい投射画像とするために第6の実施態様である回折素子400を配置することが好ましい。   The blue, green and red transmitted lights generated by the liquid crystal light valves 36B, 36G and 36R are combined by the dichroic prism 38 so that their optical axes are aligned, and a composite image of the liquid crystal light valve is formed on the screen 41 by the projection lens 40. Is done. On the other hand, the light diffracted by the polarization type diffraction elements 32 and 37B, 37G, and 37R cannot be transmitted through the opening of the aperture stop 39 and is blocked, so that it does not form an image on the screen 41. Any of the transmission type diffraction elements having the polarization diffraction grating of the present invention can be disposed at the positions of the polarization type diffraction elements 32 and 37B, 37G, and 37R. It is preferable to dispose the diffraction element 400 which is an aspect.

ここで、投射用光源31として、可視波長光を出射する高圧水銀ランプが用いられるが、青色用、緑色用、赤色用のLED光源やLD光源を用いてもよい。また、光源31と本発明の回折素子32の間の、光路に光源から出射されるランダム偏光の光を効率よくY方向の直線偏光に変換する偏光変換素子や、液晶ライトバルブの照明光を均一化するためにインテグレータレンズアレイ等を配置してもよい。偏光変換素子から出射される直線偏光は偏光純度が低いため、本発明の回折素子32を用いて偏光純度を向上することが、投射像の高コントラスト化に有効である。なお、投射型液晶表示装置に用いられる投射用光源、液晶ライトバルブ、ダイクロイックミラー、ダイクロイックプリズム、偏光変換素子、インテグレータレンズアレイは公知であるため説明を省略する。   Here, a high-pressure mercury lamp that emits visible wavelength light is used as the light source 31 for projection, but LED light sources or LD light sources for blue, green, and red may be used. Further, between the light source 31 and the diffractive element 32 of the present invention, the polarized light that efficiently converts random polarized light emitted from the light source into the optical path to linearly polarized light in the Y direction, and the illumination light of the liquid crystal light valve are uniform. In order to achieve this, an integrator lens array or the like may be arranged. Since the linearly polarized light emitted from the polarization conversion element has a low polarization purity, it is effective to improve the polarization purity by using the diffraction element 32 of the present invention to increase the contrast of the projected image. The projection light source, the liquid crystal light valve, the dichroic mirror, the dichroic prism, the polarization conversion element, and the integrator lens array that are used in the projection type liquid crystal display device are well known and will not be described.

(実施例1)
透光性基板1aとして石英ガラス基板の片面を、フォトマスクを用いたフォトリソグラフィとドライエッチングにより格子形状に加工し、石英ガラス基板の両面に反射防止膜を形成する。このとき、格子形状を第1および第2の実施態様の3つの小領域に分割される回折格子形状、第3および第4の実施態様の5つの小領域に分割される回折格子形状を想定する。ここで、各小領域の格子の波長710nmの光における上記位相差φ(m)がmπ(ただし、m=−2、−1、0、1、2)となるような格子の深さに加工する。例えば、図3に示す回折素子200の単位領域20において、石英ガラス基板の屈折率が710nmで1.455であってd(−1)およびd(+1)の高さが0.78μmとし、図8に示す回折素子400の単位領域40においてd(−2)、d(−1)、d(+1)およびd(+2)の高さが0.78μmとなるように加工する。このようにして得られる3つおよび5つの小領域に分割される回折格子形状に波長500から1000nmの光が入射した場合、直進透過光率の計算結果を図19に示す。比較として、従来のように2領域等分割の矩形断面形状の回折格子の直進透過光率の計算結果も図19に併記する。この結果より、従来の2領域等分割の回折格子に比べ、本発明の3つおよび5つの小領域に分割される回折格子形状では、広い波長帯域で直進透過率を低くすることができる。
Example 1
One side of a quartz glass substrate as the translucent substrate 1a is processed into a lattice shape by photolithography using a photomask and dry etching, and antireflection films are formed on both sides of the quartz glass substrate. At this time, it is assumed that the grating shape is divided into three small regions of the first and second embodiments, and the diffraction grating shape divided into five small regions of the third and fourth embodiments. . Here, processing is performed to the depth of the grating such that the phase difference φ (m) in the light of wavelength 710 nm of the grating in each small region is mπ (where m = −2, −1, 0, 1, 2). To do. For example, in the unit region 20 of the diffraction element 200 shown in FIG. 3, the refractive index of the quartz glass substrate is 1.455 at 710 nm, and the heights of d (−1) and d (+1) are 0.78 μm. 8 is processed so that the height of d (−2), d (−1), d (+1), and d (+2) is 0.78 μm. When light having a wavelength of 500 to 1000 nm is incident on the diffraction grating shape divided into three and five small regions obtained in this way, the calculation result of the straight transmission light transmittance is shown in FIG. As a comparison, FIG. 19 also shows the calculation result of the linearly transmitted light rate of a diffraction grating having a rectangular cross-sectional shape that is equally divided into two regions as in the prior art. From this result, it is possible to reduce the linear transmittance in a wide wavelength band in the diffraction grating shape divided into three and five small regions of the present invention as compared with the conventional two-region equally divided diffraction grating.

第1および第2の実施態様の3つの小領域に分割される回折格子形状あるいは第3および第4の実施態様の5つの小領域に分割される回折格子形状を第5の実施態様に示した回折素子300に示すような偏光回折格子を有する場合を考える。偏光回折格子が回折作用を発現しない直進透過する第1の偏光方向を有する入射光の直進透過率と第1の偏光方向と直交する第2の偏光方向を有する入射光の直進透過率の比率で規定される偏光回折格子の偏光消光比をdB単位で表記すると、図20に示す計算結果となる。従来の2領域等分割の偏光回折格子に比べ、本発明の3つおよび5つの小領域に分割される回折格子形状を有する偏光回折格子では、広い波長帯域で高い偏光消光比が得られる。   The fifth embodiment shows the diffraction grating shape divided into three small regions of the first and second embodiments or the diffraction grating shape divided into five small regions of the third and fourth embodiments. Consider a case where a polarization diffraction grating as shown in the diffraction element 300 is provided. The ratio of the linear transmittance of the incident light having the first polarization direction in which the polarization diffraction grating does not exhibit the diffraction action and the second polarization direction orthogonal to the first polarization direction. When the polarization extinction ratio of the specified polarization diffraction grating is expressed in dB unit, the calculation result shown in FIG. 20 is obtained. Compared with the conventional two-region equally-divided polarization diffraction grating, the polarization diffraction grating having a diffraction grating shape divided into three and five small regions according to the present invention provides a high polarization extinction ratio in a wide wavelength band.

図19および図20に示した計算結果は、格子ピッチが波長に比べて十分大きく、格子深さが比較的薄い場合に適用されるスカラー回折理論による近似計算に基づく。格子ピッチに対して格子深さが比較的厚い場合は格子壁面の影響により直進透過率が計算結果に比べて増加するが、相対的な関係は維持される。   The calculation results shown in FIGS. 19 and 20 are based on the approximate calculation based on the scalar diffraction theory applied when the grating pitch is sufficiently larger than the wavelength and the grating depth is relatively thin. When the grating depth is relatively thick with respect to the grating pitch, the linear transmission increases due to the influence of the grating wall surface, but the relative relationship is maintained.

(実施例2)
第5の実施態様である回折素子300の実施例を示す。回折素子300の単位領域50の断面模式図を図10に示すように、石英ガラス基板1aの片面にY方向に配向処理された図示しない配向膜を形成する。その上に液晶モノマーを塗布した後に紫外線を照射して重合固化させ、Y方向に異常光屈折率の方向に相当する液晶分子配向がそろった高分子液晶からなる複屈折性材料層を作製する。ここで、高分子液晶層は波長720nmで常光屈折率n=1.55および異常光屈折率n=1.70を有し、層の厚さは4.8μmとする。
(Example 2)
The Example of the diffraction element 300 which is a 5th embodiment is shown. As shown in a schematic cross-sectional view of the unit region 50 of the diffraction element 300, an alignment film (not shown) that is aligned in the Y direction is formed on one surface of the quartz glass substrate 1a. A birefringent material layer made of a polymer liquid crystal in which liquid crystal molecules are aligned in the Y direction and aligned in the direction of extraordinary refractive index is prepared by applying a liquid crystal monomer thereon and then irradiating it with ultraviolet rays to solidify it. Here, the polymer liquid crystal layer has an ordinary light refractive index n o = 1.55 and an extraordinary light refractive index n e = 1.70 at a wavelength of 720 nm, and the thickness of the layer is 4.8 μm.

次に、フォトリソグラフィとエッチングの技術により、高分子液晶層をX方向の断面が図10に示すように厚さが3段の階段状で、Y方向に直線状の偏光回折格子4に加工する。図10において、格子ピッチPx=6μm、x1=x3=1.5μm、x2=3μmで、d(−1)=d(+1)=2.4μmとしている。   Next, the polymer liquid crystal layer is processed into a polarization diffraction grating 4 having a stepped shape with a thickness of three steps as shown in FIG. 10 and a straight line in the Y direction by photolithography and etching techniques. . In FIG. 10, the grating pitch Px = 6 μm, x1 = x3 = 1.5 μm, x2 = 3 μm, and d (−1) = d (+1) = 2.4 μm.

さらに、常光屈折率nに等しい屈折率n=1.55の等方性透明材料5である接着材を用いて、偏光回折格子4の凹部を充填するとともに透光性基板1bとして石英ガラス基板に接着して単位領域50からなる回折素子300とする。なお、石英ガラス基板となる透光性基板1aと1bの空気界面には反射防止膜(図示せず)が形成されている。このとき、回折素子300の入射光の波長λ=720nmに対して、|n−n|×d(−1)=|n−n|×d(+1)=λ/2の関係を満たす。 Further, using an adhesive which is an isotropic transparent material 5 having a refractive index n s = 1.55 equal to the ordinary refractive index n o , the concave portion of the polarization diffraction grating 4 is filled and quartz glass is used as the translucent substrate 1b. A diffractive element 300 composed of unit regions 50 is bonded to the substrate. An antireflection film (not shown) is formed on the air interface between the translucent substrates 1a and 1b, which are quartz glass substrates. At this time, the relationship of | n e −n s | × d (−1) = | n e −n s | × d (+1) = λ / 2 with respect to the wavelength λ = 720 nm of the incident light of the diffraction element 300. Meet.

このようにして作製された回折素子300に入射するX方向の偏光方向の光は直進透過し、Y方向の偏光方向の光は回折されて直進透過しない。このとき、波長630nmから800nmの入射光に対して、X方向の偏光の直進透過率は95%以上で、Y方向の偏光の直進透過率は0.1%以下となり、Y方向の偏光に対するX方向の偏光の直進透過率比である偏光消光比は1000以上の高い値が得られる。   The light having the polarization direction in the X direction incident on the diffractive element 300 manufactured in this way is transmitted in a straight line, and the light in the polarization direction in the Y direction is diffracted and is not transmitted in a straight line. At this time, with respect to incident light having a wavelength of 630 nm to 800 nm, the linear transmittance of polarized light in the X direction is 95% or more, and the straight transmittance of polarized light in the Y direction is 0.1% or less. The polarization extinction ratio, which is the linear transmittance ratio of the polarized light in the direction, can be a high value of 1000 or more.

また、従来の矩形断面形状の偏光回折格子を2層積層した構成とすることで実施例1の回折素子300と同等の偏光消光比が得られる。このようにして得られた回折素子300を図17に示した光ヘッド装置700に搭載して用いる。その結果、光ディスク18の情報記録面で反射された光は回折素子300で回折されるため2波長レーザ光源13の発光点に帰還する光が有効に遮断され、2波長レーザ光源13のレーザ発振を安定化することができる。   Also, a polarization extinction ratio equivalent to that of the diffractive element 300 of the first embodiment can be obtained by stacking two layers of conventional polarization diffraction gratings having a rectangular cross section. The diffraction element 300 obtained in this way is used by being mounted on the optical head device 700 shown in FIG. As a result, the light reflected by the information recording surface of the optical disk 18 is diffracted by the diffraction element 300, so that the light returning to the emission point of the two-wavelength laser light source 13 is effectively blocked, and the laser oscillation of the two-wavelength laser light source 13 is suppressed. Can be stabilized.

(比較例1)
比較例として、図示しない偏光回折格子を有する回折素子の単位領域のPxの構成を、図10を用いて、x1=x2=3μmとしてさらに、x3とd(+1)がゼロに相当する従来の矩形断面形状の偏光回折格子の場合、Y方向の偏光方向の光の直進透過率が0.1%以下となる波長が700nmから730nmと狭い波長帯域に限定され、波長630nmから800nmの入射光に対する平均として低い偏光消光比に留まる。
(Comparative Example 1)
As a comparative example, the configuration of Px in a unit region of a diffraction element having a polarization diffraction grating (not shown) is set to x1 = x2 = 3 μm using FIG. 10, and a conventional rectangle in which x3 and d (+1) correspond to zero In the case of a polarization diffraction grating having a cross-sectional shape, the wavelength at which the linear transmittance of light in the polarization direction in the Y direction is 0.1% or less is limited to a narrow wavelength band of 700 nm to 730 nm, and the average for incident light with a wavelength of 630 nm to 800 nm As a low polarization extinction ratio.

(実施例3)
第7の実施態様である回折素子500の実施例を示す。図13に示す回折素子500の断面模式図において、2種の偏光回折格子部300aと300bは実施例2と同様の高分子液晶層を複屈折材料として用いた偏光回折格子とする。偏光回折格子部300aと300bの格子504aと504bは、波長1550nmで常光屈折率n=1.54および異常光屈折率n=1.69を有し、図10に示す3つの小領域からなる単位領域50の断面模式図の例において、格子ピッチPx=20μm、x1=x3=5μm、x2=10μmで、d(−1)=d(+1)=5.17μmとしている。さらに、常光屈折率nに等しい屈折率n=1.54の等方性透明材料505である接着材を用いて、格子504aと504bの凹部を充填するとともに偏光回折格子部300aは石英ガラス基板からなる透光性基板501aと501cとで挟持され、また、偏光回折格子部300bは石英ガラス基板からなる透光性基板501bと501dとで挟持されている。
(Example 3)
The Example of the diffraction element 500 which is a 7th embodiment is shown. In the schematic cross-sectional view of the diffraction element 500 shown in FIG. 13, the two types of polarization diffraction grating portions 300a and 300b are polarization diffraction gratings using a polymer liquid crystal layer similar to that of Example 2 as a birefringent material. The gratings 504a and 504b of the polarizing diffraction grating portions 300a and 300b have an ordinary light refractive index n o = 1.54 and an extraordinary light refractive index n e = 1.69 at a wavelength of 1550 nm. From the three small regions shown in FIG. In the example of the schematic sectional view of the unit region 50, the lattice pitch Px = 20 μm, x1 = x3 = 5 μm, x2 = 10 μm, and d (−1) = d (+1) = 5.17 μm. Furthermore, using an isotropic transparent material 505 a is adhesive having a refractive index n s = 1.54 is equal to the ordinary refractive index n o, polarization grating portion 300a quartz glass to fill the recesses of the grating 504a and 504b The transparent substrates 501a and 501c made of a substrate are sandwiched, and the polarization diffraction grating portion 300b is sandwiched between the transparent substrates 501b and 501d made of a quartz glass substrate.

ここで、格子504aの常光屈折率nがX方向で格子長手方向をX方向とし、格子504bの常光屈折率nがY方向で格子長手方向をY方向とする。このとき、偏光回折格子部300aと300bの入射光の波長λ=1550nmに対して、|n−n|×d(−1)=|n−n|×d(+1)=λ/2の関係を満たす。 Here, the ordinary refractive index n o of the grating 504a is a lattice longitudinally and X-direction in the X direction, the ordinary refractive index n o of the grating 504b to the grating longitudinal direction as the Y direction in the Y direction. At this time, with respect to the wavelength λ = 1550 nm of the incident light of the polarization diffraction grating units 300a and 300b, | n e −n s | × d (−1) = | n e −n s | × d (+1) = λ Satisfies the relationship of / 2.

なお、回折素子500の偏光回折格子が5つの小領域からなる単位領域の場合は、格子504aと504bを図8に示す格子2のような厚さに加工し、格子ピッチPx=20μm、x1=x5=1.25μm、x2=x4=5μm、x3=7.5μmで、d(−2)=d(−1)=d(+1)=d(+2)=5.17μmとする。   In the case where the polarization diffraction grating of the diffraction element 500 is a unit region consisting of five small regions, the gratings 504a and 504b are processed to a thickness like the grating 2 shown in FIG. 8, and the grating pitch Px = 20 μm, x1 = x5 = 1.25 μm, x2 = x4 = 5 μm, x3 = 7.5 μm, and d (−2) = d (−1) = d (+1) = d (+2) = 5.17 μm.

液晶セル510は、石英ガラス基板からなる透光性基板501cと501dの片面に形成された例えばITOからなる透明電極506aと506bの上に、透明電極間へ電圧印加時に液晶507の分子配向が+Xから+Yの方向に45°の角度をなして揃うようにポリイミド膜をラビングによって配向処理し、それぞれ垂直配向処理剤となるアミノシランを塗布して図示しない垂直配向膜が形成されている。透明電極および配向膜を施された透光性基板501cおよび501dの周縁部にエポキシ樹脂等のシール508を環状に塗布する。シールには、約8.0μmのセルギャップを得るためのスペーサ、電圧印加のための導電経路となる導電性微粒子を予め混ぜる。この空隙に図示しない注入口から液晶507を注入して充填し、液晶セル510とする。液晶507は、負の誘電率異方性を有し、屈折率異方性△n=0.15のネマティック液晶を用い、層厚dLC=8.0μmとなる。このとき、透光性基板501cと501dに電圧非印加時に液晶層中の分子が透光性基板に垂直に揃うため、液晶層のリタデーション値Rはゼロとなる。一方、実効交流電圧V=4〜5Vrmsを印加したとき、入射光の波長λ=1480〜1620nmに対して液晶層のリタデーション値R=λ/2となり、印加電圧をゼロから5Vrmsまで変えるとリタデーション値Rがゼロからλ/2まで変化する液晶セル510となる。 In the liquid crystal cell 510, the molecular orientation of the liquid crystal 507 is + X when a voltage is applied between the transparent electrodes on the transparent electrodes 506a and 506b made of, for example, ITO formed on one side of the transparent substrates 501c and 501d made of a quartz glass substrate. The polyimide film is aligned by rubbing so that it is aligned at an angle of 45 ° to the + Y direction, and aminosilane as a vertical alignment treatment agent is applied to form a vertical alignment film (not shown). A seal 508 such as an epoxy resin is annularly applied to the peripheral portions of the transparent substrates 501c and 501d provided with the transparent electrode and the alignment film. In the seal, a spacer for obtaining a cell gap of about 8.0 μm and conductive fine particles serving as a conductive path for applying a voltage are mixed in advance. Liquid crystal 507 is injected and filled into the gap from an injection port (not shown) to form a liquid crystal cell 510. The liquid crystal 507 uses a nematic liquid crystal having negative dielectric anisotropy and a refractive index anisotropy Δn = 0.15, and has a layer thickness d LC = 8.0 μm. At this time, since the molecules in the liquid crystal layer are aligned perpendicularly to the light transmissive substrate when no voltage is applied to the light transmissive substrates 501c and 501d, the retardation value R of the liquid crystal layer becomes zero. On the other hand, when an effective AC voltage V = 4 to 5 Vrms is applied, the retardation value R of the liquid crystal layer becomes R = λ / 2 with respect to the wavelength λ = 1480 to 1620 nm of the incident light, and the retardation value is obtained by changing the applied voltage from zero to 5 Vrms. A liquid crystal cell 510 in which R varies from zero to λ / 2 is obtained.

このようにして得られた回折素子500に波長λ=1480〜1620nmのX方向の直線偏光が入射した場合、液晶セル510へゼロから5Vrmsまで電圧を印加すると、直線透過率がゼロから最大95%まで変化する。   When linearly polarized light in the X direction having a wavelength λ = 1480 to 1620 nm is incident on the diffraction element 500 thus obtained, when a voltage is applied to the liquid crystal cell 510 from zero to 5 Vrms, the linear transmittance is from 95 to a maximum of 95%. Change to.

3つの小領域からなる単位領域を有する偏光回折格子を用いた回折素子500を図14に示す光学系に配置し、波長1480から1620nmの光を光ファイバ12中に伝搬させる。回折素子500を配置しないときの光ファイバ中を伝搬する光量を基準に、液晶セル510への印加電圧Vが0Vrmsのときの光ファイバ伝搬効率と、5Vrmsまで印加電圧を増加させるときの光ファイバ伝搬最大効率をdB単位で図21に示す。また、5つの小領域からなる単位領域を有する偏光回折格子を用いた回折素子の場合の液晶セル510への印加電圧Vが0Vrmsのときの光ファイバ伝搬効率も図21に併記して示す。なお、スカラー回折理論では波長1550nmにおける0Vrmsの時の光ファイバ伝搬効率計算値は−∞dBであるが、実際の回折格子における格子深さを2つの領域分割(領域の幅は等しい)とする従来例では−40dB、本願発明の3つの小領域からなる場合は−80dB、本願発明の5つの小領域からなる場合は−100dBに設定している。このように、1480から1620nmの広い波長帯域の光に対して、低駆動電圧で高い消光比を示すとともに小型化が可能な電圧可変光減衰器を提供できる。   A diffractive element 500 using a polarization diffraction grating having a unit region composed of three small regions is arranged in the optical system shown in FIG. 14, and light having a wavelength of 1480 to 1620 nm is propagated in the optical fiber 12. With reference to the amount of light propagating through the optical fiber when the diffraction element 500 is not disposed, the optical fiber propagation efficiency when the applied voltage V to the liquid crystal cell 510 is 0 Vrms and the optical fiber propagation when the applied voltage is increased to 5 Vrms. The maximum efficiency in dB is shown in FIG. In addition, FIG. 21 also shows the optical fiber propagation efficiency when the applied voltage V to the liquid crystal cell 510 is 0 Vrms in the case of a diffraction element using a polarization diffraction grating having a unit region consisting of five small regions. In the scalar diffraction theory, the optical fiber propagation efficiency calculation value at 0 Vrms at a wavelength of 1550 nm is −∞ dB, but the grating depth in an actual diffraction grating is divided into two regions (region widths are equal). In the example, it is set to -40 dB, -80 dB when it is composed of three small areas of the present invention, and -100 dB when it is composed of five small areas of the present invention. As described above, it is possible to provide a voltage variable optical attenuator that exhibits a high extinction ratio with a low driving voltage and can be downsized with respect to light in a wide wavelength band from 1480 to 1620 nm.

(実施例4)
第10の実施態様である投射型液晶表示装置800を構成する偏光型回折素子32の位置に本願発明第5の実施態様である単位領域50からなる回折素子300を配置し、偏光回折素子37B、37G、37Rの位置に本願発明第5の実施態様である単位領域50の代わりに単位領域30からなる回折素子を配置する。以下に、本実施例に用いられる回折素子の詳細を説明する。
Example 4
A diffractive element 300 composed of the unit region 50 according to the fifth embodiment of the present invention is arranged at the position of the polarizing diffractive element 32 constituting the projection type liquid crystal display device 800 according to the tenth embodiment, and the polarizing diffractive element 37B, In place of the unit region 50 according to the fifth embodiment of the present invention, a diffractive element composed of the unit region 30 is arranged at the positions 37G and 37R. Details of the diffraction element used in the present embodiment will be described below.

偏光型回折素子32の位置には、本願発明の回折素子が用いられ、単位領域の偏光回折格子の形状は図6に示す単位領域30の形状をした5つの領域からなるようにする。ここで、偏光型回折格子は、波長520nmの光に対して常光屈折率n=1.55および異常光屈折率n=1.75の高分子液晶からなり、単位領域30の透過複素振幅U(m)と透過複素振幅U(m−1)との厚さの差(mは−1、0、+1、+2)がそれぞれ1.3μmとなるようにフォトリソグラフィとエッチングで加工する。とくに透過複素振幅U(−2)となる小領域は高分子液晶の厚さがゼロとなるようにエッチングする。また、単位領域30の格子ピッチPxおよびPyを3.2μmとし、x1=x2=x3=x4=y1=y2=y3=y4=0.8μmとする。また、高分子液晶の常光屈折率nの方向をY方向とし、常光屈折率nに等しい屈折率n=1.55の等方性透明材料で偏光回折格子の空隙を埋めて回折素子とする。 The diffraction element of the present invention is used at the position of the polarizing diffraction element 32, and the shape of the polarization diffraction grating in the unit region is made up of five regions having the shape of the unit region 30 shown in FIG. Here, the polarization type diffraction grating is made of a polymer liquid crystal having an ordinary light refractive index n o = 1.55 and an extraordinary light refractive index n e = 1.75 with respect to light having a wavelength of 520 nm, and the transmission complex amplitude of the unit region 30. Processing is performed by photolithography and etching so that the difference in thickness (m is −1, 0, +1, +2) between U (m) and transmission complex amplitude U (m−1) is 1.3 μm. In particular, a small region having a transmission complex amplitude U (−2) is etched so that the thickness of the polymer liquid crystal becomes zero. Further, the lattice pitches Px and Py of the unit region 30 are set to 3.2 μm, and x1 = x2 = x3 = x4 = y1 = y2 = y3 = y4 = 0.8 μm. Further, the direction of the ordinary refractive index n o of the liquid crystal polymer as a Y direction, the ordinary refractive index n o is equal refractive index n s = 1.55 diffraction element to fill the voids of the polarization diffraction grating isotropic transparent material And

このように作製した回折素子を図18の投射型液晶表示装置800の偏光型回折素子32の位置に常光屈折率nとなる方向がY方向となるように配置する。投射用光源31より出射される可視光のうち、Y方向の直線偏光は偏光型回折素子32を直進透過し、X方向の直線偏光は偏光型回折素子32によりX方向およびY方向に回折される。その結果、偏光型回折素子32の直進透過光の偏光消光比は、波長460から600nmに対しては50dB以上、波長430から660nmに対しては35dB以上の計算値となり、広い波長域で偏光純度の高い直進透過光が得られる。 Thus the direction the ordinary refractive index n o the position of the polarizing type diffraction element 32 of the projection type liquid crystal display device 800 of the diffractive element prepared FIG 18 is arranged such that the Y-direction. Of the visible light emitted from the projection light source 31, linearly polarized light in the Y direction travels straight through the polarizing diffraction element 32, and linearly polarized light in the X direction is diffracted by the polarizing diffraction element 32 in the X and Y directions. . As a result, the polarization extinction ratio of the linearly transmitted light of the polarizing diffraction element 32 is a calculated value of 50 dB or more for wavelengths 460 to 600 nm and 35 dB or more for wavelengths 430 to 660 nm, and the polarization purity in a wide wavelength range. Highly straight transmitted light can be obtained.

偏光型回折素子37B、37G、37Rの位置に、はいずれも単位領域50の偏光回折格子の断面形状が3つの小領域からなる本願発明の回折素子を配置する。偏光回折格子に用いられる高分子液晶および等方性透明材料は偏光型回折素子32として配置する回折素子と同じだが、偏光型回折素子37B、37G、37Rとして配置する本願発明の回折素子は、図10に示す偏光回折格子4の3つの小領域の各層厚d(−1)=d(+1)が、それぞれ1.15μm、1.4μm、1.58μmとなるようにフォトリソグラフィおよびエッチング加工する。また単位領域50の格子ピッチPxおよびPyを3.2μmとし、x1=x2/2=x3=0.8μmとする。また、高分子液晶の常光屈折率nの方向を、偏光型回折素子37B、37Rに配置する回折素子はY方向とし、偏光型回折素子37Gに配置する回折素子はX方向とし、常光屈折率nに等しい屈折率n=1.55の等方性透明材料で対向させた偏光回折格子の空隙を埋める。また、それぞれの偏光型回折素子37R、37G、37Bに配置される回折素子の格子の長手方向が、投射型液晶表示装置800において、37GはX方向およびY方向に対して45°の角度をなし、37Bおよび37RはY方向およびZ方向に対して45°の角度をなすように配置する。 In each of the polarization diffraction elements 37B, 37G, and 37R, the diffraction element of the present invention in which the sectional shape of the polarization diffraction grating of the unit region 50 is composed of three small regions is disposed. The polymer liquid crystal and the isotropic transparent material used for the polarization diffraction grating are the same as the diffraction elements disposed as the polarization diffraction elements 32, but the diffraction elements of the present invention disposed as the polarization diffraction elements 37B, 37G, and 37R are Photolithography and etching are performed so that the layer thicknesses d (−1) = d (+1) of the three small regions of the polarization diffraction grating 4 shown in FIG. 10 are 1.15 μm, 1.4 μm, and 1.58 μm, respectively. Further, the lattice pitches Px and Py of the unit region 50 are set to 3.2 μm, and x1 = x2 / 2 = x3 = 0.8 μm. Further, the direction of the ordinary refractive index n o of the liquid crystal polymer, a diffraction element to place polarizing diffraction element 37B, the 37R is the Y direction, the diffraction element arranged on the polarizing diffraction element 37G is the X direction, the ordinary refractive index The gaps of the polarization gratings opposed to each other are filled with an isotropic transparent material having a refractive index n s = 1.55 equal to n o . Further, in the projection type liquid crystal display device 800, the longitudinal direction of the gratings of the diffraction elements arranged in the polarization diffraction elements 37R, 37G, and 37B is 37 ° with respect to the X direction and the Y direction. , 37B and 37R are arranged to form an angle of 45 ° with respect to the Y direction and the Z direction.

その結果、投射型液晶表示装置800において、液晶ライトバルブ36Bより出射する波長420〜480nmの青色光および液晶ライトバルブ36Rより出射する波長610〜670nmの赤色光のうち、Y方向の直線偏光はそれぞれ偏光型回折素子37Bと37Rを直進透過し、それと直交する直線偏光は偏光型回折素子37Bと37Rにより格子長手方向に直交する方向に回折される。また、液晶ライトバルブ36Gより出射する波長520〜560nmの緑色光のうち、X方向の直線偏光は偏光型回折素子37Gを直進透過し、それと直交する直線偏光は偏光型回折素子37Gにより格子長手方向に直交する方向に回折される。その結果、各波長域における直進透過光の偏光消光比は40dB以上の計算値となり、偏光純度の高い直進透過光が得られる。なお、本実施例では可視光を青色光・緑色光・赤色光に波長分離し、3種の液晶ライトバルブを用いて画像を形成した後、波長合成してカラー投射画像を形成する例を示した。カラー画像を生成する1種類の液晶ライトバルブを用い、入射および出射側に本発明の偏光型回折素子を配置しても同様の効果が得られる。   As a result, in the projection-type liquid crystal display device 800, of the blue light with a wavelength of 420 to 480 nm emitted from the liquid crystal light valve 36B and the red light with a wavelength of 610 to 670 nm emitted from the liquid crystal light valve 36R, linearly polarized light in the Y direction is respectively The linearly polarized light that passes straight through the polarizing diffraction elements 37B and 37R and is orthogonal thereto is diffracted by the polarizing diffraction elements 37B and 37R in a direction perpendicular to the longitudinal direction of the grating. In addition, among the green light having a wavelength of 520 to 560 nm emitted from the liquid crystal light valve 36G, the linearly polarized light in the X direction passes straight through the polarizing diffractive element 37G, and the linearly polarized light orthogonal thereto is transmitted in the longitudinal direction of the grating by the polarizing diffractive element 37G. Is diffracted in a direction perpendicular to. As a result, the polarization extinction ratio of the linearly transmitted light in each wavelength region becomes a calculated value of 40 dB or more, and the linearly transmitted light with high polarization purity is obtained. In this embodiment, visible light is wavelength-separated into blue light, green light, and red light, an image is formed using three types of liquid crystal light valves, and then a wavelength projection is performed to form a color projection image. It was. The same effect can be obtained by using one type of liquid crystal light valve that generates a color image and arranging the polarizing diffraction element of the present invention on the incident and exit sides.

このように本願発明の回折素子を投射型表示装置に用いることで、従来の投射型表示装置に用いられた一方の直線偏光を吸収しそれと直交する直線偏光を透過する偏光フィルムの場合に生じた高い光強度の光が入射した際に光吸収に伴う発熱により特性が劣化するといった問題を解消できることが期待できる。とくに発熱に対して、空冷用のファンを用いた放熱対策が必要となり、使用する投射用光源の光強度の制限に伴う投射画像の明るさが向上できず、また、騒音および消費電力の増大を招いていたが、本実施例の回折素子は光吸収に伴う発熱が生じないため、このような問題を解消するものと期待できる。   As described above, the diffraction element according to the present invention is used in the projection display device, which is generated in the case of a polarizing film that absorbs one linearly polarized light used in the conventional projection display device and transmits the linearly polarized light orthogonal thereto. It can be expected that the problem that characteristics deteriorate due to heat generated by light absorption when light of high light intensity is incident can be expected. Especially for heat generation, it is necessary to take heat dissipation measures using an air cooling fan, the brightness of the projected image cannot be improved due to the limitation of the light intensity of the projection light source to be used, and noise and power consumption are increased. However, since the diffractive element of this embodiment does not generate heat due to light absorption, it can be expected to solve such a problem.

以上説明したように、本発明の回折格子形状の回折素子を用いることにより広い入射光の波長帯域に対して直進透過光の光強度が小さな値を維持できる。また、半導体レーザなどの個別素子の製造ばらつきがあっても直進透過光の光強度を小さな値に維持できるため、安定した特性が実現できる。とくに、3つの小領域に分割あるいは5つの小領域に分割された単位領域が周期的に配列した回折格子とする比較的簡単な構成により安定して低い直進透過率を実現できる。さらに、本発明の回折素子を用いることにより、広い入射光の波長帯域に対して、第1の偏光方向の入射光に対しては高い直進透過率が得られるとともに、第1の偏光方向と直交する第2の偏光方向の入射光に対しては安定して直進透過光を遮断する機能が得られ、高い偏光消光比を有する回折素子が実現できる。また、本発明の偏光回折格子を積層した構成とすることにより、さらに消光比が向上した回折素子が実現できる。さらに、本発明の回折素子を用いた比較的簡単な構成により、広い波長帯域の光に対して、低い駆動電圧で高い消光比を示す小型な電圧可変光減衰器が実現できる。   As described above, by using the diffraction grating-shaped diffraction element according to the present invention, the light intensity of the straight transmitted light can be kept small with respect to a wide wavelength band of incident light. In addition, even if there are manufacturing variations of individual elements such as semiconductor lasers, the light intensity of the linearly transmitted light can be maintained at a small value, so that stable characteristics can be realized. In particular, a low linear transmission can be stably achieved with a relatively simple configuration in which the diffraction grating is divided into three small regions or unit regions divided into five small regions are periodically arranged. Furthermore, by using the diffraction element of the present invention, a high linear transmittance can be obtained for incident light in the first polarization direction with respect to a wide wavelength band of incident light, and orthogonal to the first polarization direction. For the incident light in the second polarization direction, a function of stably blocking the straight transmitted light can be obtained, and a diffraction element having a high polarization extinction ratio can be realized. In addition, a diffraction element having a further improved extinction ratio can be realized by adopting a configuration in which the polarization diffraction gratings of the present invention are laminated. Furthermore, a relatively simple configuration using the diffraction element of the present invention can realize a small voltage variable optical attenuator that exhibits a high extinction ratio with a low driving voltage for light in a wide wavelength band.

本発明の第1の実施態様の回折素子の構成例を示す平面模式図。FIG. 3 is a schematic plan view showing a configuration example of the diffraction element according to the first embodiment of the present invention. 本発明の第1の実施態様の回折素子の単位領域を示す平面模式図。FIG. 2 is a schematic plan view showing a unit region of the diffraction element according to the first embodiment of the present invention. 本発明の第2の実施態様の回折素子の構成例を示す平面模式図。The plane schematic diagram which shows the structural example of the diffraction element of the 2nd embodiment of this invention. 本発明の第2の実施態様の回折素子の単位領域を示す平面模式図。The plane schematic diagram which shows the unit area | region of the diffraction element of the 2nd embodiment of this invention. 本発明の第2の実施態様の回折素子の単位領域を示す断面模式図。The cross-sectional schematic diagram which shows the unit area | region of the diffraction element of the 2nd embodiment of this invention. 本発明の第3の実施態様の回折素子の単位領域を示す平面模式図。The plane schematic diagram which shows the unit area | region of the diffraction element of the 3rd embodiment of this invention. 本発明の第4の実施態様の回折素子の単位領域を示す平面模式図。The plane schematic diagram which shows the unit area | region of the diffraction element of the 4th embodiment of this invention. 本発明の第4の実施態様の回折素子の単位領域を示す断面模式図。The cross-sectional schematic diagram which shows the unit area | region of the diffraction element of the 4th embodiment of this invention. 本発明の第5の実施態様の回折素子の構成例を示す平面模式図。The plane schematic diagram which shows the structural example of the diffraction element of the 5th embodiment of this invention. 本発明の第5の実施態様の回折素子の単位領域を示す断面模式図。The cross-sectional schematic diagram which shows the unit area | region of the diffraction element of the 5th embodiment of this invention. 本発明の第6の実施態様の回折素子の構成例を示す模式図。The schematic diagram which shows the structural example of the diffraction element of the 6th embodiment of this invention. 本発明の第6の実施態様の回折素子の構成例を示す斜視図。The perspective view which shows the structural example of the diffraction element of the 6th embodiment of this invention. 本発明の第7の実施態様の回折素子の構成例を示す断面模式図。Sectional schematic diagram which shows the structural example of the diffraction element of the 7th embodiment of this invention. 本発明の第7の実施態様の回折素子の構成例を示す断面模式図と、直進透過光と回折光を分離する光学系の一例を示す断面模式図。The cross-sectional schematic diagram which shows the structural example of the diffraction element of the 7th embodiment of this invention, and the cross-sectional schematic diagram which shows an example of the optical system which isolate | separates a linearly transmitted light and diffracted light. 本発明の第8の実施態様の回折素子の構成例を示す模式図。The schematic diagram which shows the structural example of the diffraction element of the 8th embodiment of this invention. 本発明の第8の実施態様の回折素子構成例を示す断面模式図と、直進透過光と回折光を分離する光学系の一例を示す模式図。The cross-sectional schematic diagram which shows the diffraction element structural example of the 8th embodiment of this invention, and the schematic diagram which shows an example of the optical system which isolate | separates a linearly transmitted light and a diffracted light. 本発明の第9の実施態様の光ヘッド装置の構成例を示す模式図。FIG. 10 is a schematic diagram illustrating a configuration example of an optical head device according to a ninth embodiment of the present invention. 本発明の第10の実施態様の投射型液晶表示装置の構成例を示す模式図。The schematic diagram which shows the structural example of the projection type liquid crystal display device of the 10th embodiment of this invention. 実施例1の3つの小領域に分割された回折格子および5つの小領域に分割された回折格子と従来の2領域等分割回折格子の直進透過光率の計算結果。The calculation result of the linearly transmitted light rate of the diffraction grating divided | segmented into the 3 small area | region of Example 1, the diffraction grating divided | segmented into the 5 small area | region, and the conventional 2 area | region equal division | segmentation diffraction grating. 実施例1の3つの小領域に分割された偏光回折格子および5つの小領域に分割された偏光回折格子と従来の2領域等分割偏光回折格子の偏光消光比の波長依存性を示す計算結果。The calculation result which shows the wavelength dependence of the polarization-extinction ratio of the polarization diffraction grating divided | segmented into the 3 small area | region of Example 1, the polarization diffraction grating divided | segmented into the 5 small area | region, and the conventional 2 area | region equal division | segmentation polarization diffraction grating. 実施例3の液晶素子において、3つの小領域に分割された偏光回折格子および5つの小領域に分割された偏光回折格子と従来の2領域等分割偏光回折格子を用いた場合の印加電圧0Vrmsにおける光ファイバ伝搬効率と、印加電圧5Vrmsまでの最大光ファイバ伝搬効率の計算結果。In the liquid crystal element of Example 3, when the polarization diffraction grating divided into three small regions, the polarization diffraction grating divided into five small regions, and the conventional two-region equally-divided polarization diffraction grating were used, at an applied voltage of 0 Vrms. Calculation results of optical fiber propagation efficiency and maximum optical fiber propagation efficiency up to an applied voltage of 5 Vrms. 従来の回折格子を示す断面図(図19(a)は矩形回折格子形状、図19(b)は鋸波ブレーズ回折格子形状、図19(c)は階段状ブレーズ回折格子形状)。FIG. 19A is a cross-sectional view showing a conventional diffraction grating (FIG. 19A is a rectangular diffraction grating shape, FIG. 19B is a sawtooth blazed diffraction grating shape, and FIG. 19C is a staircase blazed diffraction grating shape).

符号の説明Explanation of symbols

1、1a、1b、501a、501b、501c、501d、601 透光性基板
2、4、4a、4b、504a、504b 格子
3 透明媒質(空気)
5、505 等方性透明材料
10、20、30、40、50、60 単位領域
11、15 集光レンズ
12 光ファイバ
13 2波長レーザ光源
14 ビームスプリッタ
16 1/4波長板
17 対物レンズ
18 光ディスク
19 光検出器
31 投射用光源
32、37B、37G、37R 偏光型回折素子
33、34 ダイクロイックミラー
35a、35b、35c 全反射ミラー
36B、36G、36R 液晶ライトバルブ
38 ダイクロイックプリズム
39 開口絞り
40 投射レンズ
41 スクリーン
300a、300b 偏光回折格子部
100、200、300、400、500、600 回折素子
506a、506b 透明電極
507、607 液晶
508 シール
510、610 液晶セル
609 光反射層
700 光ヘッド装置
800 投射型液晶表示装置
1, 1a, 1b, 501a, 501b, 501c, 501d, 601 Translucent substrate 2, 4, 4a, 4b, 504a, 504b Lattice 3 Transparent medium (air)
5, 505 Isotropic transparent material 10, 20, 30, 40, 50, 60 Unit region 11, 15 Condensing lens 12 Optical fiber 13 Two-wavelength laser light source 14 Beam splitter 16 1/4 wavelength plate 17 Objective lens 18 Optical disk 19 Photodetector 31 Projection light source 32, 37B, 37G, 37R Polarization type diffraction element 33, 34 Dichroic mirror 35a, 35b, 35c Total reflection mirror 36B, 36G, 36R Liquid crystal light valve 38 Dichroic prism 39 Aperture stop 40 Projection lens 41 Screen 300a, 300b Polarization diffraction grating part 100, 200, 300, 400, 500, 600 Diffraction element 506a, 506b Transparent electrode 507, 607 Liquid crystal 508 Seal 510, 610 Liquid crystal cell 609 Light reflection layer 700 Optical head device 800 Projection type liquid crystal display device

Claims (12)

波長λの光が入射して光の位相を変調して出射する回折素子であって、
前記回折素子は、透光性基板上に回折格子が形成され、前記回折格子は単位領域が周期的に配列されて構成され、
前記単位領域は、前記波長λの光に対して位相が異なって透過する3以上の区画に分割されており、
前記単位領域を透過する前記波長λの光の前記単位領域あたりの位相の平均値とそれぞれの前記区画を透過する前記波長λの光の位相と、の差である位相差がπの整数倍であり、
前記区画は、前記位相差がゼロの小領域と、前記位相差が+nπとなる小領域および、前記位相差が−nπとなる小領域からなる少なくとも3以上の小領域のいずれかであり(n≧1の整数)、
前記位相差が+nπとなる前記小領域の面積と、前記位相差が−nπとなる前記小領域の面積と、が実質的に等しい回折素子。
A diffractive element in which light of wavelength λ is incident and modulates and emits the phase of the light,
The diffraction element has a diffraction grating formed on a translucent substrate, and the diffraction grating is configured by periodically arranging unit regions.
The unit region is divided into three or more sections that transmit with different phases with respect to the light of the wavelength λ,
The phase difference, which is the difference between the average value of the light of the wavelength λ transmitted through the unit region per unit region and the phase of the light of the wavelength λ transmitted through the respective sections, is an integral multiple of π. Yes,
The section is any one of at least three or more small regions including a small region with a phase difference of zero, a small region with a phase difference of + nπ, and a small region with a phase difference of −nπ (n ≧ 1 integer),
A diffraction element in which the area of the small region where the phase difference is + nπ and the area of the small region where the phase difference is −nπ are substantially equal.
前記単位領域は、前記位相差がゼロである1つの小領域と前記位相差が+πずつ異なるm個の小領域と前記位相差が−πずつ異なるm個の小領域からなり(m≧1の整数)、
前記位相差がjπとなる小領域の面積をSで表したとき(jは−m〜mの整数)、
iは(−m+1)〜(m−1)の整数として、
−m:…:S:…:Sの比率が、
1:…:(2m)!/{(i+m)!×(m−i)!}:…:1、である請求項1に記載の回折素子。
The unit region includes one small region having a phase difference of zero, m small regions having a phase difference of + π and m small regions having a phase difference of −π (m ≧ 1). integer),
When the area of the small region where the phase difference is jπ is represented by S j (j is an integer from −m to m),
i is an integer from (−m + 1) to (m−1),
S -m: ...: S i: ...: ratio of S m is,
1: ...: (2m)! / {(I + m)! X (mi)! }: The diffraction element according to claim 1, wherein:
前記単位領域は、面積Sからなる前記位相差がゼロの小領域、面積S+1からなる前記位相差がπの小領域、面積S−1からなる前記位相差が−πの小領域からなり、
前記面積S−1:前記面積S:前記面積S+1の比が1:2:1である請求項2に記載の回折素子。
The unit region includes a small region having a phase difference of zero having an area S 0, a small region having a phase difference of π having an area S +1, and a small region having a phase difference of −π having an area S −1. ,
The diffraction element according to claim 2, wherein a ratio of the area S −1 : the area S 0 : the area S +1 is 1: 2: 1.
前記単位領域は、面積Sからなる前記位相差がゼロの小領域、面積S+2からなる前記位相差が2πの小領域、面積S+1からなる前記位相差がπの小領域、面積S−1からなる前記位相差が−πの小領域、面積S−2からなる前記位相差が−2πの小領域からなり、
前記面積S−2:前記面積S−1:前記面積S:前記面積S+1:前記面積S+2の比が1:4:6:4:1である請求項2に記載の回折素子。
The unit region includes a small region having an area S 0 with a zero phase difference, a small region having an area S +2 having a phase difference of 2π, a small region having an area S +1 having a phase difference of π, and an area S −. The phase difference consisting of 1 is a small region of -π, and the phase difference consisting of an area S -2 is a small region of -2π,
The diffraction element according to claim 2, wherein a ratio of the area S −2 : the area S −1 : the area S 0 : the area S +1 : the area S +2 is 1: 4: 6: 4: 1.
前記回折格子は、複屈折性を有する複屈折性材料と等方性透明材料とが、前記回折格子の凸部と凹部を構成してなる偏光回折格子であって、
前記複屈折性材料の常光屈折率nまたは異常光屈折率n(n≠n)のいずれか一方の屈折率が等方性透明材料の屈折率nと等しい請求項1〜4いずれか1項に記載の回折素子。
The diffraction grating is a polarization diffraction grating in which a birefringent material having birefringence and an isotropic transparent material constitute a convex part and a concave part of the diffraction grating,
The birefringent ordinary refractive index n o or the extraordinary refractive index n e (n o ≠ n e ) claims equal to the refractive index n s of one of the refractive index is isotropic transparent material materials 1-4 The diffraction element according to any one of the above.
前記偏光回折格子は、格子の厚さ方向の段差の値がいずれも前記段差の最小値dの自然数倍であるとともに、リタデーション値|n−n|×dが前記波長λの(p+1/2)倍(pは0または正の整数)である請求項5に記載の回折素子。 Wherein the polarization diffraction grating, together with the values of the step in the thickness direction of the grating is a natural number times the minimum value d of both the step, the retardation value | n e -n o | × d is the wavelength lambda (p + 1 The diffraction element according to claim 5, which is / 2) times (p is 0 or a positive integer). 前記偏光回折格子を2個積層し、
それぞれの前記偏光回折格子の複屈折性材料の常光屈折率nまたは異常光屈折率nと等方性透明材料の屈折率nとが一致する方向を、前記2個の偏光回折格子で同じとする請求項5または請求項6に記載の回折素子。
Two polarizing diffraction gratings are laminated,
The direction in which the refractive index n s of each ordinary refractive index n o or the extraordinary refractive index n e and isotropic transparent material of the birefringent material of the polarization grating coincide, the in two polarization grating The diffraction element according to claim 5 or 6, which is the same.
2個の前記偏光回折格子の間に、電極への電圧印加により前記波長λの光に対してリタデーション値をゼロからλ/2の間で変化させる液晶層を配置し、
前記偏光回折格子の常光屈折率nまたは異常光屈折率nと等方性透明材料の屈折率nとが一致する方向を、前記2個の偏光回折格子で互いに直交するまたは同じとする請求項5または請求項6に記載の回折素子。
Between the two polarizing diffraction gratings, a liquid crystal layer that changes the retardation value between zero and λ / 2 with respect to the light of the wavelength λ by applying a voltage to the electrode is disposed,
The direction in which the refractive index n s of the ordinary refractive index n o or the extraordinary refractive index n e and isotropic transparent material of the polarization grating coincide, the orthogonal or identical to each other in the two polarization grating The diffraction element according to claim 5 or 6.
前記偏光回折格子と反射性の基板との間に、電極への電圧印加により前記波長λの光に対してリタデーション値をゼロからλ/4の間で変化させる液晶層を配置した請求項5または請求項6に記載の回折素子。   6. A liquid crystal layer is disposed between the polarization diffraction grating and the reflective substrate, the liquid crystal layer changing a retardation value between zero and λ / 4 with respect to light having the wavelength λ by applying a voltage to the electrode. The diffraction element according to claim 6. 請求項8または請求項9に記載の回折素子を直進透過または正規反射する出射方向の光を伝搬し、前記出射方向と異なる方向へ出射する光を遮断する機構を備え、
前記液晶層に印加される電圧の大きさに応じて伝搬する光量が変化する光減衰器。
Providing a mechanism for propagating light in an outgoing direction that is transmitted through or regularly reflected by the diffraction element according to claim 8 or 9, and blocking light emitted in a direction different from the outgoing direction,
An optical attenuator in which the amount of propagating light changes according to the magnitude of a voltage applied to the liquid crystal layer.
少なくとも波長λの光を出射する光源と、
前記光源と光ディスクとの間に順に配置されたビームスプリッタおよび対物レンズと、
前記ビームスプリッタと前記光ディスクとの間に配置された、波長λの光に対して1/4波長の位相差を生じる1/4波長板と、
前記光ディスクからの戻り光を、前記ビームスプリッタを経由して受光する光検出器を備える光ヘッド装置であって、
前記光源と前記ビームスプリッタとの間の光路中に請求項5または請求項6に記載の回折素子が配される光ヘッド装置。
A light source emitting at least light of wavelength λ,
A beam splitter and an objective lens sequentially disposed between the light source and the optical disc;
A quarter-wave plate disposed between the beam splitter and the optical disc, which produces a quarter-wave phase difference with respect to light of wavelength λ,
An optical head device comprising a photodetector for receiving return light from the optical disc via the beam splitter,
An optical head device in which the diffraction element according to claim 5 or 6 is arranged in an optical path between the light source and the beam splitter.
光源と、
表示する画像に応じて前記光源から出射された可視光を変調する液晶ライトバルブと、
前記光源と前記液晶ライトバルブとの間の光路中に配置され光の偏光状態を変える第1の偏光手段と、
前記液晶ライトバルブの光を出射する側に配置され光の偏光状態を変える第2の偏光手段と、
前記液晶ライトバルブにより生成された画像を拡大投影する投影手段と、を備えた投射型表示装置において、
前記第1の偏光手段および前記第2の偏光手段のうちの少なくとも一方の偏光手段が、請求項5〜7のいずれか1項に記載の回折素子で構成される投射型表示装置。
A light source;
A liquid crystal light valve that modulates visible light emitted from the light source according to an image to be displayed;
First polarizing means disposed in an optical path between the light source and the liquid crystal light valve to change a polarization state of light;
A second polarizing means arranged on the light emitting side of the liquid crystal light valve to change the polarization state of the light;
In a projection display device comprising: a projection unit that enlarges and projects an image generated by the liquid crystal light valve;
8. A projection display device in which at least one of the first polarizing means and the second polarizing means comprises the diffraction element according to claim 5.
JP2008137280A 2008-05-26 2008-05-26 Diffraction element, optical attenuator, optical head device, and projection display device Expired - Fee Related JP5195024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008137280A JP5195024B2 (en) 2008-05-26 2008-05-26 Diffraction element, optical attenuator, optical head device, and projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008137280A JP5195024B2 (en) 2008-05-26 2008-05-26 Diffraction element, optical attenuator, optical head device, and projection display device

Publications (2)

Publication Number Publication Date
JP2009282472A JP2009282472A (en) 2009-12-03
JP5195024B2 true JP5195024B2 (en) 2013-05-08

Family

ID=41452950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008137280A Expired - Fee Related JP5195024B2 (en) 2008-05-26 2008-05-26 Diffraction element, optical attenuator, optical head device, and projection display device

Country Status (1)

Country Link
JP (1) JP5195024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336749B2 (en) 2018-09-26 2023-09-01 パナソニックIpマネジメント株式会社 Method for producing nickel particles, method for producing nickel sulfate, and method for producing positive electrode active material for secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8004759B2 (en) * 2009-02-02 2011-08-23 Microsoft Corporation Diffusing screen
JP5444098B2 (en) * 2010-04-14 2014-03-19 リコー光学株式会社 Optical attenuator and optical attenuator module
JP6926526B2 (en) 2017-02-28 2021-08-25 セイコーエプソン株式会社 projector
CN114609795B (en) * 2020-12-09 2024-02-27 云谷(固安)科技有限公司 Display panel and display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077966A (en) * 2003-09-03 2005-03-24 Dainippon Printing Co Ltd Diffraction optical element
JP2005266188A (en) * 2004-03-18 2005-09-29 Nikon Corp Diffusion element and illuminator
JP4623723B2 (en) * 2004-06-18 2011-02-02 大日本印刷株式会社 Diffractive optical element and optical low-pass filter using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336749B2 (en) 2018-09-26 2023-09-01 パナソニックIpマネジメント株式会社 Method for producing nickel particles, method for producing nickel sulfate, and method for producing positive electrode active material for secondary battery

Also Published As

Publication number Publication date
JP2009282472A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
US7894133B2 (en) Optical element and optical device
US6947215B2 (en) Optical element, optical functional device, polarization conversion device, image display apparatus, and image display system
EP1688783B1 (en) Optical element using liquid crystal having optical isotropy
KR100441162B1 (en) Light reflective type polarizer and projector using the same
JP4680677B2 (en) Polarization control element
JP4826472B2 (en) Polarizing diffractive filter and laminated polarizing diffractive filter
KR20170037884A (en) Bragg liquid crystal polarization gratings
JP5590038B2 (en) Optical element, light source device, and projection display device
JPWO2009084604A1 (en) Liquid crystal element, optical head device, and variable optical modulation element
JP5195024B2 (en) Diffraction element, optical attenuator, optical head device, and projection display device
JP2006252638A (en) Polarization diffraction element and optical head apparatus
JP5353666B2 (en) Wire grid polarizer and optical head device
JP4013892B2 (en) Diffraction element and optical attenuator
JP5012171B2 (en) Reflective diffractive polarizer and optical device
JP4792679B2 (en) Isolator and variable voltage attenuator
JP2004139001A (en) Optical element, optical modulating element and image display apparatus
JP2009294604A (en) Optical modulation liquid crystal element and variable optical attenuator
JP4106981B2 (en) Optical attenuator
JP2005003758A (en) Reflective optical modulator and variable optical attenuator
JP2012159802A (en) Optical element, optical pickup, optical information processor, optical attenuator, polarization conversion element, projector optical system, isolator and optical instrument
JP2012181385A (en) Polarization converter
JP6168642B2 (en) Diffraction grating and manufacturing method thereof, optical waveguide
JP5152366B2 (en) Isolator and variable voltage attenuator
JP4999485B2 (en) Beam splitting element and beam splitting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5195024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees