JPH06308326A - Polarizer and its production - Google Patents

Polarizer and its production

Info

Publication number
JPH06308326A
JPH06308326A JP11922693A JP11922693A JPH06308326A JP H06308326 A JPH06308326 A JP H06308326A JP 11922693 A JP11922693 A JP 11922693A JP 11922693 A JP11922693 A JP 11922693A JP H06308326 A JPH06308326 A JP H06308326A
Authority
JP
Japan
Prior art keywords
optical element
polarizer
optical
adhesive
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11922693A
Other languages
Japanese (ja)
Inventor
Shinji Iwatsuka
信治 岩塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP11922693A priority Critical patent/JPH06308326A/en
Publication of JPH06308326A publication Critical patent/JPH06308326A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PURPOSE:To provide the polarizer having excellent mass productivity and good characteristics and the process for production of this polarizer. CONSTITUTION:This polarizer 6 consists of an optical element 3, double refractive materials 1 which is joined onto the surface of this element via an adhesive 2 interposed therebetween, has refractive indices nB1, nB2 and a thickness dB and satisfies (nB1-nB2)dB=(M+1/2)lambda (M is an arbitrary integer, lambda is the wavelength of light), grooves of specified intervals formed on the double refractive materials 1 at the depth arriving at the optical element and a packing material 5 packed into these grooves. The refractive indices of the optical element 3, the adhesive 2 and one of the double refractive materials and the refractive index of the packing material are set nearly constant. As a result, the precise polishing of only the thickness of the double refractive materials 1 suffices and the permissible accuracy of the other working is low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、従来の偏光子に代わる
量産性に優れ、特性の良い偏光子及びその製造方法に関
する。本発明は、また、本発明の偏光子を付着してなる
光アイソレータ等の種々の光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizer excellent in mass production, which is an alternative to conventional polarizers, and has excellent characteristics, and a method for manufacturing the same. The present invention also relates to various optical elements such as an optical isolator to which the polarizer of the present invention is attached.

【0002】[0002]

【従来の技術とその問題点】従来、偏光子としては従来
次のような種々のものが知られている。 (1)いわゆるポライロイド板と呼ばれる二色性偏光
子:消光比が低く損失が大きいので光アイソレータのよ
うな精密な光部品には使用するのが困難であった。 (2)複屈折性の偏光子:水晶、方解石、フッ化マグネ
シウムなどの複屈折性の材料用い、それらを結晶軸に対
して所定の角度で切り出してプリズム等に加工しなけれ
ばならないため、材料コストが高く且つ製造が容易でな
かった。またこのような偏光子を用いて光アイソレー
タ、光サーキュレータ、光変調器、光スイッチを構成す
る際に、偏光子と他の構成部品、例えば、ファラデー回
転子等とを別々に作製しなければならず、そしてそれら
を組み合わせて用いるために最終製品の小型化が難しい
という問題があった。例えば、従来用いられていた光ア
イソレータでは、透過軸が互いに45°傾いた一組の偏
光子でファラデー素子を挟むように配置する必要があ
り、また偏光子として偏光プリズムのような高価な素子
を使用していた。 (3)偏光ガラス:特性が優れておりまた薄型にできる
が、製作が難しく高価になる。 (4)回折格子型偏光子:回折現象を利用した偏光子と
してLiNbO3 にプロトン交換で製作した回折格子型
偏光子が知られている(特開昭63−55501)。こ
の偏光子は薄型で且つ量産性をも有している。しかしな
がら、LiNbO3 という高価な単結晶基板を用いる必
要があり、従来と同様、他の光学素子と別個に偏光子を
作製しなければならず、光学装置全体の小型化を図るこ
とができないという欠点があり、さらに直交する偏光の
位相差を高精度に制御する必要があり、再現性良く安定
に製造することが困難であった。 (5)複屈折性回折格子型偏光子(特願平4−1489
51によるもの):1以上の層の膜材料を積層してなる
第1区画と、1以上の層の膜材料を積層してなる第2の
区画とを同一面上に交互に備えた回折格子構造を有し、
少なくとも一方の区画の少なくとも1層の膜材料が複屈
折性を有し且つ該複屈折性を有する膜が斜め蒸着法によ
り形成されてなる偏光子である。しかし、直交する偏光
の位相差を高精度に制御する必要があり、再現性良く安
定に製造することが困難であった。 (6)複屈折結晶板:一方の偏光のビームを位置ずれさ
せることにより1つの偏光を選択する機能を有するが、
平行ビーム系で使用するには厚みを厚くする必要があ
る。 (7)複屈折性回折格子型偏光子(特開平2−1562
05号によるもの):光学異方性を持つ結晶板の主面に
設けた周期的な溝の底に誘電体層を設けたものである
が、溝の深さ及び誘電体層の厚さの精密な制御が困難で
ある。本発明はこの型の偏光子の改良に関する。
2. Description of the Related Art Conventionally, the following various types of polarizers have been known as a polarizer. (1) Dichroic polarizer called so-called poloid plate: It has been difficult to use it for precise optical parts such as optical isolators because of its low extinction ratio and large loss. (2) Birefringent polarizer: a material such as quartz, calcite, magnesium fluoride, or other birefringent material, which must be cut out at a predetermined angle with respect to the crystal axis to be processed into a prism or the like. It was expensive and not easy to manufacture. Further, when forming an optical isolator, an optical circulator, an optical modulator, and an optical switch using such a polarizer, the polarizer and other components, for example, a Faraday rotator and the like must be manufactured separately. However, there is a problem that it is difficult to miniaturize the final product because they are used in combination. For example, in the conventionally used optical isolator, it is necessary to arrange the Faraday element with a pair of polarizers whose transmission axes are inclined by 45 °, and an expensive element such as a polarizing prism is used as the polarizer. I was using it. (3) Polarizing glass: It has excellent characteristics and can be made thin, but it is difficult to manufacture and expensive. (4) Diffraction grating type polarizer: A diffraction grating type polarizer manufactured by proton exchange with LiNbO 3 is known as a polarizer utilizing a diffraction phenomenon (Japanese Patent Laid-Open No. 63-55501). This polarizer is thin and has mass productivity. However, it is necessary to use an expensive single crystal substrate of LiNbO 3, and a polarizer must be manufactured separately from other optical elements as in the conventional case, and it is not possible to downsize the entire optical device. However, it is necessary to control the phase difference of orthogonally polarized light with high accuracy, and it is difficult to stably manufacture with good reproducibility. (5) Birefringent diffraction grating type polarizer (Japanese Patent Application No. 4-1489)
51): Diffraction grating in which first sections formed by laminating film materials of one or more layers and second sections formed by laminating film materials of one or more layers are alternately provided on the same surface. Have a structure,
A polarizer in which at least one layer film material of at least one section has birefringence and the birefringent film is formed by an oblique vapor deposition method. However, it is necessary to control the phase difference of orthogonally polarized light with high precision, and it is difficult to stably manufacture with good reproducibility. (6) Birefringent crystal plate: having a function of selecting one polarization by shifting the beam of one polarization,
To use in a parallel beam system, it is necessary to increase the thickness. (7) Birefringent diffraction grating type polarizer (JP-A-2-1562)
No. 05): A dielectric layer is provided on the bottom of a periodic groove provided on the main surface of a crystal plate having optical anisotropy, but the depth of the groove and the thickness of the dielectric layer Precise control is difficult. The present invention relates to improvements in this type of polarizer.

【0003】[0003]

【発明が解決しようとする課題】特開平2−15620
5号に記載された複屈折性回折格子型偏光子は、結晶板
の主面に設けた周期的な溝の底に誘電体層を精密な厚さ
で充填しなければならないので、精密な制御が難しく、
量産性に劣る。本発明はこれらの問題点を解決した優れ
た複屈折性回折格子型偏光子と、その製造方法を提供す
ることにある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The birefringent diffraction grating type polarizer described in No. 5 requires precise control because the bottom of the periodic grooves provided on the main surface of the crystal plate must be filled with a dielectric layer with a precise thickness. Is difficult,
Inferior in mass productivity. The present invention is to provide an excellent birefringent diffraction grating type polarizer that solves these problems, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、 (1)光学素子と、その表面に接着剤を介在して接合し
た2つの固有の直線偏光に対する屈折率nB1、nB2及び
厚さdB を有し且つ(nB1−nB2)dB =(M+1/
2)λ(ここにMは任意の整数、λは光の波長)を満足
する複屈折材料と、前記複屈折材料に前記光学素子板に
達する深さに設けた一定間隔の溝と、前記溝に充填した
充填剤とよりなり、さらに前記光学素子と、接着剤と、
前記複屈折材料の一方の屈折率と、前記充填剤の屈折率
とがほぼ同一に定められている偏光素子を提供する。
Means for Solving the Problems That is, the present invention provides (1) an optical element and refractive indices n B1 , n B2, and thicknesses for two unique linearly polarized lights that are bonded to the surface of the optical element with an adhesive. and has a d B (n B1 -n B2) d B = (M + 1 /
2) a birefringent material satisfying λ (where M is an arbitrary integer, λ is a wavelength of light), grooves provided at constant depths in the birefringent material to reach the optical element plate, and the grooves. And a filling agent, further comprising the optical element, an adhesive,
Provided is a polarizing element in which the refractive index of one of the birefringent materials and the refractive index of the filler are set to be substantially the same.

【0005】このように構成すると、一方の固有の直線
偏光はすべての領域で同一の屈折率nを有するから、回
折しないで損失なく直進し、他方の固有の直線偏光は複
屈折材料と充填材を通過する際に半波長位相がずれるの
ですべて回折して直進しない。
According to this structure, since one unique linearly polarized light has the same refractive index n in all regions, it travels straight without loss without diffraction, and the other unique linearly polarized light is birefringent material and filler. When passing through, the half-wave phase shifts, so all diffract and do not go straight.

【0006】(2)このような偏光子は、光学素子の表
面に、接着剤を介在して2つの固有の直線偏光に対する
屈折率nB1、nB2及び厚さdB を有し且つ(nB1
B2)dB=(M+1/2)λ(ここにMは任意の整
数、λは光の波長)を満足する複屈折材料を接合し、前
記複屈折材料に前記光学素子板に達する深さで一定間隔
の溝を形成し、前記溝に充填剤を充填することよりな
り、さらに前記光学素子と接着剤と前記充填剤とが、前
記複屈折材料の一方の屈折率とほぼ同一の屈折率を有す
るものである、製造方法により製造される。複屈折材料
の厚さdB は複屈折材料をあらかじめ研磨して1/2波
長板として上の式の関係をを満足するものを準備してお
くか、あるいは光学素子に接着した後に研磨して同様な
関係を満足させるかのいずれかにより調整することがで
きる。
(2) Such a polarizer has a refractive index n B1 , n B2 for two unique linearly polarized lights and a thickness d B on the surface of the optical element through an adhesive and (n B1
n B2 ) d B = (M + 1/2) λ (where M is an arbitrary integer, λ is the wavelength of light), and a birefringent material is bonded to the birefringent material to reach the optical element plate. And forming a groove at a constant interval by filling the groove with a filler, further, the optical element, the adhesive and the filler, the refractive index is substantially the same as one of the refractive index of the birefringent material. Is manufactured by the manufacturing method. The thickness d B of the birefringent material is prepared by polishing the birefringent material in advance to prepare a half-wave plate that satisfies the above equation, or by polishing the birefringent material after bonding it to an optical element. It can be adjusted by either satisfying a similar relationship.

【0007】(3)本発明の偏光子は、各種の光学装置
の構成素子として使用できるもので、例えば光アイソレ
ータにおいてファラデー回転子等の他の光学素子とと組
み合わせて使用できる。その他、特願平3−35810
7号に記載されているような偏波依存性のない光アイソ
レータにおいて偏光子として使用する等の各種の利用が
可能である。この場合に、溝の充填剤を接着剤で構成
し、更にこの接着剤を偏光子の表面全体にまで施してそ
の上に他の光学素子を接合すると、装置がコンパクトに
なる。
(3) The polarizer of the present invention can be used as a constituent element of various optical devices, and can be used, for example, in an optical isolator in combination with other optical elements such as a Faraday rotator. In addition, Japanese Patent Application No. 3-35810
Various uses such as use as a polarizer in an optical isolator having no polarization dependence as described in No. 7 are possible. In this case, if the filling material of the groove is made of an adhesive, and the adhesive is applied even to the entire surface of the polarizer and another optical element is bonded thereon, the device becomes compact.

【0008】[0008]

【作用】上に述べた特開平2−156205号の方法で
は、複屈折性の結晶板に周期的な複数の溝を形成し、溝
底に誘電体層を設けたものであるが、溝の深さ及び誘電
体層の厚さの精密な制御が困難である。本発明では複屈
折材料の全厚だけを精密良く製作すれば良く、複屈折材
料の溝加工は貫通溝が形成できれば良いので上記公報の
ように溝の深さを精密に制御する必要がない。さらに屈
折率を一方の固有の直線偏光に対して同一に定めている
ので溝加工に際して表面の荒れがあっても直進光は散乱
することがない。
In the above-mentioned method of Japanese Patent Laid-Open No. 2-156205, a plurality of periodic grooves are formed on a birefringent crystal plate and a dielectric layer is provided on the groove bottom. Precise control of the depth and the thickness of the dielectric layer is difficult. In the present invention, only the entire thickness of the birefringent material needs to be precisely manufactured, and the groove processing of the birefringent material is sufficient as long as the through groove can be formed. Therefore, it is not necessary to precisely control the groove depth as in the above publication. Further, since the refractive index is set to be the same for one of the peculiar linearly polarized lights, even if the surface of the groove is roughened, the straight traveling light is not scattered.

【0009】[0009]

【実施例の説明】次に、本発明の偏光子の構造の例とそ
の製造方法の例を図面を参照して詳しく説明する。 工程1 先ず、図1のように2つの固有の直線偏光に対する屈折
率nB1、nB2を有する複屈折材料1を用意する。次に、
この複屈折材料を研磨して、(nB1−nB2)dB =(M
+1/2)λ(ここにMは任意の整数、λは光の波長)
を満足する一定厚さdB まで研磨する。別法として、こ
の研磨工程は次の工程2で行っても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an example of the structure of the polarizer of the present invention and an example of the manufacturing method thereof will be described in detail with reference to the drawings. Step 1 First, as shown in FIG. 1, a birefringent material 1 having refractive indices n B1 and n B2 for two unique linearly polarized lights is prepared. next,
By polishing this birefringent material, (n B1 −n B2 ) d B = (M
+1/2) λ (where M is an arbitrary integer and λ is the wavelength of light)
To a constant thickness d B that satisfies the above condition. Alternatively, this polishing step may be performed in the next step 2.

【0010】工程2 次に、図2のように、屈折率nE1の光学素子3の表面
に、屈折率nA1の接着剤2により複屈折材料1を接合す
る。先に述べたように、複屈折材料1の所定の厚さへの
研磨は工程1で行っても良いし、接合後に行っても良
い。
Step 2 Next, as shown in FIG. 2, the birefringent material 1 is bonded to the surface of the optical element 3 having a refractive index n E1 by an adhesive 2 having a refractive index n A1 . As described above, the polishing of the birefringent material 1 to a predetermined thickness may be performed in the step 1, or may be performed after the bonding.

【0011】工程3 次いで、図3のように、切削工具により複屈折材料1に
一定溝間幅w1 で一定幅w2 の多数の溝4を形成する。
好ましくはw1 =w2 である。溝4の深さを複屈折材料
1を貫通して光学素子3に達するように定めると、複屈
折材料1から除去される材料の厚さは常に一定となる。
一方光学素子3の部分の溝の深さは、後で説明するよう
に任意で良いから、溝の深さの加工精度は低くて良い。
Step 3 Next, as shown in FIG. 3, a large number of grooves 4 having a constant groove width w 1 and a constant width w 2 are formed in the birefringent material 1 by a cutting tool.
Preferably w 1 = w 2 . When the depth of the groove 4 is determined so as to penetrate the birefringent material 1 and reach the optical element 3, the thickness of the material removed from the birefringent material 1 is always constant.
On the other hand, the groove depth in the portion of the optical element 3 may be arbitrary as will be described later, and therefore the processing accuracy of the groove depth may be low.

【0012】工程4 最後に図4に示すように、溝4に屈折率nE2の充填剤5
を充填して偏光子6を完成する。充填は溝4だけに行っ
ても良いし図のように複屈折材料1の全面を覆うように
しても良い。第2の光学素子7をさらに接合して一体化
した光学装置を構成する場合には、充填剤5として例え
ば接着剤2と同一の接着剤を使用することができる。ま
た、ここに第2の光学素子7は光学装置の種類に依存す
るものであり、例えば光アイソレータの場合にはファラ
デー回転子である。また、特願平3−358107に記
載された偏波依存性のない光アイソレータの場合には、
第2の光学素子はファラデー回転子であり、かつこの両
面に本発明の偏光子を付着したものである。この場合、
両側の偏光子の溝の方向を互いに平行としかつ偏波依存
性をなくすため位置を調整する必要がある。
Step 4 Finally, as shown in FIG. 4, the groove 5 is filled with a filler 5 having a refractive index n E2.
To complete the polarizer 6. The filling may be performed only in the groove 4 or may cover the entire surface of the birefringent material 1 as shown in the drawing. When the second optical element 7 is further joined to form an integrated optical device, the filler 5 may be the same adhesive as the adhesive 2, for example. The second optical element 7 depends on the type of the optical device. For example, in the case of an optical isolator, the second optical element 7 is a Faraday rotator. In the case of the optical isolator having no polarization dependence described in Japanese Patent Application No. 3-358107,
The second optical element is a Faraday rotator, and the polarizer of the present invention is attached to both surfaces of the Faraday rotator. in this case,
It is necessary to adjust the positions so that the grooves of the polarizers on both sides are parallel to each other and the polarization dependence is eliminated.

【0013】図4の偏光子が、所定の偏光作用を行うよ
うにするには、屈折率の間にnA1=nB1=nE1=nE2
B2の関係が成立するように各部分の材料を選択する。
このようにすると次の関係が成り立つことが明らかであ
る。 (1)nB1に対する直線偏光 複屈折材料1と接着剤1、5と光学素子3はすべて同じ
屈折率であり、光は回折せず損失なく直進する。 (2)nB2に対する直線偏光 (nA2−nB2)dB =(M+1/2)λ(ここにMは任
意の整数、λは光の波長)であるので、光はすべて回折
する。
In order for the polarizer of FIG. 4 to have a predetermined polarization effect, n A1 = n B1 = n E1 = n E2
The material of each part is selected so that the relationship of n B2 is established.
By doing so, it is clear that the following relationship holds. (1) Linearly polarized light for n B1 The birefringent material 1, the adhesives 1 and 5, and the optical element 3 all have the same refractive index, and light does not diffract and goes straight without loss. (2) Since linearly polarized light for n B2 is (n A2 −n B2 ) d B = (M + ½) λ (where M is an arbitrary integer and λ is the wavelength of light), all the light is diffracted.

【0014】ここで、複屈折材料としては透明な複屈折
材料であればあらゆるものを使用し得る。代表的な材料
として水晶、方解石、サファイア、ADP、KDP、ル
チルなどがある。例えばxカット水晶板を用いると厚さ
76μmで波長1.31μm用の1/2派長板となる。
また光学素子としては透明な等方性材料であればあらゆ
るものを使用できるが、屈折率を高精度に制御できるガ
ラスが特に適している。
Here, as the birefringent material, any transparent birefringent material can be used. Typical materials include quartz, calcite, sapphire, ADP, KDP, rutile and the like. For example, if an x-cut crystal plate is used, a half-length plate with a thickness of 76 μm and a wavelength of 1.31 μm is obtained.
As the optical element, any transparent isotropic material can be used, but glass that can control the refractive index with high precision is particularly suitable.

【0015】[0015]

【発明の効果】本発明によると、複屈折材料の全厚だけ
を精度良く製作すれば良く、複屈折材料の溝加工は貫通
溝が形成できれば良いので溝の深さを精密に制御する必
要がない。さらに屈折率を直進光に対して同一に定めれ
ば良いので溝加工に際して表面の荒れがあっても直進光
は散乱することがない。
According to the present invention, only the entire thickness of the birefringent material needs to be manufactured with high accuracy, and the groove processing of the birefringent material is sufficient if the through groove can be formed. Therefore, it is necessary to precisely control the groove depth. Absent. Further, since it is sufficient to set the refractive index to be the same for straight light, straight light does not scatter even if the surface is roughened during groove processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の偏光子の製造例の工程1を示す正面図
である。
FIG. 1 is a front view showing step 1 of a production example of a polarizer of the present invention.

【図2】本発明の偏光子の製造例の工程2を示す正面図
である。
FIG. 2 is a front view showing step 2 of the production example of the polarizer of the present invention.

【図3】本発明の偏光子の製造例の工程3を示す正面図
である。
FIG. 3 is a front view showing step 3 of the production example of the polarizer of the present invention.

【図4】本発明の偏光子の製造例の工程4を示す正面図
である。
FIG. 4 is a front view showing step 4 of the production example of the polarizer of the present invention.

【符号の説明】[Explanation of symbols]

1 複屈折材料 2 接着剤 3 光学素子 4 溝 5 充填剤 6 偏光子 7 第2の光学素子 1 Birefringent Material 2 Adhesive 3 Optical Element 4 Groove 5 Filler 6 Polarizer 7 Second Optical Element

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光学素子と、その表面に接着剤を介在し
て接合した2つの固有の直線偏光に対する屈折率nB1
B2及び厚さdB を有し且つ(nB1−nB2)dB =(M
+1/2)λ(ここにMは任意の整数、λは光の波長)
を満足する複屈折材料と、前記複屈折材料に前記光学素
子に達する深さで設けた一定間隔の溝と、前記溝に充填
した充填剤とよりなり、さらに前記光学素子と、接着剤
と、前記複屈折材料の一方の屈折率と、前記充填剤の屈
折率とがほぼ同一に定められている偏光子。
1. An optical element and a refractive index n B1 for two unique linearly polarized lights which are bonded to the surface of the optical element with an adhesive interposed therebetween,
n B2 and and has a thickness d B (n B1 -n B2) d B = (M
+1/2) λ (where M is an arbitrary integer and λ is the wavelength of light)
A birefringent material satisfying the above, a groove at a constant interval provided in the birefringent material at a depth reaching the optical element, and a filler filled in the groove, further the optical element, an adhesive, A polarizer in which one refractive index of the birefringent material and the refractive index of the filler are set to be substantially the same.
【請求項2】 光学素子の表面に、接着剤を介在して2
つの固有の直線偏光に対する屈折率nB1、nB2及び厚さ
B を有し且つ(nB1−nB2)dB =(M+1/2)λ
(ここにMは任意の整数、λは光の波長)を満足する複
屈折材料を接合し、前記複屈折材料に前記光学素子に達
する深さで一定間隔の溝を形成し、前記溝に充填剤を充
填することよりなり、さらに前記光学素子と接着剤と前
記充填剤とが、前記複屈折材料の一方の屈折率とほぼ同
一の屈折率を有するものである、偏光子の製造方法。
2. A surface of an optical element with an adhesive interposed between the optical element and the optical element.
One unique and has a refractive index n B1, n B2, and the thickness d B against linearly polarized light (n B1 -n B2) d B = (M + 1/2) λ
(Where M is an arbitrary integer, λ is the wavelength of light), a birefringent material is joined, grooves are formed in the birefringent material at regular intervals at a depth reaching the optical element, and the grooves are filled. A method for manufacturing a polarizer, which comprises filling an agent, wherein the optical element, the adhesive and the filler have a refractive index substantially the same as that of one of the birefringent materials.
【請求項3】 第1の光学素子と、その表面に接着剤を
介在して接合した2つの固有の直線偏光に対する屈折率
B1、nB2及び厚さdB を有し且つ(nB1−nB2)dB
=(M+1/2)λ(ここにMは任意の整数、λは光の
波長)を満足する複屈折材料と、前記複屈折材料に前記
第1の光学素子に達する深さで設けた一定間隔の溝と、
前記溝に充填された接着性充填剤と、その上に接合され
た第2の光学素子とよりなり、さらに前記第1の光学素
子と接着剤と前記接着性充填剤との屈折率が、前記複屈
折材料の一方の屈折率とほぼ同一に定められている偏光
子付光学素子を含む光学装置。
3. The first optical element, which has refractive indices n B1 , n B2 and a thickness d B for two unique linearly polarized lights bonded to the surface of the first optical element with an adhesive interposed therebetween, and has (n B1 − n B2 ) d B
= (M + 1/2) λ (where M is an arbitrary integer, λ is the wavelength of light), and a constant interval provided in the birefringent material at a depth reaching the first optical element. Groove of
The groove is filled with an adhesive filler and a second optical element bonded on the groove, and the refractive index of the first optical element, the adhesive and the adhesive filler is An optical device including an optical element with a polarizer, which has substantially the same refractive index as that of one of the birefringent materials.
【請求項4】 光学装置は光アイソレータであり、第2
の光学素子はファラデー回転子である請求項3の光学装
置。
4. The optical device is an optical isolator, the optical device comprising:
The optical device according to claim 3, wherein the optical element is a Faraday rotator.
【請求項5】 光学装置は偏波依存性のない光アイソレ
ータである請求項3の光学装置。
5. The optical device according to claim 3, wherein the optical device is an optical isolator having no polarization dependence.
JP11922693A 1993-04-23 1993-04-23 Polarizer and its production Withdrawn JPH06308326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11922693A JPH06308326A (en) 1993-04-23 1993-04-23 Polarizer and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11922693A JPH06308326A (en) 1993-04-23 1993-04-23 Polarizer and its production

Publications (1)

Publication Number Publication Date
JPH06308326A true JPH06308326A (en) 1994-11-04

Family

ID=14756086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11922693A Withdrawn JPH06308326A (en) 1993-04-23 1993-04-23 Polarizer and its production

Country Status (1)

Country Link
JP (1) JPH06308326A (en)

Similar Documents

Publication Publication Date Title
EP1420275B1 (en) Isolator and optical attenuator
US5029988A (en) Birefringence diffraction grating type polarizer
US6359733B1 (en) Composite optical element, optical isolator, optical circulator, optical switch and processes for producing them
JPH07209623A (en) Variable wavelength filter
US7002742B2 (en) Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
JP4269788B2 (en) Reflective light modulator and variable optical attenuator
JPH075316A (en) Diffraction grating type polarizer and its production
JPH06308326A (en) Polarizer and its production
JP3228773B2 (en) Optical isolator
JP3014811B2 (en) Polarizer and modulator provided with the polarizer
JPH02230203A (en) Polarizer
KR940006340B1 (en) Linear polarizer
JPH09292520A (en) Diffraction grating type polarizer, optical parts using the same and their production
JP2718112B2 (en) Birefringent diffraction grating polarizer and method of manufacturing the same
JP3879246B2 (en) Polarizing optical element
JP2003344808A (en) Polarization independent optical isolator and optical circulator
JPH0391715A (en) Optical isolator
JPS63262602A (en) Diffraction grating type optical polarizing plat
JPH112725A (en) Compound optical element, optical isolator, optical circulator, and optical switch, and their manufacture
JPH0836157A (en) Variable wavelength filter
JPH08211217A (en) Diffraction grating type polarizer and its production
JP3491404B2 (en) Pile of plates type polarizing element
JPH08211218A (en) Diffraction grating type polarizer
JP3492736B2 (en) Optical isolator
JP3023572B2 (en) Polarizing element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704