JP4574428B2 - Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection apparatus, optical path deflection apparatus, and image display apparatus - Google Patents

Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection apparatus, optical path deflection apparatus, and image display apparatus Download PDF

Info

Publication number
JP4574428B2
JP4574428B2 JP2005125787A JP2005125787A JP4574428B2 JP 4574428 B2 JP4574428 B2 JP 4574428B2 JP 2005125787 A JP2005125787 A JP 2005125787A JP 2005125787 A JP2005125787 A JP 2005125787A JP 4574428 B2 JP4574428 B2 JP 4574428B2
Authority
JP
Japan
Prior art keywords
optical axis
electric field
region
electrodes
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005125787A
Other languages
Japanese (ja)
Other versions
JP2005338804A (en
Inventor
浩之 杉本
ゆみ 松木
由希子 平野
健史 浪江
才明 鴇田
敬信 逢坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005125787A priority Critical patent/JP4574428B2/en
Publication of JP2005338804A publication Critical patent/JP2005338804A/en
Priority to US11/409,059 priority patent/US7489383B2/en
Application granted granted Critical
Publication of JP4574428B2 publication Critical patent/JP4574428B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、電気信号によって一軸性物質の光学軸の傾斜方向を変える光学軸偏向素子、及び、その光学軸偏向素子からなり電気信号によって光の光路を偏向する光路偏向素子、及び、前記光学軸偏向素子を用いた光学軸偏向方法及び光学軸偏向装置、及び前記光学軸偏向方法を用いた光路偏向方法、及び、前記光路偏向素子または光学軸偏向装置を用いた光路偏向装置、及び、前記光路偏向装置を備えた画像表示装置に関する。   The present invention relates to an optical axis deflecting element that changes the tilt direction of the optical axis of a uniaxial substance by an electric signal, an optical path deflecting element that includes the optical axis deflecting element and deflects the optical path of light by an electric signal, and the optical axis. Optical axis deflection method and optical axis deflection apparatus using deflection element, optical path deflection method using optical axis deflection method, optical path deflection apparatus using optical path deflection element or optical axis deflection apparatus, and optical path The present invention relates to an image display device including a deflection device.

[定義]
本明細書において、「光路偏向素子」とは、外部からの電気信号により光の光路を偏向、即ち、入射光に対して出射光を平行にシフトさせるか、或る角度を持って回転させるか、あるいは、その両者を組合せて光路を切換えることが可能な光学素子を意味する。この説明において、平行シフトによる光路偏向に対してそのシフトの大きさを「シフト量」と呼び、回転による光路偏向に対してその回転量を「回転角」と呼ぶものとする。「光路偏向装置」とは、このような光路偏向素子を含み、光の光路を偏向させるデバイスを意味する。
[Definition]
In this specification, “optical path deflecting element” refers to whether the optical path of light is deflected by an external electric signal, that is, the outgoing light is shifted in parallel to the incident light, or is rotated at a certain angle. Or an optical element capable of switching the optical path by combining the two. In this description, the magnitude of the shift is referred to as “shift amount” with respect to the optical path deflection due to the parallel shift, and the rotation amount is referred to as “rotation angle” with respect to the optical path deflection due to rotation. The “optical path deflecting device” means a device that includes such an optical path deflecting element and deflects the optical path of light.

また、「ピクセルシフト素子(画素ずらし素子)」とは、少なくとも画像情報に従って光を制御可能な複数の画素を二次元的に配列した画像表示素子と、画像表示素子を照明する光源と、画像表示素子に表示した画像パターンを観察するための光学部材と、画像フィールドを時間的に分割した複数のサブフィールド毎に画像表示素子と光学部材の間の光路を偏向する光路偏向手段とを有し、該光路偏向手段によるサブフィールド毎の光路の偏向状態に応じて表示位置がずれている状態の画像パターンを表示させることで、画像表示素子の見掛け上の画素数を増倍して表示する画像表示装置における前記光路偏向手段を意味する。従って、基本的には、上記定義による光路偏向素子や光路偏向装置を光路偏向手段(ピクセルシフト素子(画素ずらし素子))として応用することが可能といえる。   In addition, the “pixel shift element (pixel shift element)” is an image display element in which a plurality of pixels that can control light according to image information is two-dimensionally arranged, a light source that illuminates the image display element, and an image display An optical member for observing an image pattern displayed on the element, and an optical path deflecting unit for deflecting an optical path between the image display element and the optical member for each of a plurality of subfields obtained by temporally dividing the image field, An image display in which the apparent number of pixels of the image display element is multiplied and displayed by displaying an image pattern in which the display position is shifted in accordance with the deflection state of the optical path for each subfield by the optical path deflecting means. It means the optical path deflecting means in the apparatus. Therefore, basically, it can be said that the optical path deflecting element and the optical path deflecting device defined above can be applied as optical path deflecting means (pixel shift element (pixel shifting element)).

従来、液晶材料を用いた光路偏向素子(または光偏向素子)やピクセルシフト素子、これらを用いた画像表示装置等に関する技術が種々提案されている(例えば、特許文献1〜6参照)。しかし、従来の光路偏向素子やピクセルシフト素子においては、
(1)構成が複雑であることに伴なう高コスト、装置の大型化、光量損失、ゴースト等の光学ノイズまたは解像度低下、
(2)特に可動部を有する構成の場合の位置精度や耐久性、振動や音の問題、
(3)ネマチック液晶などにおける応答速度の問題、
などがある。
Conventionally, various techniques relating to an optical path deflecting element (or an optical deflecting element) or a pixel shift element using a liquid crystal material, an image display device using these, and the like have been proposed (see, for example, Patent Documents 1 to 6). However, in the conventional optical path deflection element and pixel shift element,
(1) High cost due to the complicated configuration, increase in size of the apparatus, loss of light amount, optical noise such as ghost, or reduction in resolution,
(2) Positional accuracy and durability, especially in the case of a configuration having moving parts, problems of vibration and sound,
(3) Response speed problem in nematic liquid crystal, etc.
and so on.

そこで、本出願人は先に、従来の光路偏向素子における問題点、即ち、構成が複雑であることに伴う高コスト、装置の大型化、光量損失、光学ノイズ等の問題を改善し、構成が簡単で小型であり、光量損失、光学ノイズ、解像度低下が少なく、低コスト化を図ることができる光路偏向素子や装置の提供を目的として、図18に示すような構成の光路偏向素子を提案した(特許文献7参照)。
この光路偏向素子1は、透明な一対の基板2,3と、この一対の基板2,3の少なくとも一方に設けた配向膜4と、一対の基板2,3間に充填されたホメオトロピック配向をなすキラルスメクチックC相よりなる液晶5と、この液晶5に電界を作用させる少なくとも1組の電極6a,6bからなる電極対6とを備え、該電極対6を電源7に接続して液晶層5に電界を印加する構成としたものである。この光路偏向素子1は、キラルスメクチックC相よりなる液晶5を利用しているので、従来の光路偏向素子に比して、構成が複雑であることに伴う高コスト、装置大型化、光量損失、光学ノイズの問題を改善でき、かつ、従来のスメクチックA液晶やネマチック液晶などにおける応答性の鈍さも改善でき、高速応答が可能となるようにしたものである。
Therefore, the applicant first improved the problem in the conventional optical path deflecting element, i.e., the high cost, the large size of the apparatus, the loss of light amount, the optical noise, and the like due to the complicated structure. For the purpose of providing an optical path deflecting element and a device that are simple and small in size, have little light loss, optical noise, resolution reduction, and can be reduced in cost, an optical path deflecting element configured as shown in FIG. 18 has been proposed. (See Patent Document 7).
The optical path deflecting element 1 has a pair of transparent substrates 2 and 3, an alignment film 4 provided on at least one of the pair of substrates 2 and 3, and a homeotropic alignment filled between the pair of substrates 2 and 3. A liquid crystal layer 5 composed of a chiral smectic C phase, and an electrode pair 6 composed of at least one pair of electrodes 6a and 6b for applying an electric field to the liquid crystal 5; It is set as the structure which applies an electric field to. Since this optical path deflecting element 1 uses a liquid crystal 5 composed of a chiral smectic C phase, compared to the conventional optical path deflecting element, the cost is increased due to the complicated structure, the size of the apparatus is increased, the light loss is reduced. The problem of optical noise can be improved, and the dullness of responsiveness in conventional smectic A liquid crystals and nematic liquid crystals can also be improved, enabling high-speed response.

特開平6−18940号公報Japanese Patent Laid-Open No. 6-18940 特開平9−133904号公報JP-A-9-133904 特許第2939826号公報Japanese Patent No. 2939826 特開平5−313116号公報JP-A-5-313116 特開平6−324320号公報JP-A-6-324320 特開平10−133135号公報JP-A-10-133135 特開2002−328402号公報JP 2002-328402 A 「結晶光学」応用物理学会、光学懇話会編、p198“Crystal optics”, Japan Society of Applied Physics, Optical Society, p198

上記の特許文献7に記載の光路偏向素子1では、キラルスメクチックC相の螺旋軸に直角方向、すなわちスメクチック層の平行方向に電界を印加すると、液晶分子がスメクチック層内でコーン状の仮想面内を回転運動すると考えられる。このとき、液晶層の螺旋ピッチや自発分極などの特性に応じて、同一方向に配向する液晶分子の割合が変化し、液晶分子の平均的配向方向に対応した液晶層の光学軸の傾斜方向が変化する。
ここで、特許文献7で説明されているように、無電界下のキラルスメクチックC相の液晶層に対して層法線方向から偏光顕微鏡によるコノスコープ像を観察すると、十字像が中央部に位置しており、一軸性光学軸を有していることが確認できる。図19にキラルスメクチックC相の液晶分子配列のモデル(電界による螺旋構造変化のモデル)を示す。チルト角θを有する分子層が互いにズレながら重なって螺旋構造を形成している。電界E=0では図19(a)のように左右対称な螺旋構造によって液晶ダイレクタ方向は空間的に平均化される。液晶層の平均化された光学軸は層法線方向を向いており、この光学軸に平行な入射光に対しては光学的に等方的である。次に、液晶層に平行な方向に比較的小さな電界0<E<Esを印加すると、自発分極Psへの電界Eの作用で液晶分子に回転モーメントが生じるために図19(b)のように螺旋構造が歪んで非対称となり、平均的な光学軸が一方向に傾く。この時、電界強度の増加と共に歪みが大きくなって平均的な光学軸の傾斜角も大きくなる。これは、コノスコープ像の十字像の位置が移動することから確認できる。さらに電界強度を増加させると、ある閾値電界Es以上で図19(c)のように螺旋構造が消失して光学的に略一軸性となる。この時の光学軸の傾斜角は液晶ダイレクタのチルト角θと等しくなる。さらに電界を増加させてもチルト角θは変化せず、光学軸の傾斜角も一定となる。
このように、液晶層に十分に大きな電界が印加された場合、各スメクチック層内の液晶分子の配向方向は揃い、螺旋が解けた状態となる。また、電界方向を反転させると液晶層の光学軸の傾斜方向も反転するため、光学軸偏向素子あるいは動的な複屈折板として機能し、光路偏向素子やそれを用いた光路偏向装置などに応用できる。
In the optical path deflecting element 1 described in Patent Document 7, when an electric field is applied in a direction perpendicular to the helical axis of the chiral smectic C phase, that is, in a direction parallel to the smectic layer, the liquid crystal molecules are conical in the smectic layer. Is considered to rotate. At this time, the ratio of the liquid crystal molecules aligned in the same direction changes according to the characteristics such as the helical pitch and spontaneous polarization of the liquid crystal layer, and the inclination direction of the optical axis of the liquid crystal layer corresponding to the average alignment direction of the liquid crystal molecules is Change.
Here, as described in Patent Document 7, when a conoscopic image is observed with a polarizing microscope from the normal direction of the chiral smectic C phase liquid crystal layer under no electric field, the cross image is located at the center. It can be confirmed that it has a uniaxial optical axis. FIG. 19 shows a model of liquid crystal molecular arrangement of chiral smectic C phase (model of helical structure change by electric field). The molecular layers having the tilt angle θ are overlapped with each other while forming a spiral structure. In the electric field E = 0, the liquid crystal director direction is spatially averaged by the symmetrical spiral structure as shown in FIG. The averaged optical axis of the liquid crystal layer faces the normal direction of the layer, and is optically isotropic with respect to incident light parallel to the optical axis. Next, when a relatively small electric field 0 <E <Es is applied in a direction parallel to the liquid crystal layer, a rotational moment is generated in the liquid crystal molecules due to the action of the electric field E on the spontaneous polarization Ps, as shown in FIG. The spiral structure is distorted and asymmetric, and the average optical axis is tilted in one direction. At this time, distortion increases as the electric field strength increases, and the average tilt angle of the optical axis also increases. This can be confirmed from the movement of the cross image of the conoscopic image. When the electric field strength is further increased, the spiral structure disappears as shown in FIG. 19C at a certain threshold electric field Es or more and becomes optically substantially uniaxial. The tilt angle of the optical axis at this time is equal to the tilt angle θ of the liquid crystal director. Further, even if the electric field is increased, the tilt angle θ does not change, and the tilt angle of the optical axis becomes constant.
Thus, when a sufficiently large electric field is applied to the liquid crystal layer, the alignment directions of the liquid crystal molecules in each smectic layer are aligned, and the spiral is unwound. Also, when the electric field direction is reversed, the tilt direction of the optical axis of the liquid crystal layer is also reversed, so that it functions as an optical axis deflecting element or a dynamic birefringent plate and applied to an optical path deflecting element or an optical path deflecting device using the same. it can.

上記の光路偏向素子(光学軸偏向素子)を画像表示装置等へ応用する場合、光を透過する有効領域の幅を広く設計する必要があるが、数十ミリ以上の広い有効領域幅に、液晶層の駆動に必要な強度の平行電界(基板面(液晶層)に平行な方向の電界)を印加しようとすると、有効領域幅の間に数キロボルト以上の非常に大きな電圧を印加する必要がある。
しかしながら、光路偏向素子の有効領域幅の間に数キロボルト以上の非常に大きな電圧を印加する場合、装置内での放電やノイズの発生などの危険が伴い、また、電源の大型化や、消費電力の増加などの問題が生じる。
When the above optical path deflecting element (optical axis deflecting element) is applied to an image display device or the like, it is necessary to design the width of the effective area that transmits light wide. When applying a parallel electric field (electric field in a direction parallel to the substrate surface (liquid crystal layer)) necessary for driving the layer, it is necessary to apply a very large voltage of several kilovolts or more between the effective area widths. .
However, when a very large voltage of several kilovolts or more is applied between the effective area widths of the optical path deflecting element, there is a risk of discharge and noise generation in the apparatus, and the power source is increased in size and power consumption. Problems such as an increase in

本発明は上記事情に鑑みなされたものであり、印加する電圧値を従来の1/2以下に設定しても、従来と同様な光学軸偏向効果が得られ、放電やノイズの防止、電源の小型化などが図れる構成の光学軸偏向素子を提供することを目的とする。
また、本発明は、その光学軸偏向素子を用いて従来と同様な光路偏向効果が得られ、大きな有効面積に対して、比較的小さな印加電圧で駆動が可能な光路偏向素子を提供することを目的とする。
さらに本発明は、前記光学軸偏向素子を用いて従来と同様な光学軸偏向効果が得られ、放電やノイズの防止、電源の小型化などが図れる光学軸偏向方法及び光学軸偏向装置を提供することを目的とする。
さらに本発明は、前記光学軸偏向方法を用いて従来と同様な光路偏向効果が得られる光路偏向方法を提供することを目的とする。
さらに本発明は、前記光路偏向素子または光学軸偏向装置を用いて従来と同様な光路偏向効果が得られ、大きな有効面積に対して、比較的小さな印加電圧で駆動が可能で、放電やノイズの防止、電源の小型化などが図れる構成の光路偏向装置を提供することを目的とする。
さらに本発明は、前記光路偏向装置を用い、比較的画素数の少ない画像表示素子を用いても、高精細、低コスト、低消費電力な画像表示装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and even if the voltage value to be applied is set to ½ or less of that of the prior art, the same optical axis deflection effect as that of the prior art can be obtained, and discharge and noise can be prevented. An object of the present invention is to provide an optical axis deflecting element having a configuration that can be miniaturized.
The present invention also provides an optical path deflecting element that can obtain the same optical path deflecting effect as that of the prior art by using the optical axis deflecting element and can be driven with a relatively small applied voltage with respect to a large effective area. Objective.
Furthermore, the present invention provides an optical axis deflection method and an optical axis deflection apparatus that can obtain an optical axis deflection effect similar to the conventional one using the optical axis deflection element, and that can prevent discharge and noise, reduce the size of the power supply, and the like. For the purpose.
A further object of the present invention is to provide an optical path deflection method capable of obtaining the same optical path deflection effect as that of the prior art using the optical axis deflection method.
Furthermore, the present invention provides the same optical path deflecting effect as the conventional one using the optical path deflecting element or the optical axis deflecting device, and can be driven with a relatively small applied voltage with respect to a large effective area. It is an object of the present invention to provide an optical path deflecting device having a configuration capable of preventing the power source and reducing the size of the power source.
It is another object of the present invention to provide an image display device that uses the optical path deflecting device and has high definition, low cost, and low power consumption even when an image display element having a relatively small number of pixels is used.

上記目的を達成するため、本発明では以下のような手段を採っている。
本発明の第1の手段は、透明な一対の基板と、その一対の基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相を形成可能な液晶層と、少なくとも前記液晶層の両端側に配置され基板面に平行な方向の電界(以下、平行電界と言う)を発生させる電極とを有する光学軸偏向素子において、前記電極間の有効領域内を複数の領域に分割して、個々の領域に独自に平行電界が印加可能となるように1以上の分割電極を配置したことを特徴とする(請求項1)。
In order to achieve the above object, the present invention adopts the following means.
The first means of the present invention includes a pair of transparent substrates, a liquid crystal layer capable of forming a chiral smectic C phase having a homeotropic orientation filled between the pair of substrates, and at least both ends of the liquid crystal layer. In an optical axis deflection element having an electrode that is arranged and generates an electric field in a direction parallel to the substrate surface (hereinafter referred to as a parallel electric field), an effective area between the electrodes is divided into a plurality of areas, and each area is divided. In addition, one or more divided electrodes are arranged so that a parallel electric field can be independently applied thereto (claim 1).

第2の手段は、第1の手段の光学軸偏向素子において、前記電極間の有効領域の幅をL、該有効領域の幅全体に電圧を印加する場合の電圧値をV、この時印加される平均的な電界強度をE、一定の電界印加期間をTとした時、前記有効領域を電界印加方向に対してN個(Nは2以上の整数)に分割して平行電界が印加可能となるように1以上の分割電極を配置したことを特徴とする(請求項2)。   In the second means, in the optical axis deflecting element of the first means, the width of the effective area between the electrodes is L, and the voltage value when the voltage is applied to the entire width of the effective area is V. When the average electric field strength is E and the constant electric field application period is T, the effective region can be divided into N pieces (N is an integer of 2 or more) in the electric field application direction and a parallel electric field can be applied. One or more divided electrodes are arranged so as to become (Claim 2).

第3の手段は、第1または第2の手段の光学軸偏向素子において、前記有効領域内の前記分割電極が、各分割領域の両端部に対応して基板面に形成されたライン状の透明電極であることを特徴とする(請求項3)。
第4の手段は、第1または第2の手段の光学軸偏向素子において、前記有効領域内の前記分割電極が、基板面上に形成された多数本の透明ライン電極から成り、該透明ライン電極郡の面と液晶層との間に誘電体層を形成し、各透明ライン電極が抵抗体によって電気的に直列に接続されていることを特徴とする(請求項4)。
第5の手段は、第1または第2の手段の光学軸偏向素子において、前記電極及び前記有効領域内の前記分割電極が、各分割領域の両端部に対応して基板面に形成されたライン状の透明電極であり、かつ前記基板面に透明な抵抗体層が形成されていることを特徴とする(請求項5)。
According to a third means, in the optical axis deflecting element of the first or second means, the divided electrodes in the effective area are formed in a line-shaped transparent manner formed on the substrate surface corresponding to both ends of each divided area. It is an electrode (Claim 3).
According to a fourth means, in the optical axis deflecting element of the first or second means, the divided electrode in the effective region is composed of a plurality of transparent line electrodes formed on a substrate surface, and the transparent line electrode A dielectric layer is formed between the county surface and the liquid crystal layer, and each transparent line electrode is electrically connected in series by a resistor (claim 4).
According to a fifth means, in the optical axis deflecting element of the first or second means, the electrodes and the divided electrodes in the effective area are lines formed on the substrate surface corresponding to both ends of each divided area. And a transparent resistor layer is formed on the substrate surface (claim 5).

第6の手段は、第3または第5の手段の光学軸偏向素子において、一対の両基板面に形成された前記ライン状の透明電極は、光の透過方向に対する投影面上で異なる位置に配置してあることを特徴とする(請求項6)。
第7の手段は、第4の手段の光学軸偏向素子において、前記多数本の透明ライン電極の内、電源に直接接続して分割電極として機能させる透明ライン電極の両基板上での位置を、光の透過方向に対する投影面上で異なる位置に設定することを特徴とする(請求項7)。
According to a sixth means, in the optical axis deflecting element of the third or fifth means, the line-shaped transparent electrodes formed on the pair of substrate surfaces are arranged at different positions on the projection plane with respect to the light transmission direction. (Claim 6).
Seventh means includes, in the optical axis deflecting element of the fourth means, a position on both substrates of the transparent line electrodes which are directly connected to a power source and function as divided electrodes among the plurality of transparent line electrodes. A different position is set on the projection plane with respect to the light transmission direction.

第8の手段は、第6または第7の手段の光学軸偏向素子において、異なる位置に配置してある前記分割電極の位置関係に対して、光の透過方向に対する投影面上での前記平行電界方向へズレ量の最大値をΔXとし、液晶層厚み方向での間隔をΔZとした時、(ΔZ/2)>ΔXに設定したことを特徴とする(請求項8)。
第9の手段は、第1〜第8のいずれか一つの手段の光学軸偏向素子において、有効領域内を複数に分割する分割電極が少なくとも一対のライン状電極からなり、各分割領域に時間順次に印加した電界が、一対のライン状電極の間に対応する液晶層内では、電界印加期間が重なるように設定したことを特徴とする(請求項9)。
The eighth means is the parallel electric field on the projection plane with respect to the light transmission direction with respect to the positional relationship of the divided electrodes arranged at different positions in the optical axis deflection element of the sixth or seventh means. (ΔZ / 2)> ΔX is set, where ΔX is the maximum value of the amount of deviation in the direction and ΔZ is the interval in the thickness direction of the liquid crystal layer (claim 8).
According to a ninth means, in the optical axis deflecting element of any one of the first to eighth means, the divided electrode for dividing the effective region into a plurality of parts is composed of at least a pair of line-shaped electrodes, and each divided region is sequentially timed. In the liquid crystal layer corresponding to the electric field applied between the pair of line-shaped electrodes, the electric field application periods are set to overlap (claim 9).

第10の手段は、電気信号に応じて光の光路を偏向する光路偏向素子であって、第1〜第9のいずれか一つの手段の光学軸偏向素子から成り、該光学軸偏向素子への入射光を直線偏光とし、該直線偏光の偏光面を素子内の平行電界の印加方向に対して直交する方向に設定することで、入射光路に対する出射光路の位置を平行にシフトすることを特徴とする(請求項10)。   The tenth means is an optical path deflecting element that deflects the optical path of light in response to an electric signal, and comprises the optical axis deflecting element of any one of the first to ninth means, Incident light is linearly polarized, and the plane of polarization of the linearly polarized light is set in a direction orthogonal to the direction of application of the parallel electric field in the element, thereby shifting the position of the outgoing optical path relative to the incident optical path. (Claim 10).

第11の手段は、透明な一対の基板と、その一対の基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相を形成可能な液晶層と、少なくとも前記液晶層の両端側に配置され基板面に平行な方向の電界(以下、平行電界と言う)を発生させる電極とを有する光学軸偏向素子と、前記光学軸偏向素子の電極に電圧を印加する電圧印加手段とを用い、前記光学軸偏向素子の電界方向の切換えによって液晶分子の配向方向を切換えて液晶層の層法線に対する光学軸の傾斜方向を切換えて、入射光に対する出射光路を切換える光学軸偏向方法において、前記光学軸偏向素子として第1〜第9のいずれか一つの手段の光学軸偏向素子を用い、前記電圧印加手段により、前記光学軸偏向素子の各電極に選択的に電圧を印加することを特徴とする(請求項11)。   The eleventh means includes a pair of transparent substrates, a liquid crystal layer capable of forming a chiral smectic C phase having a homeotropic alignment filled between the pair of substrates, and a substrate disposed at least on both ends of the liquid crystal layer. An optical axis deflecting element having an electrode for generating an electric field in a direction parallel to the surface (hereinafter referred to as a parallel electric field), and a voltage applying means for applying a voltage to the electrode of the optical axis deflecting element. In the optical axis deflection method, the orientation direction of the liquid crystal molecules is switched by switching the electric field direction of the deflection element, the tilt direction of the optical axis with respect to the layer normal of the liquid crystal layer is switched, and the outgoing optical path for the incident light is switched. The optical axis deflecting element of any one of the first to ninth means is used as an element, and a voltage is selectively applied to each electrode of the optical axis deflecting element by the voltage applying means. To (claim 11).

第12の手段は、第11の手段の光学軸偏向方法において、前記光学軸偏向素子の有効領域の幅をL、該有効領域の幅全体に電圧を印加する場合の電圧値をV、この時印加される平均的な平行電界強度をE、一定の電界印加期間をTとした時、前記有効領域を電界印加方向に対してN個(Nは2以上の整数)に分割して電界が印加可能となるように1以上の分極電極を配置し、各分割領域の幅であるL/Nに対して、平均的な平行電界強度Eを印加するために、V/Nの電圧値をT/N以内の時間だけ一時的に印加し、一時的に電圧を印加する領域を時間順次に切換えることにより、時間平均すると有効領域全体に均等に平行電界強度Eを印加することを特徴とする(請求項12)。   The twelfth means is the optical axis deflection method of the eleventh means, wherein the effective area width of the optical axis deflecting element is L, and the voltage value when the voltage is applied to the entire effective area width is V, When the average parallel electric field strength applied is E and the constant electric field application period is T, the electric field is applied by dividing the effective region into N pieces (N is an integer of 2 or more) in the electric field application direction. In order to apply one or more polarized electrodes as possible and to apply an average parallel electric field strength E to L / N which is the width of each divided region, the voltage value of V / N is set to T / The parallel electric field strength E is uniformly applied to the entire effective area when time-averaged by temporarily applying the voltage within a period N and switching the voltage application area in time sequence. Item 12).

第13の手段は、第11の手段の光学軸偏向方法において、前記光学軸偏向素子の有効領域を少なくとも第一領域と第二領域に分割し、第一領域に電界を生じさせる第一電極間に一時的に電圧を印加して第一領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第一領域の電圧を除去し、その後、直ちに第二領域に電界を生じさせる第二電極間に一時的に電圧を印加して第二領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第二領域の電圧を除去し、前記第一領域の光学軸傾斜状態が初期状態に戻る時間よりも前に、再び第一電極間に一時的に前回と同極性あるいは逆極性の電界を印加することで、第一領域の液晶層の光学軸傾斜状態を保つ、あるいは逆極性の傾斜状態に切換えるという動作を、前記第1領域と第二領域の間で順次行うことで、ある一定期間内において有効領域全体として光学軸の傾斜状態を略均一に保つことを特徴とする(請求項13)。   A thirteenth means is the optical axis deflection method of the eleventh means, wherein the effective area of the optical axis deflection element is divided into at least a first area and a second area, and an electric field is generated in the first area. A voltage is temporarily applied to the optical axis of the liquid crystal layer in the first region, the voltage in the first region is removed after the desired optical axis tilt state is reached, and then an electric field is immediately applied to the second region. A voltage is temporarily applied between the second electrodes to cause the optical axis of the liquid crystal layer of the second region to tilt, and after the desired optical axis tilt state is reached, the voltage of the second region is removed, Before the time when the optical axis tilt state of the first region returns to the initial state, an electric field having the same polarity or reverse polarity is temporarily applied between the first electrodes again, so that the liquid crystal layer of the first region is The operation of maintaining the optical axis tilt state or switching to the reverse polarity tilt state, By sequentially performed between the first region and the second region, and wherein the maintaining substantially uniform inclination of the optical axis as a whole effective region within a certain period of time (claim 13).

第14の手段は、第11の手段の光学軸偏向方法において、前記光学軸偏向素子の有効領域を第一領域〜第N領域のN個(Nは2以上の整数)に分割し、第一領域に電界を生じさせる第一電極間に一時的に電圧を印加して第一領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第一領域の電圧を除去し、その後、直ちに第二領域に電界を生じさせる第二電極間に一時的に電圧を印加して第二領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第二領域の電圧を除去し、という動作を第N領域まで行い、前記第一領域の光学軸傾斜状態が初期状態に戻る時間よりも前に、再び第一電極間に一時的に前回と同極性あるいは逆極性の電界を印加することで、第一領域の液晶層の光学軸傾斜状態を保つ、あるいは逆極性の傾斜状態に切換えるという動作を、前記第1領域〜第N領域の間で順次行うことで、ある一定期間内において有効領域全体として光学軸の傾斜状態を略均一に保つことを特徴とする(請求項14)。   The fourteenth means is the optical axis deflection method of the eleventh means, wherein the effective area of the optical axis deflection element is divided into N areas (N is an integer of 2 or more) of the first area to the Nth area, A voltage is temporarily applied between the first electrodes that generate an electric field in the region to tilt the optical axis of the liquid crystal layer in the first region, and after the desired optical axis tilt state is reached, the voltage in the first region is removed After that, a voltage is temporarily applied between the second electrodes that immediately generate an electric field in the second region to tilt the optical axis of the liquid crystal layer in the second region, and after the desired optical axis tilted state is reached. The operation of removing the voltage of the second region is performed up to the Nth region, and before the time when the optical axis tilt state of the first region returns to the initial state, the first electrode is temporarily temporarily re-same between the previous time. By applying an electric field of polarity or reverse polarity, the optical axis tilt state of the liquid crystal layer in the first region is maintained, or The operation of switching to the reverse polarity tilt state is sequentially performed between the first region to the Nth region, so that the tilt state of the optical axis is maintained substantially uniform as a whole effective region within a certain period. (Claim 14).

第15の手段は、第11〜第14のいずれか一つの手段の光学軸偏向方法において、前記光学軸偏向素子の有効領域全体の平行電界の方向を反転させるタイミングにおいては、光学軸の方向を反転させるための一時的な電界印加時間を、一方向に光学軸を維持するための一時的な電界印加時間よりも短く設定することを特徴とする(請求項15)。   The fifteenth means is the optical axis deflection method according to any one of the first to fourteenth means, wherein the direction of the optical axis is changed at the timing of reversing the direction of the parallel electric field of the entire effective area of the optical axis deflection element. The temporary electric field application time for inversion is set shorter than the temporary electric field application time for maintaining the optical axis in one direction (claim 15).

第16の手段は、第11〜第15のいずれか一つの手段の光学軸偏向方法において、前記光学軸偏向素子の有効領域内に平行電界を印加する分割電極が、基板面上に形成された多数本の透明ライン電極から成り、該透明ライン電極郡の面と液晶層との間に誘電体層が形成され、各透明ライン電極が抵抗体によって電気的に直列に接続され、前記分割領域の幅に対応する位置の二本の透明ライン電極の間に電位差を印加することを特徴とする(請求項16)。   A sixteenth means is the optical axis deflection method according to any one of the first to fifteenth means, wherein a split electrode for applying a parallel electric field is formed on the substrate surface within an effective region of the optical axis deflection element. A plurality of transparent line electrodes, a dielectric layer is formed between the surface of the transparent line electrode group and the liquid crystal layer, and each transparent line electrode is electrically connected in series by a resistor, A potential difference is applied between the two transparent line electrodes at positions corresponding to the width (claim 16).

第17の手段は、第11〜第16のいずれか一つの手段の光学軸偏向方法において、前記光学軸偏向素子の或る分割領域内に電界を生じさせるために該当する電極間に電圧を印加している状態において、隣接する分割領域内に不要な電界が生じないように該当する電極間が同電位となるように各電極間での電圧値を制御することを特徴とする(請求項17)。   A seventeenth means is a method of applying a voltage between the corresponding electrodes in order to generate an electric field in a certain divided region of the optical axis deflection element in the optical axis deflection method of any one of the first to sixteenth means. In this state, the voltage value between the electrodes is controlled so that the corresponding electrodes have the same potential so that unnecessary electric fields are not generated in the adjacent divided regions. ).

第18の手段は、光路偏向方法であって、第11〜第17のいずれか一つの手段の光学軸偏向方法を用い、前記光学軸偏向素子への入射光を直線偏光とし、該直線偏光の偏光面を素子内の平行電界の印加方向に対して直交する方向に設定することで、入射光路に対する出射光路の位置を平行にシフトすることを特徴とする(請求項18)。   The eighteenth means is an optical path deflection method using the optical axis deflection method of any one of the first to seventeenth means, and the incident light to the optical axis deflection element is made into linearly polarized light. By setting the plane of polarization in a direction orthogonal to the direction of application of the parallel electric field in the element, the position of the outgoing optical path with respect to the incident optical path is shifted in parallel (claim 18).

第19の手段は、透明な一対の基板と、その一対の基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相を形成可能な液晶層と、少なくとも前記液晶層の両端側に配置され基板面に平行な方向の電界(以下、平行電界と言う)を発生させる電極とを有する光学軸偏向素子と、前記光学軸偏向素子の電極に電圧を印加する電圧印加手段とを備え、前記光学軸偏向素子の電界方向の切換えによって液晶分子の配向方向を切換えて液晶層の層法線に対する光学軸の傾斜方向を切換えて、入射光に対する出射光路を切換える光学軸偏向装置において、前記光学軸偏向素子として第1〜第9のいずれか一つの手段の光学軸偏向素子を備え、前記電圧印加手段は、前記光学軸偏向素子の各電極に選択的に電圧を印加する手段を有することを特徴とする(請求項19)。   A nineteenth means includes a pair of transparent substrates, a liquid crystal layer capable of forming a chiral smectic C phase having a homeotropic alignment filled between the pair of substrates, and a substrate disposed at least on both ends of the liquid crystal layer. An optical axis deflecting element having an electrode for generating an electric field in a direction parallel to the surface (hereinafter referred to as a parallel electric field), and voltage applying means for applying a voltage to the electrode of the optical axis deflecting element. In the optical axis deflecting device, the orientation direction of the liquid crystal molecules is switched by switching the electric field direction of the deflecting element to switch the tilt direction of the optical axis with respect to the normal line of the liquid crystal layer, and the outgoing optical path for the incident light is switched. The optical axis deflecting element of any one of the first to ninth means is provided as an element, and the voltage applying means includes means for selectively applying a voltage to each electrode of the optical axis deflecting element. The constitution (claim 19).

第20の手段は、第19の手段の光学軸偏向装置において、前記光学軸偏向素子の有効領域の幅をL、該有効領域の幅全体に電圧を印加する場合の電圧値をV、この時印加される平均的な平行電界強度をE、一定の電界印加期間をTとした時、前記有効領域を電界印加方向に対してN個(Nは2以上の整数)に分割して電界が印加可能となるように1以上の分極電極を配置し、各分割領域の幅であるL/Nに対して、平均的な平行電界強度Eを印加するために、V/Nの電圧値をT/N以内の時間だけ一時的に印加し、一時的に電圧を印加する領域を時間順次に切換えることにより、時間平均すると有効領域全体に均等に平行電界強度Eを印加することを特徴とする(請求項20)。   According to a twentieth means, in the optical axis deflecting device of the nineteenth means, the effective area width of the optical axis deflecting element is L, and the voltage value when a voltage is applied to the entire effective area width is V, When the average parallel electric field strength applied is E and the constant electric field application period is T, the electric field is applied by dividing the effective region into N pieces (N is an integer of 2 or more) in the electric field application direction. In order to apply one or more polarized electrodes as possible and to apply an average parallel electric field strength E to L / N which is the width of each divided region, the voltage value of V / N is set to T / The parallel electric field strength E is uniformly applied to the entire effective area when time-averaged by temporarily applying the voltage within a period N and switching the voltage application area in time sequence. Item 20).

第21の手段は、第19の手段の光学軸偏向装置において、前記光学軸偏向素子の有効領域を少なくとも第一領域と第二領域に分割し、第一領域に電界を生じさせる第一電極間に一時的に電圧を印加して第一領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第一領域の電圧を除去し、その後、直ちに第二領域に電界を生じさせる第二電極間に一時的に電圧を印加して第二領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第二領域の電圧を除去し、前記第一領域の光学軸傾斜状態が初期状態に戻る時間よりも前に、再び第一電極間に一時的に前回と同極性あるいは逆極性の電界を印加することで、第一領域の液晶層の光学軸傾斜状態を保つ、あるいは逆極性の傾斜状態に切換えるという動作を、前記第1領域と第二領域の間で順次行うことで、ある一定期間内において有効領域全体として光学軸の傾斜状態を略均一に保つことを特徴とする(請求項21)。   The twenty-first means is the optical axis deflecting device of the nineteenth means, wherein the effective area of the optical axis deflecting element is divided into at least a first area and a second area, and an electric field is generated in the first area. A voltage is temporarily applied to the optical axis of the liquid crystal layer in the first region, the voltage in the first region is removed after the desired optical axis tilt state is reached, and then an electric field is immediately applied to the second region. A voltage is temporarily applied between the second electrodes to cause the optical axis of the liquid crystal layer of the second region to tilt, and after the desired optical axis tilt state is reached, the voltage of the second region is removed, Before the time when the optical axis tilt state of the first region returns to the initial state, an electric field having the same polarity or reverse polarity is temporarily applied between the first electrodes again, so that the liquid crystal layer of the first region is The operation of maintaining the optical axis tilt state or switching to the reverse polarity tilt state, By sequentially performed between the first region and the second region, and wherein the maintaining substantially uniform inclination of the optical axis as a whole effective region within a certain period of time (claim 21).

第22の手段は、第19の手段の光学軸偏向装置において、前記光学軸偏向素子の有効領域を第一領域〜第N領域のN個(Nは2以上の整数)に分割し、第一領域に電界を生じさせる第一電極間に一時的に電圧を印加して第一領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第一領域の電圧を除去し、その後、直ちに第二領域に電界を生じさせる第二電極間に一時的に電圧を印加して第二領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第二領域の電圧を除去し、という動作を第N領域まで行い、前記第一領域の光学軸傾斜状態が初期状態に戻る時間よりも前に、再び第一電極間に一時的に前回と同極性あるいは逆極性の電界を印加することで、第一領域の液晶層の光学軸傾斜状態を保つ、あるいは逆極性の傾斜状態に切換えるという動作を、前記第1領域〜第N領域の間で順次行うことで、ある一定期間内において有効領域全体として光学軸の傾斜状態を略均一に保つことを特徴とする(請求項22)。   The twenty-second means is the optical axis deflecting device of the nineteenth means, wherein the effective area of the optical axis deflecting element is divided into N (N is an integer of 2 or more) from the first area to the Nth area, A voltage is temporarily applied between the first electrodes that generate an electric field in the region to tilt the optical axis of the liquid crystal layer in the first region, and after the desired optical axis tilt state is reached, the voltage in the first region is removed After that, a voltage is temporarily applied between the second electrodes that immediately generate an electric field in the second region to tilt the optical axis of the liquid crystal layer in the second region, and after the desired optical axis tilted state is reached. The operation of removing the voltage of the second region is performed up to the Nth region, and before the time when the optical axis tilt state of the first region returns to the initial state, the first electrode is temporarily temporarily re-same between the previous time. By applying an electric field of polarity or reverse polarity, the optical axis tilt state of the liquid crystal layer in the first region is maintained, or The operation of switching to the reverse polarity tilt state is sequentially performed between the first region to the Nth region, so that the tilt state of the optical axis is maintained substantially uniform as a whole effective region within a certain period. (Claim 22).

第23の手段は、第19〜第22のいずれか一つの手段の光学軸偏向装置において、前記光学軸偏向素子の有効領域全体の平行電界の方向を反転させるタイミングにおいては、光学軸の方向を反転させるための一時的な電界印加時間を、一方向に光学軸を維持するための一時的な電界印加時間よりも短く設定することを特徴とする(請求項23)。   The twenty-third means is the optical axis deflecting device according to any one of the nineteenth to twenty-second means, wherein the direction of the optical axis is changed at the timing of reversing the direction of the parallel electric field of the entire effective area of the optical axis deflecting element. The temporary electric field application time for inversion is set shorter than the temporary electric field application time for maintaining the optical axis in one direction (claim 23).

第24の手段は、第19〜第23のいずれか一つの手段の光学軸偏向装置において、前記光学軸偏向素子の有効領域内に平行電界を印加する分割電極が、基板面上に形成された多数本の透明ライン電極から成り、該透明ライン電極郡の面と液晶層との間に誘電体層が形成され、各透明ライン電極が抵抗体によって電気的に直列に接続され、前記分割領域の幅に対応する位置の二本の透明ライン電極の間に電位差を印加することを特徴とする(請求項24)。   According to a twenty-fourth means, in the optical axis deflecting device according to any one of the nineteenth to twenty-third means, a split electrode for applying a parallel electric field is formed on the substrate surface within an effective region of the optical axis deflecting element. A plurality of transparent line electrodes, a dielectric layer is formed between the surface of the transparent line electrode group and the liquid crystal layer, and each transparent line electrode is electrically connected in series by a resistor, A potential difference is applied between the two transparent line electrodes at a position corresponding to the width (claim 24).

第25の手段は、第19〜第24のいずれか一つの手段の光学軸偏向装置において、前記光学軸偏向素子の或る分割領域内に電界を生じさせるために該当する電極間に電圧を印加している状態において、隣接する分割領域内に不要な電界が生じないように該当する電極間が同電位となるように各電極間での電圧値を制御することを特徴とする(請求項25)。   The twenty-fifth means applies a voltage between the corresponding electrodes in order to generate an electric field in a certain divided region of the optical axis deflection element in the optical axis deflection apparatus according to any one of the nineteenth to twenty-fourth means. In this state, the voltage value between the electrodes is controlled so that the corresponding electrodes have the same potential so that an unnecessary electric field is not generated in the adjacent divided regions. ).

第26の手段は、電気信号に応じて光の光路を偏向する光路偏向装置において、第10の手段の光路偏向素子と、前記電気信号に応じて前記光路偏向素子の各電極に選択的に電圧を印加する電圧印加手段とを備えたことを特徴とする(請求項26)。   The twenty-sixth means is an optical path deflecting device that deflects an optical path of light in accordance with an electric signal, and selectively applies voltages to the optical path deflecting element of the tenth means and each electrode of the optical path deflecting element in accordance with the electric signal. And a voltage applying means for applying a voltage (claim 26).

第27の手段は、電気信号に応じて光の光路を偏向する光路偏向装置において、第19〜第25のいずれか一つの手段の光学軸偏向装置からなり、前記光学軸偏向素子への入射光を直線偏光とし、該直線偏光の偏光面を素子内の平行電界の印加方向に対して直交する方向に設定することで、入射光路に対する出射光路の位置を平行にシフトすることを特徴とする(請求項27)。   The twenty-seventh means is an optical path deflecting device that deflects the optical path of light in accordance with an electric signal, and comprises the optical axis deflecting device of any one of the nineteenth to twenty-fifth means, and the incident light to the optical axis deflecting element. Is set to be linearly polarized light, and the plane of polarization of the linearly polarized light is set in a direction orthogonal to the direction of application of the parallel electric field in the element, thereby shifting the position of the outgoing optical path with respect to the incident optical path. (Claim 27).

第28の手段は、画像情報に従って光を制御可能な複数の画素が二次元的に配列した画像表示素子と、該画像表示素子を照明する光源及び照明装置と、前記画像表示素子に表示した画像パターンを観察するための光学装置と、画像フィールドを時間的に分割した複数のサブフィールドで形成する表示駆動手段と、各画素からの出射光の光路を偏向する光路偏向手段を有する画像表示装置において、前記光路偏向手段として、第26または第27の光路偏向装置を備えたことを特徴とする(請求項28)。
また、第29の手段は、第28の手段の画像表示装置において、前記光路偏向装置によるサブフィールド毎の光路の偏向状態に応じて表示位置がずれた状態に対応する画像パターンを前記画像表示素子に表示することで、前記画像表示素子の見かけ上の画素数を増倍して表示することを特徴とする(請求項29)。
The twenty-eighth means includes an image display element in which a plurality of pixels that can control light according to image information are two-dimensionally arranged, a light source and an illumination device that illuminate the image display element, and an image displayed on the image display element In an image display apparatus having an optical device for observing a pattern, display drive means formed by a plurality of subfields obtained by dividing an image field in time, and optical path deflecting means for deflecting the optical path of light emitted from each pixel A twenty-sixth or twenty-seventh optical path deflecting device is provided as the optical path deflecting means (claim 28).
According to a twenty-ninth aspect, in the image display device of the twenty-eighth means, an image pattern corresponding to a state in which a display position is shifted according to a deflection state of an optical path for each subfield by the optical path deflecting device is displayed on the image display element. In this case, the apparent number of pixels of the image display element is multiplied and displayed (claim 29).

第1または第2の手段の光学軸偏向素子では、電極間の有効領域内を複数の領域に分割して、個々の領域に独自に平行電界が印加可能となるように1以上の分割電極を配置したことにより、印加する電圧値を従来の1/2以下に設定しても、従来と同様な光学軸偏向効果が得られ、放電やノイズの防止、電源の小型化などが図れる。
より詳しく述べると、ホメオトロピック配向をなすキラルスメクチックC相を形成可能な液晶層に平行電界を印加すると、電界ON後の応答性は良く直ちに光学軸の傾斜方向が切換わるが、電界OFF後の応答性は比較的遅いため光学軸が初期状態に戻るまでには十分な時間がかかる。すなわち、光学軸の傾斜方向を一方向に保っておくために、常に一定の電界を印加し続ける必要は無く、電界ONによって液晶配向変化が完了した直後に電界をOFFし、ある時間後に再び電界ONすることで、液晶配向状態(光学軸の傾斜状態)を継続的に維持できる。そこで、光学軸偏向素子の有効領域を空間的および電気的に分割して、個々の領域に独自に平行電界が印加可能となるように1以上の分割電極を配置し、各分割領域に対して短時間の電界を時間順次に印加することで、有効領域全体として電界印加時の液晶配向状態をほぼ維持することができる。この時、電界印加する分割領域の幅が狭く設定できるので、一定の電界強度を印加する場合、印加電圧値自体を従来の1/2以下に小さく設定することができる。したがって、装置内での放電やノイズの防止、電源の小型化などが図れる。
In the optical axis deflection element of the first or second means, the effective region between the electrodes is divided into a plurality of regions, and one or more divided electrodes are provided so that a parallel electric field can be independently applied to each region. With this arrangement, even if the voltage value to be applied is set to ½ or less of the conventional voltage value, the same optical axis deflection effect as the conventional one can be obtained, and discharge and noise can be prevented, and the power source can be miniaturized.
More specifically, when a parallel electric field is applied to a liquid crystal layer capable of forming a chiral smectic C phase having homeotropic alignment, the responsiveness after the electric field is turned on is good, and the tilt direction of the optical axis is immediately switched. Since the response is relatively slow, it takes a sufficient time for the optical axis to return to the initial state. That is, in order to keep the tilt direction of the optical axis in one direction, it is not always necessary to apply a constant electric field. The electric field is turned off immediately after the change in liquid crystal alignment is completed by turning on the electric field, and the electric field is again after a certain time. By turning ON, the liquid crystal alignment state (inclined state of the optical axis) can be continuously maintained. Therefore, the effective area of the optical axis deflection element is spatially and electrically divided, and one or more divided electrodes are arranged so that a parallel electric field can be independently applied to each area. By applying short-time electric fields sequentially in time, the liquid crystal alignment state at the time of electric field application can be substantially maintained for the entire effective region. At this time, since the width of the divided region to which the electric field is applied can be set narrow, when applying a constant electric field strength, the applied voltage value itself can be set to be ½ or less of the conventional voltage value. Therefore, discharge and noise in the apparatus can be prevented, and the power supply can be reduced in size.

第3の手段の光学軸偏向素子では、上記の構成及び効果に加え、有効領域を電気的に分割する電極がライン状の透明電極であるので、透過光を遮断することを防止し、光の透過率を向上させることができる。   In the optical axis deflecting element of the third means, in addition to the above configuration and effect, the electrode that electrically divides the effective region is a line-shaped transparent electrode, so that the transmitted light is prevented from being blocked. The transmittance can be improved.

ところで、第1または第2の手段の光学軸偏向素子において、有効領域の幅が広い構成で、分割数を少なくした場合、分割領域の幅が比較的広くなる。この時、分割領域の両端部のみに電圧を印加すると、分割領域の中央部の電界強度が弱くなる場合がある。
そこで、第4の手段の光学軸偏向素子では、有効領域内に平行電界を印加する電極が、基板面上に形成された多数本の透明ライン電極から成り、各透明ライン電極郡が抵抗体によって電気的に直列に接続している構成として、分割領域の幅に対応する位置の二本の透明ライン電極の間に電位差を印加することで、分割領域内の液晶層に平行な方向に所望の電位分布を形成させることができる。この時、各ライン電極のエッジ部近傍では電界分布が乱れるため、透明ライン電極郡の面と液晶層との間に誘電体層を形成することで、液晶層中の電界分布を均一化できる。
また、第5の手段の光学軸偏向素子では、有効領域内の基板面に透明な抵抗体層を形成することで、分割領域の幅に対応する位置の電極間に電位差を印加した時に、分割領域内の液晶層に平行な方向に所望の電位分布を形成させることができる。したがって、液晶層中の電界分布を均一化できる。
By the way, in the optical axis deflecting element of the first or second means, when the effective area is wide and the number of divisions is reduced, the width of the divided areas becomes relatively wide. At this time, if a voltage is applied only to both ends of the divided region, the electric field strength at the center of the divided region may be weakened.
Therefore, in the optical axis deflecting element of the fourth means, the electrode for applying a parallel electric field in the effective region is composed of a large number of transparent line electrodes formed on the substrate surface, and each transparent line electrode group is formed by a resistor. As a configuration electrically connected in series, by applying a potential difference between two transparent line electrodes at positions corresponding to the width of the divided region, a desired direction in a direction parallel to the liquid crystal layer in the divided region is obtained. A potential distribution can be formed. At this time, since the electric field distribution is disturbed near the edge portion of each line electrode, the electric field distribution in the liquid crystal layer can be made uniform by forming a dielectric layer between the surface of the transparent line electrode group and the liquid crystal layer.
In the optical axis deflecting element of the fifth means, a transparent resistor layer is formed on the substrate surface in the effective area, so that when a potential difference is applied between electrodes at positions corresponding to the width of the divided area, A desired potential distribution can be formed in a direction parallel to the liquid crystal layer in the region. Therefore, the electric field distribution in the liquid crystal layer can be made uniform.

第1〜第5の手段の光学軸偏向素子では、有効領域内での分割領域の境界を明確に設定しているが、境界部では常に低電界状態となる領域が発生し、光学軸の傾斜角が局所的に小さくなる原因となる。これを防止して、有効領域全体の動作の均一性を向上させるためには、分割領域の境界を比較的不明確に設定することが好ましい。すなわち、境界領域として、ある程度の幅を持たせることで、光学軸偏向動作の均一性が向上する。
そこで、第6の手段の光学軸偏向素子では、一対の両基板面に形成されたライン状の透明電極は光の透過方向に対する投影面上で異なる位置に配置する、すなわち上下基板の分割電極をズラして配置することによって、液晶層の厚み方向で境界位置を変える。したがって、境界近傍の液晶層内では境界領域が斜めに形成され、光の透過方向で見ると境界領域が不明確になり、局所的な低電界領域の発生を防止できる。
In the optical axis deflecting elements of the first to fifth means, the boundary of the divided area in the effective area is clearly set, but an area that is always in a low electric field state is generated at the boundary part, and the optical axis is inclined. This causes the corners to become locally smaller. In order to prevent this and improve the uniformity of the operation of the entire effective area, it is preferable to set the boundaries of the divided areas relatively unclearly. That is, by providing a certain width as the boundary region, the uniformity of the optical axis deflection operation is improved.
Therefore, in the optical axis deflecting element of the sixth means, the line-shaped transparent electrodes formed on the pair of substrate surfaces are arranged at different positions on the projection surface with respect to the light transmission direction, that is, the divided electrodes on the upper and lower substrates are arranged. By shifting the position, the boundary position is changed in the thickness direction of the liquid crystal layer. Therefore, the boundary region is formed obliquely in the liquid crystal layer in the vicinity of the boundary, and the boundary region becomes unclear when viewed in the light transmission direction, thereby preventing the generation of a local low electric field region.

第7の手段の光学軸偏向素子では、前記多数本の透明ライン電極の内、電源に直接接続して分割電極として機能させる透明ライン電極の両基板上での位置を、光の透過方向に対する投影面上で異なる位置に設定する、すなわち上下基板の分割電極をズラして設定することで、上記の第6の手段と同様な効果が得られる。
しかし、分割電極のズレ量が大きくなると、液晶層の厚み方向に電位差が生じてしまう。そこで、第8の手段の光学軸偏向素子では、異なる位置に配置してある分割電極の位置関係に対して、光の透過方向に対する投影面上での前記平行電界方向へズレ量の最大値をΔXとし、液晶層厚み方向での間隔をΔZとした時、(ΔZ/2)>ΔXに設定することで、液晶層の厚み方向の電位差を比較的小さく抑えることができる。しだかって、境界領域近傍での液晶層内の電界方向の変化を比較的小さく抑えることができ、有効領域内での光学軸の均一性が維持できる。
In the optical axis deflecting element of the seventh means, the position of the transparent line electrode, which is directly connected to a power source and functions as a divided electrode among the multiple transparent line electrodes, is projected on the light transmission direction. By setting different positions on the surface, that is, by setting the divided electrodes of the upper and lower substrates to be shifted, the same effect as the sixth means can be obtained.
However, when the amount of deviation of the divided electrodes increases, a potential difference occurs in the thickness direction of the liquid crystal layer. Therefore, in the optical axis deflecting element of the eighth means, the maximum value of the deviation amount in the parallel electric field direction on the projection plane with respect to the light transmission direction is set with respect to the positional relationship of the divided electrodes arranged at different positions. When ΔX is set and the interval in the liquid crystal layer thickness direction is ΔZ, by setting (ΔZ / 2)> ΔX, the potential difference in the thickness direction of the liquid crystal layer can be kept relatively small. Therefore, the change in the electric field direction in the liquid crystal layer in the vicinity of the boundary region can be suppressed to be relatively small, and the uniformity of the optical axis in the effective region can be maintained.

上記の手段では分割電極として機能する電極の位置が固定されているため、空間的に位置をズラして設定することで、境界領域を空間的にボケさせていたが、分割電極として機能する電極の位置を時間的にズラすることでも、境界領域を空間的にボケさせることができる。そこで第9の手段の光学軸偏向素子では、有効領域内を複数に分割する分割電極が少なくとも一対のライン状電極からなり、各分割領域に時間順次に印加した電界が、一対のライン状電極の間に対応する液晶層内では、電界印加期間が重なるように設定する。すなわち、ある期間に電界が印加されている分割領域の位置が切り替わっても、分割領域が重なるように電極を配置することで、実効的な境界領域の位置が切り替わる。したがって、境界領域が明確に固定化されている場合に発生する低電界領域を無くすことができる。   In the above means, since the position of the electrode functioning as the divided electrode is fixed, the boundary region is spatially blurred by setting the position spatially shifted, but the electrode functioning as the divided electrode The boundary region can also be spatially blurred by shifting the position of. Therefore, in the optical axis deflecting element of the ninth means, the divided electrode that divides the effective region into a plurality is composed of at least a pair of line-shaped electrodes, and the electric field applied to each of the divided regions in time order is applied to the pair of line-shaped electrodes. In the liquid crystal layer corresponding to the gap, the electric field application periods are set to overlap. That is, even if the position of the divided region to which the electric field is applied is switched during a certain period, the position of the effective boundary region is switched by arranging the electrodes so that the divided regions overlap. Therefore, it is possible to eliminate the low electric field region that occurs when the boundary region is clearly fixed.

第10の手段の光路偏向素子は、第1〜第9のいずれか一つの手段の光学軸偏向素子から成り、該光学軸偏向素子への入射光を直線偏光とし、該直線偏光の偏光面を素子内の平行電界の印加方向に対して直交する方向に設定することで、液晶層の光学軸の傾斜方向に応じて液晶層内で光線がシフトし、入射光路に対する出射光路の位置を平行にシフトする。従って、電界方向を切換えて光学軸の傾斜方向を切換えることで、光線の出射位置を切換えることができる。   The optical path deflecting element of the tenth means comprises the optical axis deflecting element of any one of the first to ninth means, and the incident light to the optical axis deflecting element is linearly polarized light, and the plane of polarization of the linearly polarized light is By setting the direction perpendicular to the direction in which the parallel electric field is applied in the element, the light beam is shifted in the liquid crystal layer according to the tilt direction of the optical axis of the liquid crystal layer, and the position of the outgoing optical path is parallel to the incident optical path. Shift to. Therefore, the emission position of the light beam can be switched by switching the electric field direction and switching the tilt direction of the optical axis.

第11の手段の光学軸偏向方法では、光学軸偏向素子として第1〜第9のいずれか一つの手段の光学軸偏向素子を用い、電圧印加手段により、光学軸偏向素子の各電極に選択的に電圧を印加するので、印加する電圧値を従来の1/2以下に設定しても、従来と同様な光学軸偏向効果が得られ、放電やノイズの防止、電源の小型化などが図れる。   In the optical axis deflection method of the eleventh means, the optical axis deflection element of any one of the first to ninth means is used as the optical axis deflection element, and the voltage application means selectively selects each electrode of the optical axis deflection element. Therefore, even if the applied voltage value is set to ½ or less of the conventional voltage, the same optical axis deflection effect as that of the conventional one can be obtained, and discharge and noise can be prevented, and the power supply can be reduced in size.

第12、第13または第14の手段の光学軸偏向方法では、光学軸偏向素子の有効領域を空間的および電気的に分割して、個々の領域に独自に平行電界が印加可能となるように1以上の分割電極を配置し、各分割領域に対して短時間の電界を時間順次に印加することで、有効領域全体として電界印加時の液晶配向状態をほぼ維持することができる。この時、電界印加する分割領域の幅が狭く設定できるので、一定の電界強度を印加する場合、印加電圧値自体を従来の1/2以下に小さく設定することができる。したがって、装置内での放電やノイズの防止、電源の小型化などが図れる。   In the optical axis deflection method of the twelfth, thirteenth or fourteenth means, the effective area of the optical axis deflection element is spatially and electrically divided so that a parallel electric field can be independently applied to each area. By disposing one or more divided electrodes and sequentially applying a short electric field to each divided region in time, the liquid crystal alignment state at the time of applying the electric field can be substantially maintained for the entire effective region. At this time, since the width of the divided region to which the electric field is applied can be set narrow, when applying a constant electric field strength, the applied voltage value itself can be set to be ½ or less of the conventional voltage value. Therefore, discharge and noise in the apparatus can be prevented, and the power supply can be reduced in size.

第15の手段の光学軸偏向方法では、第11〜第14のいずれか一つの手段の光学軸偏向方法において、光学軸偏向素子の有効領域全体の平行電界の方向を反転させ、光学軸の傾斜方向を周期的に繰り返し反転動作させる場合には、光学軸の方向を反転させるための一時的な電界印加時間を、一方向に光学軸を維持するための一時的な電界印加時間よりも短く設定することで、分割した領域間で電界方向が異なる状態の期間を短くできる。したがって、有効領域全体の光学軸傾斜方向が一致している期間を長く設定することができる。   In the optical axis deflection method of the fifteenth means, in the optical axis deflection method of any one of the first to fourteenth means, the direction of the parallel electric field of the entire effective area of the optical axis deflection element is reversed to tilt the optical axis. When reversing the direction periodically, the temporary electric field application time for reversing the optical axis direction is set shorter than the temporary electric field application time for maintaining the optical axis in one direction. By doing so, the period in which the electric field directions are different between the divided regions can be shortened. Therefore, it is possible to set a long period during which the optical axis tilt directions of the entire effective region are coincident.

第16の手段の光学軸偏向方法では、第11〜第15のいずれか一つの手段の光学軸偏向方法において、前記光学軸偏向素子の有効領域内に平行電界を印加する分割電極が、基板面上に形成された多数本の透明ライン電極から成り、該透明ライン電極郡の面と液晶層との間に誘電体層が形成され、各透明ライン電極が抵抗体によって電気的に直列に接続され、前記分割領域の幅に対応する位置の二本の透明ライン電極の間に電位差を印加することにより、分割領域内の液晶層に平行な方向に所望の電位分布を形成させることができる。この時、各ライン電極のエッジ部近傍では電界分布が乱れるため、透明ライン電極郡の面と液晶層との間に誘電体層を形成することで、液晶層中の電界分布を均一化できる。   According to an optical axis deflection method of the sixteenth means, in the optical axis deflection method of any one of the first to fifteenth means, the divided electrode for applying a parallel electric field in the effective region of the optical axis deflection element is a substrate surface. It consists of a number of transparent line electrodes formed on top, and a dielectric layer is formed between the surface of the transparent line electrode group and the liquid crystal layer, and each transparent line electrode is electrically connected in series by a resistor. By applying a potential difference between the two transparent line electrodes at a position corresponding to the width of the divided region, a desired potential distribution can be formed in a direction parallel to the liquid crystal layer in the divided region. At this time, since the electric field distribution is disturbed near the edge portion of each line electrode, the electric field distribution in the liquid crystal layer can be made uniform by forming a dielectric layer between the surface of the transparent line electrode group and the liquid crystal layer.

ところで、第11〜第16のいずれか一つの手段の光学軸偏向方法においては、ある分割領域内に電界を生じさせるために該当する電極間にのみ電圧を印加し、他の分割領域に対応する電極を電気的にフロート状態にする場合、他の分割領域内には逆方向の電界が生じる場合がある。そこで、第17の手段の光学軸偏向方法では、電界印加状態の分割領域以外では、該当する電極間が同電位となるように各電極間での電圧値を制御することにより、液晶層の光学軸の傾斜状態を乱す不要な電界の発生を確実に防止できる。   By the way, in the optical axis deflection method of any one of the first to sixteenth means, a voltage is applied only between the corresponding electrodes in order to generate an electric field in a certain divided region, and it corresponds to the other divided regions. When the electrode is electrically floated, an electric field in the opposite direction may be generated in other divided regions. Therefore, in the optical axis deflection method of the seventeenth means, the optical value of the liquid crystal layer is controlled by controlling the voltage value between the electrodes so that the corresponding electrodes have the same potential except in the divided region in the electric field application state. Generation of an unnecessary electric field that disturbs the inclined state of the shaft can be reliably prevented.

第18の手段の光路偏向方法では、第11〜第17のいずれか一つの手段の光学軸偏向方法を用い、光学軸偏向素子への入射光を直線偏光とし、該直線偏光の偏光面を素子内の平行電界の印加方向に対して直交する方向に設定することで、液晶層の光学軸の傾斜方向に応じて液晶層内で光線がシフトし、入射光路に対する出射光路の位置を平行にシフトする。従って、電界方向を切換えて光学軸の傾斜方向を切換えることで、光線の出射位置を切換えることができる。   In the optical path deflection method of the eighteenth means, the optical axis deflection method of any one of the first to seventeenth means is used, the incident light to the optical axis deflection element is made linearly polarized light, and the polarization plane of the linearly polarized light is the element. By setting the direction perpendicular to the direction in which the parallel electric field is applied, the light beam is shifted in the liquid crystal layer according to the tilt direction of the optical axis of the liquid crystal layer, and the position of the outgoing optical path is made parallel to the incident optical path. shift. Therefore, the emission position of the light beam can be switched by switching the electric field direction and switching the tilt direction of the optical axis.

第19の手段の光学軸偏向装置では、光学軸偏向素子として第1〜第9のいずれか一つの手段の光学軸偏向素子を備え、電圧印加手段により、光学軸偏向素子の各電極に選択的に電圧を印加するので、印加する電圧値を従来の1/2以下に設定しても、従来と同様な光学軸偏向効果が得られ、放電やノイズの防止、電源の小型化などが図れる。   The optical axis deflecting device of the nineteenth means comprises the optical axis deflecting element of any one of the first to ninth means as the optical axis deflecting element, and is selectively applied to each electrode of the optical axis deflecting element by the voltage applying means. Therefore, even if the applied voltage value is set to ½ or less of the conventional voltage, the same optical axis deflection effect as that of the conventional one can be obtained, and discharge and noise can be prevented, and the power supply can be reduced in size.

第20、第21または第22の手段の光学軸偏向装置では、光学軸偏向素子の有効領域を空間的および電気的に分割して、個々の領域に独自に平行電界が印加可能となるように1以上の分割電極を配置し、各分割領域に対して短時間の電界を時間順次に印加することで、有効領域全体として電界印加時の液晶配向状態をほぼ維持することができる。この時、電界印加する分割領域の幅が狭く設定できるので、一定の電界強度を印加する場合、印加電圧値自体を従来の1/2以下に小さく設定することができる。したがって、装置内での放電やノイズの防止、電源の小型化などが図れる。   In the optical axis deflecting device of the twentieth, twenty-first or twenty-second means, the effective area of the optical axis deflecting element is spatially and electrically divided so that a parallel electric field can be independently applied to each area. By disposing one or more divided electrodes and sequentially applying a short electric field to each divided region in time, the liquid crystal alignment state at the time of applying the electric field can be substantially maintained for the entire effective region. At this time, since the width of the divided region to which the electric field is applied can be set narrow, when applying a constant electric field strength, the applied voltage value itself can be set to be ½ or less of the conventional voltage value. Therefore, discharge and noise in the apparatus can be prevented, and the power supply can be reduced in size.

第23の手段の光学軸偏向装置では、第19〜第22のいずれか一つの手段の光学軸偏向装置において、光学軸偏向素子の有効領域全体の平行電界の方向を反転させ、光学軸の傾斜方向を周期的に繰り返し反転動作させる場合には、光学軸の方向を反転させるための一時的な電界印加時間を、一方向に光学軸を維持するための一時的な電界印加時間よりも短く設定することで、分割した領域間で電界方向が異なる状態の期間を短くできる。したがって、有効領域全体の光学軸傾斜方向が一致している期間を長く設定することができる。   In the optical axis deflecting device of the twenty-third means, in the optical axis deflecting device of any one of the nineteenth to twenty-second means, the direction of the parallel electric field of the entire effective area of the optical axis deflecting element is reversed to tilt the optical axis. When reversing the direction periodically, the temporary electric field application time for reversing the optical axis direction is set shorter than the temporary electric field application time for maintaining the optical axis in one direction. By doing so, the period in which the electric field directions are different between the divided regions can be shortened. Therefore, it is possible to set a long period during which the optical axis tilt directions of the entire effective region are coincident.

第24の手段の光学軸偏向装置では、第19〜第23のいずれか一つの手段の光学軸偏向方法において、前記光学軸偏向素子の有効領域内に平行電界を印加する分割電極が、基板面上に形成された多数本の透明ライン電極から成り、該透明ライン電極郡の面と液晶層との間に誘電体層が形成され、各透明ライン電極が抵抗体によって電気的に直列に接続され、前記分割領域の幅に対応する位置の二本の透明ライン電極の間に電位差を印加することにより、分割領域内の液晶層に平行な方向に所望の電位分布を形成させることができる。この時、各ライン電極のエッジ部近傍では電界分布が乱れるため、透明ライン電極郡の面と液晶層との間に誘電体層を形成することで、液晶層中の電界分布を均一化できる。   In the optical axis deflecting device of the twenty-fourth means, in the optical axis deflecting method of any one of the nineteenth to twenty-third means, the divided electrode for applying a parallel electric field in the effective area of the optical axis deflecting element is provided on the substrate surface. It consists of a number of transparent line electrodes formed on top, and a dielectric layer is formed between the surface of the transparent line electrode group and the liquid crystal layer, and each transparent line electrode is electrically connected in series by a resistor. By applying a potential difference between the two transparent line electrodes at a position corresponding to the width of the divided region, a desired potential distribution can be formed in a direction parallel to the liquid crystal layer in the divided region. At this time, since the electric field distribution is disturbed near the edge portion of each line electrode, the electric field distribution in the liquid crystal layer can be made uniform by forming a dielectric layer between the surface of the transparent line electrode group and the liquid crystal layer.

ところで、第19〜第24のいずれか一つの手段の光学軸偏向装置においては、ある分割領域内に電界を生じさせるために該当する電極間にのみ電圧を印加し、他の分割領域に対応する電極を電気的にフロート状態にする場合、他の分割領域内には逆方向の電界が生じる場合がある。そこで、第25の手段の光学軸偏向装置では、電界印加状態の分割領域以外では、該当する電極間が同電位となるように各電極間での電圧値を制御することにより、液晶層の光学軸の傾斜状態を乱す不要な電界の発生を確実に防止できる。   By the way, in the optical axis deflecting device of any one of the nineteenth to twenty-fourth means, a voltage is applied only between the corresponding electrodes in order to generate an electric field in a certain divided region, and it corresponds to the other divided regions. When the electrode is electrically floated, an electric field in the opposite direction may be generated in other divided regions. Therefore, in the optical axis deflecting device of the twenty-fifth means, the optical value of the liquid crystal layer is controlled by controlling the voltage value between the electrodes so that the corresponding electrodes have the same potential except in the divided region in the electric field application state. Generation of an unnecessary electric field that disturbs the inclined state of the shaft can be reliably prevented.

第26の手段の光路偏向装置では、第10の手段の光路偏向素子と、前記電気信号に応じて前記光路偏向素子の各電極に選択的に電圧を印加する電圧印加手段とを備えたことにより、液晶層の光学軸の傾斜方向に応じて液晶層内で光線がシフトし、入射光路に対する出射光路の位置を平行にシフトすることができるので、電圧印加手段により電界方向を切換えて光学軸の傾斜方向を切換えることで、光線の出射位置を切換えることができる。   The optical path deflecting device of the twenty-sixth means comprises the optical path deflecting element of the tenth means and voltage applying means for selectively applying a voltage to each electrode of the optical path deflecting element in accordance with the electrical signal. The light beam is shifted in the liquid crystal layer according to the tilt direction of the optical axis of the liquid crystal layer, and the position of the outgoing optical path with respect to the incident optical path can be shifted in parallel. By switching the inclination direction, the light emission position can be switched.

第27の手段の光路偏向装置では、第19〜第25のいずれか一つの手段の光学軸偏向装置からなり、光学軸偏向素子への入射光を直線偏光とし、該直線偏光の偏光面を素子内の平行電界の印加方向に対して直交する方向に設定することで、液晶層の光学軸の傾斜方向に応じて液晶層内で光線がシフトし、入射光路に対する出射光路の位置を平行にシフトする。従って、電界方向を切換えて光学軸の傾斜方向を切換えることで、光線の出射位置を切換えることができる。   The optical path deflecting device of the twenty-seventh means comprises the optical axis deflecting device of any one of the nineteenth to twenty-fifth means, wherein the incident light to the optical axis deflecting element is linearly polarized light, and the polarization plane of the linearly polarized light is the element By setting the direction perpendicular to the direction in which the parallel electric field is applied, the light beam is shifted in the liquid crystal layer according to the tilt direction of the optical axis of the liquid crystal layer, and the position of the outgoing optical path is made parallel to the incident optical path. shift. Therefore, the emission position of the light beam can be switched by switching the electric field direction and switching the tilt direction of the optical axis.

第28、第29の手段の画像表示装置では、光路偏向手段として、第26または第27の光路偏向装置を備え、比較的低電圧で駆動が可能な大面積の光路偏向素子(光学軸偏向素子)を用いているので、比較的画素数の少ない画像表示素子を用いても高精細な画像を得ることができる。従って、高精細で低コスト、低消費電力な画像表示装置を実現することができる。   In the image display devices of the 28th and 29th means, a 26 or 27 optical path deflecting device is provided as the optical path deflecting means, and a large area optical path deflecting element (optical axis deflecting element) that can be driven at a relatively low voltage. Therefore, even if an image display element having a relatively small number of pixels is used, a high-definition image can be obtained. Therefore, a high-definition, low-cost, low power consumption image display apparatus can be realized.

以下、本発明の構成、動作及び作用を図面を参照して詳細に説明する。
まず、本発明の一実施形態として光学軸偏向素子の構成例を図1に基づいて説明する。図1に示すように、一対の透明な基板11,12が対向配置させて設けられている。透明な基板11,12としては、ガラス、石英、プラスチックなどを用いることができるが、複屈折性の無い透明材料が好ましい。基板11,12の厚みは数十μm〜数mmのものが用いられる。基板11,12の内側面には垂直配向膜13,14が形成されている。垂直配向膜13,14は基板表面に対して液晶分子を垂直配向(ホメオトロピック配向)させる材料ならば特に限定されないが、液晶ディスプレイ用の垂直配向剤やシランカップリング剤、SiO蒸着膜などを用いることができる。本発明で言う垂直配向(ホメオトロピック配向)とは、基板面に対して液晶分子が垂直に配向した状態だけではなく、数十度程度までチルトした配向状態も含む。
Hereinafter, the configuration, operation and action of the present invention will be described in detail with reference to the drawings.
First, a configuration example of an optical axis deflection element will be described with reference to FIG. 1 as an embodiment of the present invention. As shown in FIG. 1, a pair of transparent substrates 11 and 12 are provided so as to face each other. As the transparent substrates 11 and 12, glass, quartz, plastic, or the like can be used, but a transparent material having no birefringence is preferable. The substrates 11 and 12 have a thickness of several tens of μm to several mm. Vertical alignment films 13 and 14 are formed on the inner side surfaces of the substrates 11 and 12. The vertical alignment films 13 and 14 are not particularly limited as long as the liquid crystal molecules are vertically aligned (homeotropic alignment) with respect to the substrate surface. However, a vertical alignment agent for a liquid crystal display, a silane coupling agent, a SiO 2 vapor deposition film, or the like is used. Can be used. The vertical alignment (homeotropic alignment) referred to in the present invention includes not only a state in which liquid crystal molecules are aligned perpendicular to the substrate surface but also an alignment state in which the liquid crystal molecules are tilted to several tens of degrees.

両基板11,12の間隔をスペーサーを挟んで規定し、基板間に液晶層15を形成するとともに、その液晶層15の両端側に一組の電極16a,16bを形成する。スペーサーとしては数μmから数mm程度の厚みを持つシート部材あるいは同程度の粒径の粒子などが用いられ、素子の有効領域外に設けられることが好ましい。電極16a,16bとしてはアルミニウム、銅、クロムなどの金属シートや、基板面上に形成された前述の金属膜などが用いられる。素子の有効領域の両端部に配置される電極16a,16bは、液晶層15の厚みと同程度の厚みを持つ金属シートを用いることが好ましい。また、有効領域内に設けられ、有効領域を電気的に分割するための分割電極17としては、上記の電極と同様に金属シートなどを用いても良いが、均一な液晶層を形成し配向性を維持するために、液晶層内には分割電極を設けず、基板面上に配置される金属膜などを形成することが好ましい。この分割電極17の幅は狭いほど好ましいが、現実的には数ミクロン程度の幅とする。図1ではより好ましい例として、有効領域の両端部のスペーサー部材と金属シート部材(電極)16a,16bが共通であり、金属シート部材の厚みにより液晶層厚みが規定される。一例として、液晶層15としてはスメクチックC相を形成可能な液晶が用いられる。また、分割電極17は基板上にクロム膜を蒸着し、幅5μmのライン状に加工したものを用いた。各分割領域を挟むこれらの電極間に、図示しない電圧印加手段で電位差を印加することで、液晶層15の基板面に平行な方向に電界(以下、平行電界と言う)が印加される。   The distance between the substrates 11 and 12 is defined with a spacer interposed therebetween, and a liquid crystal layer 15 is formed between the substrates, and a pair of electrodes 16 a and 16 b are formed on both ends of the liquid crystal layer 15. As the spacer, a sheet member having a thickness of about several μm to several mm or particles having the same particle size is used, and is preferably provided outside the effective region of the element. As the electrodes 16a and 16b, a metal sheet such as aluminum, copper, or chromium, or the aforementioned metal film formed on the substrate surface is used. It is preferable to use a metal sheet having a thickness comparable to the thickness of the liquid crystal layer 15 for the electrodes 16 a and 16 b disposed at both ends of the effective region of the element. Further, as the divided electrode 17 provided in the effective region and for electrically dividing the effective region, a metal sheet or the like may be used similarly to the above electrode, but a uniform liquid crystal layer is formed and the orientation property is increased. In order to maintain the above, it is preferable to form a metal film or the like disposed on the substrate surface without providing divided electrodes in the liquid crystal layer. The width of the divided electrode 17 is preferably as narrow as possible, but in actuality, the width is about several microns. As a more preferable example in FIG. 1, the spacer members at both ends of the effective region and the metal sheet members (electrodes) 16a and 16b are common, and the thickness of the liquid crystal layer is defined by the thickness of the metal sheet member. As an example, the liquid crystal layer 15 is a liquid crystal capable of forming a smectic C phase. The divided electrode 17 used was a chromium film deposited on a substrate and processed into a line having a width of 5 μm. An electric field (hereinafter referred to as a parallel electric field) is applied in a direction parallel to the substrate surface of the liquid crystal layer 15 by applying a potential difference between these electrodes sandwiching each divided region by a voltage applying means (not shown).

ここで、スメクチックC相を形成可能な液晶層15に関して詳細に説明する。「スメクチック液晶」は液晶分子の長軸方向を層状(スメクチック層)に配列してなる液晶層である。このような液晶層に関し、上記層の法線方向(層法線方向)と液晶分子の長軸方向とが一致している液晶を「スメクチックA相」、法線方向と一致していない液晶を「スメクチックC相」と呼んでいる。スメクチックC相よりなる強誘電性液晶は、一般的に外部電界が働かない状態において各スメクチック層毎に液晶ダイレクタ方向が螺旋的に回転しているいわゆる螺旋構造をとり、「キラルスメクチックC相」と呼ばれる。また、キラルスメクチックC相でも、反強誘電性液晶は各層毎に液晶ダイレクタが対向する方向を向く。これらのキラルスメクチックC相よりなる液晶は、不斉炭素を分子構造に有し、これによって自発分極しているため、この自発分極Psと外部電界Eにより定まる方向に液晶分子が再配列することで光学特性が制御される。なお、本実施の形態等では、液晶層として強誘電性液晶を例にとり、光学軸偏向素子(及び光路偏向素子)の説明を行うが、反強誘電性液晶の場合にも同様に使用することができる。   Here, the liquid crystal layer 15 capable of forming a smectic C phase will be described in detail. A “smectic liquid crystal” is a liquid crystal layer in which the major axis direction of liquid crystal molecules is arranged in a layered manner (smectic layer). Regarding such a liquid crystal layer, a liquid crystal in which the normal direction of the layer (layer normal direction) and the major axis direction of the liquid crystal molecules coincide with each other is referred to as “smectic A phase”, and a liquid crystal that does not coincide with the normal direction. This is called “smectic C phase”. A ferroelectric liquid crystal composed of a smectic C phase generally has a so-called spiral structure in which the direction of the liquid crystal director is helically rotated for each smectic layer in the state where an external electric field does not work. be called. Further, even in the chiral smectic C phase, the antiferroelectric liquid crystal faces the direction in which the liquid crystal directors face each other. Since the liquid crystal composed of these chiral smectic C phases has an asymmetric carbon in the molecular structure and is spontaneously polarized by this, the liquid crystal molecules are rearranged in a direction determined by the spontaneous polarization Ps and the external electric field E. Optical properties are controlled. In this embodiment and the like, the ferroelectric liquid crystal is taken as an example of the liquid crystal layer and the optical axis deflecting element (and the optical path deflecting element) will be described. However, the same applies to the case of the antiferroelectric liquid crystal. Can do.

本発明の光学軸偏向素子の動作について図2を参照して説明する。図2(a),(b)は、図1に示した光学軸偏向素子10の任意の分割領域内(例えば図1の分割領域(1) )における電界方向と液晶分子の傾斜方向を模式的に示したものである。図2(a),(b)で、液晶分子の幅が広く描いてある側が紙面上側、幅が狭く描かれている側が紙面下側に傾いている様子を示している。また、液晶の自発分極(記号Psで記す)を矢印で示してある。図2(a),(b)に示すように、分割領域内の電界の向きが反転すると、略垂直配向した液晶分子のチルト角の方向が反転する。ここでは、自発分極Psが正の場合について電界印加方向と液晶分子のチルト方向の関係を図示している。ここで、チルト角の方向が反転する際、図2(a),(b)の下段の斜視図に示したような仮想的なコーン状の面内を回転運動すると考えられる。なお、キラルスメクチックC相の液晶分子配列のモデル(電界による螺旋構造変化のモデル)は図19に示した例と同様である。   The operation of the optical axis deflection element of the present invention will be described with reference to FIG. 2A and 2B schematically show the electric field direction and the tilt direction of the liquid crystal molecules in an arbitrary divided region (for example, the divided region (1) in FIG. 1) of the optical axis deflecting element 10 shown in FIG. It is shown in. 2A and 2B show a state in which the side on which the liquid crystal molecules are drawn wide is inclined to the upper side of the drawing and the side in which the width is drawn is inclined to the lower side of the drawing. In addition, the spontaneous polarization of the liquid crystal (denoted by the symbol Ps) is indicated by an arrow. As shown in FIGS. 2A and 2B, when the direction of the electric field in the divided region is reversed, the direction of the tilt angle of the substantially vertically aligned liquid crystal molecules is reversed. Here, the relationship between the electric field application direction and the tilt direction of the liquid crystal molecules in the case where the spontaneous polarization Ps is positive is illustrated. Here, when the direction of the tilt angle is reversed, it is considered that it moves in a virtual cone-shaped plane as shown in the lower perspective views of FIGS. 2 (a) and 2 (b). Note that the model of the liquid crystal molecular arrangement of the chiral smectic C phase (the model of the helical structure change by the electric field) is the same as the example shown in FIG.

次に液晶層15に電界を印加した時と除去した時について説明する。上述のように無電界下で螺旋構造を形成しているキラルスメクチックC相に電界を印加すると、液晶分子中のカルボニル基に起因する双極子と電場の相互作用によって液晶分子を配向させる電気的駆動力が働くため、電界印加時の液晶再配向時間は比較的短い。一般的な強誘電性液晶の場合、電界強度に応じてサブミリ秒から数十マイクロ秒で液晶の配向変化が完了する。一方、電界を除去した場合、液晶層15は無電界下の初期配向状態に戻ろうとするが、液晶層15の粘弾性に起因する復元力に基づくため、この配向変化は数十ミリ秒から数秒程度と遅い。本発明では、電界OFF時に液晶層15の再配向時間が十分に遅いことを利用する。すなわち、図1及び図3に示すように、光学軸偏向素子10の有効領域内を複数の領域に分割して、個々の領域に独自に平行電界が印加可能となるように1以上の分割電極17を配置する。   Next, a case where an electric field is applied to the liquid crystal layer 15 and a case where it is removed will be described. As described above, when an electric field is applied to the chiral smectic C phase forming a helical structure in the absence of an electric field, the electric drive for aligning the liquid crystal molecules by the interaction between the dipole and the electric field caused by the carbonyl group in the liquid crystal molecules Since the force works, the liquid crystal realignment time when an electric field is applied is relatively short. In the case of a general ferroelectric liquid crystal, the alignment change of the liquid crystal is completed in sub-milliseconds to several tens of microseconds depending on the electric field strength. On the other hand, when the electric field is removed, the liquid crystal layer 15 tries to return to the initial alignment state under no electric field. About slow. The present invention utilizes the fact that the realignment time of the liquid crystal layer 15 is sufficiently slow when the electric field is turned off. That is, as shown in FIGS. 1 and 3, the effective region of the optical axis deflecting element 10 is divided into a plurality of regions, and one or more divided electrodes can be applied independently to each region. 17 is arranged.

ここで、図3は説明を簡単にするために、光学軸偏向素子10の有効領域(有効幅L)の中心に1つの分割電極17を配置して、幅がL/2の2つの領域に分割した例である。そして光学軸偏向装置としては、光学軸偏向素子10の各電極16a,17,16bに、スイッチ部19(スイッチS1〜S4)と電源18からなる電圧印加手段を接続し、各電極に選択的に電圧を印加できる構成としている。例えば、図3(a)に示すように、図中左側の第一領域に電界を生じさせる第一電極間(電極16aと分割電極17間)に一時的に電圧を印加して第一領域の液晶層15aの光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第一領域の電圧を除去し、その後直ちに図3(b)に示すように、図中右側の第二領域に電界を生じさせる第二電極間(分割電極17と電極16b間)に一時的に電圧を印加して第二領域の液晶層15bの光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第二領域の電圧を除去する。その後、第一領域の光学軸傾斜状態が液晶層15aの再再配向によって初期状態に戻る時間よりも前に、再び第一電極間(電極16aと分割電極17間)に一時的に前回と同極性の電界を印加することで、第一領域の液晶層15aの光学軸傾斜状態を保つことができる。この動作を第一領域と第二領域の間で繰り返すことで、ある一定期間内において有効領域全体として光学軸の傾斜状態を略均一に保つことができる。   Here, in order to simplify the explanation, FIG. 3 shows that one divided electrode 17 is arranged at the center of the effective area (effective width L) of the optical axis deflecting element 10 and is divided into two areas having a width of L / 2. This is an example of division. As an optical axis deflecting device, a voltage applying means comprising a switch unit 19 (switches S1 to S4) and a power source 18 is connected to each electrode 16a, 17, 16b of the optical axis deflecting element 10, and each electrode is selectively connected. The voltage can be applied. For example, as shown in FIG. 3A, a voltage is temporarily applied between the first electrodes that generate an electric field in the first region on the left side of the diagram (between the electrode 16a and the divided electrode 17). After the optical axis of the liquid crystal layer 15a is tilted and the desired optical axis tilt state is reached, the voltage in the first region is removed, and immediately thereafter, as shown in FIG. After a voltage is temporarily applied between the second electrodes that generate an electric field (between the divided electrode 17 and the electrode 16b), the optical axis of the liquid crystal layer 15b in the second region is tilted, and a desired optical axis tilt state is achieved. To remove the voltage in the second region. Thereafter, before the time when the optical axis tilt state of the first region returns to the initial state due to re-orientation of the liquid crystal layer 15a, it is temporarily the same as the previous time again between the first electrodes (between the electrodes 16a and the divided electrodes 17). By applying a polar electric field, the optical axis tilt state of the liquid crystal layer 15a in the first region can be maintained. By repeating this operation between the first region and the second region, the tilted state of the optical axis can be kept substantially uniform throughout the effective region within a certain period.

なお、図中では説明の単純化のため、電源18として直流電源を図示し、一方向の電界のみが印加される例を示しているが、図2に示すような矩形波交流電圧等を印加する交流電源を用いて、電界方向を反転できるようにしても良い。
また、図3では、各電極16a,16b,17の電圧印加状態を切換えるスイッチ部19の機能のみを単純化して記載しているが、上記機能を実現するためのスイッチS1〜S4は耐電圧が高く、高速動作が可能なものを用いることが好ましい。このため、リレースイッチ等よりも、光で高速なスイッチング動作が可能で耐電圧が高いフォトカプラー等を組み合わせて用いることがより好ましい。また、このフォトカプラーの動作は外部からの電気信号で制御できるので、電気信号に応じて光学軸偏向素子の各電極に選択的に電圧を印加することができ、液晶層15の各分割領域に印加される電界の制御を容易に行うことができ、各分割領域の液晶層の光学軸の傾斜方向を容易に制御することができる。なお、以下の実施の形態に記載するスイッチについても同様である。
In the figure, for simplification of explanation, a DC power supply is shown as the power supply 18 and only an electric field in one direction is applied, but a rectangular wave AC voltage or the like as shown in FIG. 2 is applied. It is also possible to reverse the electric field direction using an alternating current power source.
In FIG. 3, only the function of the switch unit 19 for switching the voltage application state of the electrodes 16a, 16b, and 17 is described in a simplified manner. However, the switches S1 to S4 for realizing the above function have a withstand voltage. It is preferable to use one that is high and capable of high-speed operation. For this reason, it is more preferable to use a photocoupler or the like that can perform a high-speed switching operation with light and has a higher withstand voltage than a relay switch or the like. In addition, since the operation of the photocoupler can be controlled by an external electric signal, a voltage can be selectively applied to each electrode of the optical axis deflecting element according to the electric signal, and each divided region of the liquid crystal layer 15 can be applied. The applied electric field can be easily controlled, and the tilt direction of the optical axis of the liquid crystal layer in each divided region can be easily controlled. The same applies to the switches described in the following embodiments.

従来では図4のように、素子の両端部に設けた電極6a,6bに電源を接続して、素子の有効領域の幅全体に対して一括して平行電界を印加していたので、例えば有効幅Lが42mmの素子に対して、電界強度E=150V/mmを印加する場合、6.3kVの高電圧を印加するため、素子周辺部との放電防止などの安全対策を必要としていた。これに対して、図1及び図3に示す構成の光学軸偏向素子10では、光学軸偏向素子10の有効領域を空間的および電気的に2分割し、各分割領域に対して数ミリ秒程度の短時間の電界を交互に印加することで、有効領域全体として電界印加時の液晶配向状態をほぼ維持することができる。この方法では、電界を印加する分割領域の幅を半分の21mmに設定できるので、同様の電界強度E=150V/mmを印加する場合でも、印加電圧値自体を半分の3.15kVに設定することができる。したがって、光学軸偏向装置内での放電やノイズの発生の防止対策の簡略化や、電源の小型化などによって、装置全体の低コスト化が実現できる。   Conventionally, as shown in FIG. 4, a power source is connected to the electrodes 6a and 6b provided at both ends of the element, and a parallel electric field is applied to the entire effective area width of the element. When an electric field strength E = 150 V / mm is applied to an element having a width L of 42 mm, a high voltage of 6.3 kV is applied, so that safety measures such as prevention of discharge from the periphery of the element are required. On the other hand, in the optical axis deflecting element 10 having the configuration shown in FIGS. 1 and 3, the effective area of the optical axis deflecting element 10 is spatially and electrically divided into two, and about several milliseconds for each divided area. By alternately applying the short-time electric field, it is possible to substantially maintain the liquid crystal alignment state when the electric field is applied to the entire effective region. In this method, since the width of the divided region to which the electric field is applied can be set to 21 mm, which is half, even when the same electric field strength E = 150 V / mm is applied, the applied voltage value itself should be set to half, 3.15 kV. Can do. Therefore, the overall cost of the apparatus can be reduced by simplifying measures for preventing discharge and noise from occurring in the optical axis deflecting apparatus and reducing the size of the power supply.

上記の実施の形態では、光学軸偏向素子10の有効領域を2分割した構成について効果を述べたが、本発明の技術思想によれば、2分割に限らず実施することができる。すなわち、本発明の第二の実施形態では、光学軸偏向素子10の有効領域の幅をL、有効領域の幅全体に電圧を印加する場合の電圧値をV、この時印加される平均的な平行電界強度をE、一定の電界印加期間をTとした時、有効領域を電界印加方向に対してN個(Nは2以上の整数)に分割して電界が印加可能となるように1以上の電極を配置し、各分割領域の幅であるL/Nに対して、平均的な平行電界強度Eを印加するために、V/Nの電圧値をT/N以内の時間だけ一時的に印加し、一時的に電圧を印加する領域を時間順次に切換えることにより、時間平均すると有効領域全体に均等に平行電界強度Eを印加することができる。図5は、光学軸偏向素子10の有効領域を電界印加方向に対して3個に分割して電界が印加可能となるように2つの分割電極17a,17bを配置した場合の構成例を示している。また、電圧印加手段を構成するスイッチ部19は、各電極16a,17a,17b,16bに選択的に電圧を印加できるように、多数のスイッチ(フォトカプラー等)S1〜S10で構成されている。   In the above embodiment, the effect is described for the configuration in which the effective area of the optical axis deflecting element 10 is divided into two. However, according to the technical idea of the present invention, the present invention can be implemented without being limited to two. That is, in the second embodiment of the present invention, the effective area width of the optical axis deflecting element 10 is L, the voltage value when the voltage is applied to the entire effective area width is V, and the average value applied at this time is When the parallel electric field strength is E and the constant electric field application period is T, the effective region is divided into N (N is an integer of 2 or more) in the electric field application direction, and 1 or more so that the electric field can be applied. In order to apply an average parallel electric field strength E to L / N which is the width of each divided region, the voltage value of V / N is temporarily set to a time within T / N. By applying and temporally switching the region to which the voltage is temporarily applied, the parallel electric field strength E can be applied to the entire effective region evenly over time. FIG. 5 shows an example of a configuration in which two divided electrodes 17a and 17b are arranged so that the effective region of the optical axis deflecting element 10 is divided into three in the electric field application direction and an electric field can be applied. Yes. The switch unit 19 constituting the voltage application means is composed of a large number of switches (photocouplers, etc.) S1 to S10 so that a voltage can be selectively applied to the electrodes 16a, 17a, 17b, 16b.

ここでは一例として、有効領域の幅L=42mm、電界強度E=150V/mm、周波数f=60Hzで光学軸の傾斜方向を上下方向に変化させる場合を想定する。
図4に示す従来の構成の素子の場合は、素子の両端の電極6a,6bに矩形波交流電源などを接続し、所望の周波数で電界の向きを反転させれば良く、光学軸の向きを上向きにする期間T=8.33msec、下向きの期間T=8.33msecのように駆動する。これに対して、図5に示す構成の素子のように有効領域を3分割した場合、各分割領域にV/N=2.1kVを、時間T/N=2.78msecづつ順次印加する。3つの領域の印加が一回り終了したら、逆極性の電圧を同様に印加することで、交流動作を行うことができる。また、有効領域を空間的に3分割した場合でも、各分割領域への電界印加時間をT/6(=T/2N)やT/9(=T/3N)のように更に短時間として、期間Tの間に繰り返すことが好ましい。ここで、各分割領域への電界印加時間は、少なくとも電界ON時の液晶層の最配向時間よりも長いことが好ましい。例えば、液晶の応答時間が1msecと仮定した場合、時間的に6分割したT/6=1.39msecならば良好に動作するが、時間的に9分割したT/9=0.93msecでは良好な動作は期待できない。但し、このような最適な分割時間の範囲は、液晶材料の性質、電界強度、駆動周波数などで異なる。
Here, as an example, it is assumed that the effective axis width L = 42 mm, the electric field strength E = 150 V / mm, the frequency f = 60 Hz, and the tilt direction of the optical axis is changed in the vertical direction.
In the case of the element having the conventional configuration shown in FIG. 4, a rectangular wave AC power source or the like may be connected to the electrodes 6a and 6b at both ends of the element, and the direction of the electric field may be reversed at a desired frequency. Driving is performed such that the upward period T = 8.33 msec and the downward period T = 8.33 msec. On the other hand, when the effective area is divided into three as in the element having the configuration shown in FIG. 5, V / N = 2.1 kV is sequentially applied to each divided area every time T / N = 2.78 msec. When the application of the three regions is completed once, an AC operation can be performed by similarly applying a reverse polarity voltage. Further, even when the effective region is spatially divided into three, the electric field application time to each divided region is further shortened to T / 6 (= T / 2N) or T / 9 (= T / 3N), It is preferable to repeat during the period T. Here, the electric field application time to each divided region is preferably at least longer than the maximum alignment time of the liquid crystal layer when the electric field is ON. For example, assuming that the response time of the liquid crystal is 1 msec, it works well if T / 6 = 1.39 msec divided by 6 in time, but good if T / 6 = 0.93 msec divided by 9 in time. I cannot expect it to work. However, such an optimal division time range varies depending on properties of the liquid crystal material, electric field strength, driving frequency, and the like.

ここで改めて、光学軸偏向素子の交流駆動時の駆動タイミングの概要を図6に示す。ここでは、説明の簡略化のため、図3に示した有効領域を2分割した構成の光学軸偏向素子10を例にして説明するが、N分割した場合でも同様に考えることができる。図6(a),(b)は縦軸に各分割領域内での光学軸の傾斜角を表し、横軸は時間を表す。図6の(a)は第一の領域(分割領域(1))の状態、(b)は第二の領域(分割領域(2))の状態を表している。また、図中には各分割領域での電界印加タイミングを矢印で示した。また、図6の(c)は電源電圧(矩形波交流電圧)の1周期(周波数f=60Hzとして、1周期=16.67msec)の変化を表し、(d)はスイッチ部19の各スイッチS1〜S4のON,OFFの切り換えタイミングを表している。   Here, FIG. 6 shows an outline of the drive timing at the time of AC drive of the optical axis deflection element. Here, for the sake of simplification of explanation, the optical axis deflection element 10 having a configuration in which the effective area shown in FIG. 3 is divided into two parts will be described as an example. 6A and 6B, the vertical axis represents the tilt angle of the optical axis in each divided region, and the horizontal axis represents time. 6A shows the state of the first region (divided region (1)), and FIG. 6B shows the state of the second region (divided region (2)). In the figure, the electric field application timing in each divided region is indicated by an arrow. 6C shows a change in one cycle (frequency f = 60 Hz, 1 cycle = 16.77 msec) of the power supply voltage (rectangular wave AC voltage), and FIG. 6D shows each switch S1 of the switch unit 19. ~ Represents the ON / OFF switching timing of S4.

まず、分割領域(1) に電界+Eを印加すると直ちに光学軸の傾斜角は+θとなり飽和する。一定期間の印加後、分割領域(1) の電界をOFFし、分割領域(2) の電界印加に切換える。ここまでは、分割領域(1) のみが動作しているので、全体として均一では無い「動作初期」状態である。分割領域(2) の光学軸の傾斜角が+θに飽和した頃、分割領域(1) では液晶層の無電界再配向によって傾斜角が小さくなり始めているが、再び分割領域(1) に電界が印加されるためチルト角は時間平均で略+θに維持される。分割領域(2) でも同様にして光学軸の傾斜角が+θに維持される。液晶層の無電界時の再配向が遅い液晶材料を用いることで、両領域で同時に+θとなる「一定チルト角」の状態を維持することができる。   First, as soon as an electric field + E is applied to the divided region (1), the inclination angle of the optical axis becomes + θ and becomes saturated. After application for a certain period, the electric field in the divided region (1) is turned off, and the electric field is switched to the electric field application in the divided region (2). Up to this point, since only the divided region (1) is operating, the “initial operation” state is not uniform as a whole. When the tilt angle of the optical axis of the split region (2) is saturated to + θ, the tilt angle starts to decrease in the split region (1) due to the non-electric field reorientation of the liquid crystal layer. Since it is applied, the tilt angle is maintained at approximately + θ on a time average. Similarly in the divided region (2), the inclination angle of the optical axis is maintained at + θ. By using a liquid crystal material in which realignment of the liquid crystal layer is slow when there is no electric field, it is possible to maintain a “constant tilt angle” state in which both regions are simultaneously + θ.

次に、光学軸の傾斜角を反転させるタイミングについて説明する。図6(a)で、まず分割領域(1) に反転電界−Eを印加して分割領域(1) のチルト角を−θに飽和させる。この間は分割領域(2) は無電界下でチルト角が略+θの状態である。すなわち、この状態は分割領域(1) と(2) と光学軸の傾斜方向が異なる「不一致」状態になってしまう。その後、分割領域(2) にも反転電界−Eが印加されれば、この不一致状態は直ちに解消され、同時に−θとなる「一定チルト角」の状態となる。この不一致状態の期間は、本発明の光学軸偏向素子にとっては、素子全体を平均化して使用するような場合には好ましくないので、できるだけ不一致状態の期間を短く設定することが好ましい。この不一致状態の期間は、一回の電界印加時間と一致しているので、前述のように電圧印加の時間的な分割回数を増やすことが好ましい。ここで、図7は電圧印加の時間的な分割回数を増やした場合の駆動タイミングの例を示しており、このようにスイッチ部19の各スイッチS1〜S4のON,OFFの切り換え動作を速くして電圧印加の時間的な分割回数を増やすことにより、不一致状態の期間を短く設定することができる。   Next, the timing for reversing the tilt angle of the optical axis will be described. In FIG. 6A, first, an inversion electric field -E is applied to the divided region (1) to saturate the tilt angle of the divided region (1) to -θ. During this time, the divided region (2) is in a state where the tilt angle is approximately + θ under no electric field. That is, this state is a “mismatch” state in which the tilt directions of the optical axes are different from those of the divided regions (1) and (2). Thereafter, if the inversion electric field -E is applied also to the divided region (2), this inconsistency state is immediately eliminated, and at the same time, a "constant tilt angle" state in which -θ is obtained. The period of the mismatch state is not preferable for the optical axis deflecting element of the present invention when the entire element is averaged and used. Therefore, it is preferable to set the period of the mismatch state as short as possible. Since the period of the inconsistency coincides with one electric field application time, it is preferable to increase the number of time division of voltage application as described above. Here, FIG. 7 shows an example of the drive timing when the number of time divisions of voltage application is increased. In this way, the ON / OFF switching operation of the switches S1 to S4 of the switch unit 19 is made faster. Thus, by increasing the number of time divisions of voltage application, the non-matching period can be set short.

さらに別の実施形態として、図8に示すように、電界反転時のみ電界印加時間を短く設定することもできる。すなわち、図8に示すように、スイッチ部19の各スイッチS1〜S4のON,OFFの切り換え動作により、有効領域全体の平行電界の方向を反転させるタイミングにおいては、光学軸の方向を反転させるための一時的な電界印加時間を、一方向に光学軸を維持するための一時的な電界印加時間よりも短く設定する。図8では、「一定チルト角」の状態で印加する時間に比べて、「反転動作」中での印加時間を1/4程度に設定することで、「不一致」状態の時間を短縮することができる。したがって、有効領域全体の光学軸傾斜方向が一致している状態を長く設定し、光学特性の時間的および空間的な均一性を向上させることができる。ここで、反転動作中での電界印加時間は、少なくとも電界ON時の液晶層の最配向時間よりも長いことが好ましい。   As yet another embodiment, as shown in FIG. 8, the electric field application time can be set short only when the electric field is reversed. That is, as shown in FIG. 8, at the timing of reversing the direction of the parallel electric field of the entire effective region by the ON / OFF switching operation of the switches S1 to S4 of the switch unit 19, the direction of the optical axis is reversed. Is set shorter than the temporary electric field application time for maintaining the optical axis in one direction. In FIG. 8, the time of the “mismatch” state can be shortened by setting the application time during the “reversal operation” to about ¼ as compared with the time of application at the “constant tilt angle” state. it can. Therefore, it is possible to set a long state in which the optical axis tilt directions of the entire effective region coincide with each other, thereby improving temporal and spatial uniformity of the optical characteristics. Here, the electric field application time during the reversal operation is preferably at least longer than the maximum alignment time of the liquid crystal layer when the electric field is ON.

ところで、上述の光学軸偏向素子では、有効領域内に設ける分割電極を金属膜としたが、金属膜では有効領域の透過光を遮光してしまうという問題がある。特に、分割領域の数を増やしていくと、分割電極の数も増えるので、素子全体としての透過率低下が問題となってくる。そこで、本発明のさらに別の実施形態では、図9に示す光学軸偏向素子10のように、有効領域内の分割電極を、基板表面に形成されたライン状の透明電極20とする。このようにライン状の透明電極20を用いることにより、透過光を遮断することを防止し、光の透過率を向上させることができる。なお、透明電極材料としては、ITO(インジウム含有酸化スズ)、ZnOなど酸化物半導体の蒸着膜やスパッタ膜を用いることが好ましい。また、これらの酸化物半導体の微粒子を樹脂中に分散した材料を塗布・形成しても良い。   By the way, in the above-mentioned optical axis deflection element, the divided electrode provided in the effective region is a metal film. However, the metal film has a problem that light transmitted through the effective region is shielded. In particular, when the number of divided regions is increased, the number of divided electrodes also increases, so that a decrease in transmittance as a whole element becomes a problem. Therefore, in still another embodiment of the present invention, like the optical axis deflecting element 10 shown in FIG. 9, the divided electrodes in the effective region are the line-shaped transparent electrodes 20 formed on the substrate surface. By using the line-shaped transparent electrode 20 in this way, it is possible to prevent the transmitted light from being blocked and to improve the light transmittance. As the transparent electrode material, it is preferable to use a vapor-deposited film or a sputtered film of an oxide semiconductor such as ITO (indium-containing tin oxide) or ZnO. Alternatively, a material in which these oxide semiconductor fine particles are dispersed in a resin may be applied and formed.

次に、光学軸偏向素子の有効面積を更に大きく設計する場合について説明する。素子の幅が大きくなると、一定電界を得るためには、単純に印加電圧値が大きくなってしまう。そこで、本発明のように有効領域を分割して時間順次に駆動することで、一度に電界駆動する幅を小さくして印加電圧を低減することができる。したがって、更なる素子の大面積化に伴って分割数を更に増やすことが考えられるが、電圧切換えスイッチの複雑化や液晶層の無電界時の再配向時間による制約などから、分割数Nは2から4程度が好ましい。実用的には装置内で安全に使用する高電圧の上限が許す限り、分割数Nはできるだけ少なく設定することが好ましい場合もある。その場合、分割領域の幅は比較的広く設定することになるが、分割領域の幅が数ミリから10ミリ程度になってくると、図3や図9のように分割領域の両端部に電極を配置して電圧を印加しただけでは、分割領域の中央部に効果的に電界が印加されないという別な問題が発生する場合がある。すなわち、素子の基板面に平行な方向での電極間隔が広くなると、電極近傍の数ミリの範囲に電界が集中し、分割領域内での電界均一性が悪化する場合がある。   Next, a case where the effective area of the optical axis deflecting element is designed to be larger will be described. As the element width increases, the applied voltage value simply increases in order to obtain a constant electric field. Therefore, by dividing the effective area and driving sequentially in time as in the present invention, the applied voltage can be reduced by reducing the width of electric field driving at a time. Therefore, it is conceivable that the number of divisions is further increased as the area of the device is further increased. However, the number of divisions N is 2 due to the complexity of the voltage changeover switch and the restriction due to the reorientation time when the liquid crystal layer is in the absence of an electric field. To about 4 are preferable. In practice, it may be preferable to set the number of divisions N as small as possible as long as the upper limit of the high voltage used safely in the apparatus allows. In this case, the width of the divided area is set to be relatively wide. However, when the width of the divided area is about several millimeters to 10 millimeters, electrodes are formed at both ends of the divided area as shown in FIGS. If only the voltage is applied with the arrangement, another problem that the electric field is not effectively applied to the central portion of the divided region may occur. That is, when the electrode interval in the direction parallel to the substrate surface of the element is increased, the electric field is concentrated in a range of several millimeters near the electrode, and the electric field uniformity in the divided region may be deteriorated.

そこで本発明のさらに別の実施形態では、図10及び図11に示す光学軸偏向素子30のように、有効領域内に平行電界を印加するための電極及び分割電極が、基板面上に形成された多数本の透明ライン電極21から成り、透明ライン電極郡の面と液晶層15との間に誘電体層22を形成し、各透明ライン電極郡が抵抗体24によって電気的に直列に接続され、分割領域(1)または分割領域(2)の幅に対応する位置(すなわち、分割領域(1)または分割領域(2)の両端の位置)の二本の透明ライン電極21の間に電位差を印加する構成とした。また、この例では、素子の有効領域の両端部の電極も基板面に形成した透明ライン電極21としているので、液晶層15の両端にはスペーサー23が配置されている。   Therefore, in yet another embodiment of the present invention, like the optical axis deflection element 30 shown in FIGS. 10 and 11, an electrode and a divided electrode for applying a parallel electric field in the effective region are formed on the substrate surface. A plurality of transparent line electrodes 21, a dielectric layer 22 is formed between the surface of the transparent line electrode group and the liquid crystal layer 15, and each transparent line electrode group is electrically connected in series by a resistor 24. A potential difference is generated between the two transparent line electrodes 21 at positions corresponding to the width of the divided area (1) or the divided area (2) (that is, positions at both ends of the divided area (1) or the divided area (2)). It was set as the structure applied. In this example, the electrodes at both ends of the effective area of the element are also the transparent line electrodes 21 formed on the substrate surface, so that the spacers 23 are disposed at both ends of the liquid crystal layer 15.

上記の透明ライン電極21を構成する材料としては、ITO、ZnOなど酸化物半導体の蒸着膜やスパッタ膜を用いることが好ましい。また、これらの酸化物半導体の微粒子を樹脂中に分散した材料を塗布・形成しても良い。透明ライン電極の幅は細いほど好ましいが実用的には10μm程度の幅に加工される。ライン電極間のピッチは数十μmから数百μm程度が好ましいが、後述する誘電体層の誘電率や厚みなどに関連して設定される。   As a material constituting the transparent line electrode 21, it is preferable to use a vapor deposition film or a sputtered film of an oxide semiconductor such as ITO or ZnO. Alternatively, a material in which these oxide semiconductor fine particles are dispersed in a resin may be applied and formed. The width of the transparent line electrode is preferably as narrow as possible, but is practically processed to a width of about 10 μm. The pitch between the line electrodes is preferably about several tens of μm to several hundreds of μm, but is set in relation to the dielectric constant and thickness of the dielectric layer described later.

誘電体層22としては、ガラスや樹脂など透明性の高いものを用いることができる。特に複屈折性の無い材料を用いることが好ましい。誘電体層22の厚みは、数μmから数百μm程度が好ましいが、透明ライン電極21のピッチとの関連から設定される。誘電体層22は透明な接着剤によって、透明ライン電極21を形成した基板面上に貼りつけられる。誘電体層22を薄く形成する場合には、厚い誘電体層を接着した後、所望の厚みまで研磨しても良い。接着剤は透過率が高く、その屈折率が比較的大きく透明電極材料の屈折率に近いことが好ましい。さらに、誘電体層22の上に液晶配向膜13,14を形成するため、配向膜形成プロセスでの加熱処理に耐えうる100℃から200℃程度の耐熱性も要求される。また、誘電体層22および配向膜13,14が樹脂の場合、両者の塗布溶媒などを最適化しておく必要が有る。このように誘電体層22および配向膜13,14を貼り合せたものを上下の基板として、基板間に液晶層15を充填して図10のような光学軸偏向素子を作製する。この時、図10では上下基板の透明ライン電極21の位置が一致しているが、素子を上から見て、上下基板の透明ライン電極21が交互に配置されるように組み合わせても良い。   As the dielectric layer 22, a highly transparent material such as glass or resin can be used. In particular, it is preferable to use a material having no birefringence. The thickness of the dielectric layer 22 is preferably about several μm to several hundred μm, but is set in relation to the pitch of the transparent line electrodes 21. The dielectric layer 22 is attached to the substrate surface on which the transparent line electrode 21 is formed by a transparent adhesive. When the dielectric layer 22 is formed thin, it may be polished to a desired thickness after bonding the thick dielectric layer. The adhesive preferably has a high transmittance and a relatively large refractive index, which is close to the refractive index of the transparent electrode material. Furthermore, since the liquid crystal alignment films 13 and 14 are formed on the dielectric layer 22, heat resistance of about 100 ° C. to 200 ° C. that can withstand heat treatment in the alignment film forming process is also required. Moreover, when the dielectric layer 22 and the alignment films 13 and 14 are resin, it is necessary to optimize the coating solvent of both. An optical axis deflecting element as shown in FIG. 10 is produced by filling the dielectric layer 22 and the alignment films 13 and 14 as upper and lower substrates and filling the liquid crystal layer 15 between the substrates. At this time, the positions of the transparent line electrodes 21 on the upper and lower substrates are the same in FIG. 10, but they may be combined so that the transparent line electrodes 21 on the upper and lower substrates are alternately arranged when the element is viewed from above.

次に、各透明ライン電極21を電気的に直列に接続するために、図11のように抵抗体24を形成する。抵抗体24は、所望の抵抗値を発現し透明ライン電極上に形成可能なものであれば良い。抵抗体24が安定的に機能し、抵抗破壊等がなく、抵抗体の過度な発熱による液晶特性への悪影響を防止するためには、表面抵抗が1×107Ω/□以上の材料が好ましい。具体的には、酸化クロムや酸化スズ、酸化アンチモン、酸化亜鉛、ATO(アンチモン含有酸化スズ)、またはこれらの微粒子を樹脂中に分散させた塗布型の材料などが使用できる。透明ライン電極上への形成方法としては、蒸着やスパッタによる方法、あるいは塗布型の抵抗体材料では、スピンコート方法やフレキソ印刷、スクリーン印刷などの印刷方法、あるいはノズルやインクジェット方式などの噴射方法も用いることができる。形成方法によっては抵抗体形成部分以外をマスキングする必要もある。透明ライン電極上における抵抗体の形成幅は、抵抗体材料によっても多少異なるが、1mmから5mm程度が好ましい。また、図11のように基板上に抵抗体24を形成する以外に、フレキシブル基板などを用いて各透明ライン電極を延長し、素子以外の別な基板上で抵抗体材料あるいは抵抗アレイに接続しても良い。図11では、素子の両端と中央の3本の透明ライン電極21をスイッチ部19を介して電源18に接続可能に設定し、2つの領域(1),(2)に分割している。従って、この素子の駆動方法は、前述の図6〜8を参照して説明した駆動方法と同様で良い。 Next, in order to electrically connect each transparent line electrode 21 in series, a resistor 24 is formed as shown in FIG. The resistor 24 may be any resistor that expresses a desired resistance value and can be formed on the transparent line electrode. A material having a surface resistance of 1 × 10 7 Ω / □ or more is preferable in order that the resistor 24 functions stably, does not break down, and prevents adverse effects on liquid crystal characteristics due to excessive heat generation of the resistor. . Specifically, chromium oxide, tin oxide, antimony oxide, zinc oxide, ATO (antimony-containing tin oxide), or a coating-type material in which these fine particles are dispersed in a resin can be used. As a forming method on the transparent line electrode, there are a deposition method, a sputtering method, a coating type resistor material, a spin coating method, a flexographic printing method, a printing method such as screen printing, and a jetting method such as a nozzle or an ink jet method. Can be used. Depending on the forming method, it is necessary to mask other than the resistor forming portion. The formation width of the resistor on the transparent line electrode is slightly different depending on the resistor material, but is preferably about 1 mm to 5 mm. In addition to forming the resistor 24 on the substrate as shown in FIG. 11, each transparent line electrode is extended using a flexible substrate and connected to a resistor material or resistor array on another substrate other than the element. May be. In FIG. 11, the three transparent line electrodes 21 at both ends and the center of the element are set to be connectable to the power source 18 via the switch unit 19 and are divided into two regions (1) and (2). Therefore, the driving method of this element may be the same as the driving method described with reference to FIGS.

上記の光学軸偏向素子30では、有効領域内に透明ライン電極21による周期構造が形成されているため、透明電極材料と接着剤の屈折率差が大きくなると、透明ライン電極による周期構造が回折格子として作用し、回折現象が発生する場合がある。   In the optical axis deflecting element 30 described above, the periodic structure by the transparent line electrode 21 is formed in the effective region. Therefore, when the refractive index difference between the transparent electrode material and the adhesive increases, the periodic structure by the transparent line electrode becomes a diffraction grating. In some cases, a diffraction phenomenon occurs.

そこで本発明のさらに別の実施形態では、図12及び図13に示す光学軸偏向素子40のように、透明ライン電極21は素子の有効領域の両端部と分割位置にのみ配置され、有効領域内の基板面に透明な抵抗体層25が形成されている。この構成では、有効領域内に周期構造が無いので透過光の回折現象を防止できる。また、誘電体層を設けなくても、透明抵抗体層25により比較的均一な平行電界を形成できる。さらに、透明抵抗体層25の局所的な抵抗ムラや欠陥に起因する電界の乱れを平均化するために、透明抵抗体層25と液晶層15の間に、図10,11と同様の誘電体層22を形成しても良い。   Therefore, in still another embodiment of the present invention, like the optical axis deflection element 40 shown in FIGS. 12 and 13, the transparent line electrodes 21 are arranged only at both ends and division positions of the effective area of the element, and within the effective area. A transparent resistor layer 25 is formed on the substrate surface. In this configuration, since there is no periodic structure in the effective region, the diffraction phenomenon of transmitted light can be prevented. Further, a relatively uniform parallel electric field can be formed by the transparent resistor layer 25 without providing a dielectric layer. Furthermore, in order to average the electric field disturbance caused by local resistance unevenness and defects of the transparent resistor layer 25, a dielectric similar to that shown in FIGS. 10 and 11 is interposed between the transparent resistor layer 25 and the liquid crystal layer 15. Layer 22 may be formed.

透明抵抗体層25の形成材料としては、酸化スズ系、酸化インジウム系などの導電性粉末の樹脂分散膜を用いることができる。樹脂分散膜の場合、スピンコート法や各種印刷方法によって形成することができる。また、透明抵抗体膜として光透過性金属酸化物も用いることができる。金属酸化物としては、例えば2元系化合物としては酸化スズ、酸化亜鉛、酸化カドミウム、酸化インジウム、酸化鉛、酸化ガリウム、3元系化合物としては、マグネシウム・インジウム酸化物、ガリウム・インジウム酸化物、亜鉛・インジウム酸化物、亜鉛・スズ酸化物、などを用いることができる。これらの中に添加物、例えば酸化スズにアンチモン、フッ素、酸化インジウムにスズ、酸化亜鉛にアンチモン、ガリウム、ホウ素等を加えてもよい。金属酸化物層の形成方法として物理的堆積法を用いれば、比較的低温状態で原子・分子レベルから膜を成長させていくことが可能であるため、基板選択の自由度が広く、広い面積にわたって厚さと組成が均一な膜が得られる。物理的堆積法としては、真空蒸着法、イオンプレーティング法、スパッタリング法等が工業的にも広く利用されている。   As a material for forming the transparent resistor layer 25, a resin dispersion film of conductive powder such as tin oxide or indium oxide can be used. In the case of a resin dispersion film, it can be formed by spin coating or various printing methods. Further, a light transmissive metal oxide can also be used as the transparent resistor film. Examples of the metal oxide include tin oxide, zinc oxide, cadmium oxide, indium oxide, lead oxide, gallium oxide as binary compounds, magnesium / indium oxide, gallium / indium oxide as ternary compounds, Zinc / indium oxide, zinc / tin oxide, or the like can be used. Among these, additives such as antimony, fluorine, tin indium oxide, antimony, gallium, boron and the like in zinc oxide may be added. If a physical deposition method is used as a method for forming a metal oxide layer, it is possible to grow a film from the atomic / molecular level at a relatively low temperature, so that the degree of freedom of substrate selection is wide and it covers a large area. A film having a uniform thickness and composition can be obtained. As the physical deposition method, a vacuum deposition method, an ion plating method, a sputtering method and the like are widely used industrially.

本実施形態の透明抵抗体層25の機能は、基板面に沿って所望の電位勾配を形成させるためのものであり、通電した時の発熱量が小さい条件で使用することが好ましい。そのため、表面抵抗値が1×10Ω/□程度以上の高抵抗の透明抵抗体を用いることが好ましい。これに対応した体積抵抗値を考える場合、抵抗体の膜厚が0.1μmの時は10Ωcm以上、膜厚が1μmの時は10Ωcm以上、膜厚が10μmの時は10Ωcm以上であることが好ましい。この時、抵抗体の時定数はマイクロ秒以下であり、数百マイクロ秒周期で電圧を切換えるような用途では実用上問題無い値である。
図13では、有効領域の両端部の電極と中央の分割電極を構成する3本の透明ライン電極21をスイッチ部19を介して電源18に接続可能に設定し、2つの分割領域(1),(2)に分割している。従って、この素子の駆動方法は、前述の図6〜8を参照して説明した駆動方法と同様で良い。
The function of the transparent resistor layer 25 of the present embodiment is to form a desired potential gradient along the substrate surface, and is preferably used under the condition that the amount of heat generated when energized is small. Therefore, it is preferable to use a high-resistance transparent resistor having a surface resistance value of about 1 × 10 8 Ω / □ or more. When considering the volume resistance value corresponding to this, when the film thickness of the resistor is 0.1 μm, it is 10 3 Ωcm or more, when the film thickness is 1 μm, it is 10 4 Ωcm or more, and when the film thickness is 10 μm, it is 10 5 Ωcm. The above is preferable. At this time, the time constant of the resistor is not more than microseconds, and is a value that causes no practical problem in applications where the voltage is switched at a cycle of several hundred microseconds.
In FIG. 13, the three transparent line electrodes 21 constituting the electrodes at both ends of the effective region and the central divided electrode are set to be connectable to the power source 18 through the switch unit 19, and two divided regions (1), It is divided into (2). Therefore, the driving method of this element may be the same as the driving method described with reference to FIGS.

上記の構成により有効領域全体としてほぼ均一な光学軸偏向動作を行うことができるが、分割電極近傍を詳細に観察すると、光学軸の均一性が損なわれる場合がある。例えば、図9のように分割電極としてライン状の透明電極20を用いた場合について説明する。
図20は図9と同様な素子の電界印加状態を示した図であり、配向膜は省略してある。また、図中央部の破線は上側基板12の分割電極20と下側基板11の分割電極20が電気的に接続されていることを示している。図20の(a)は左側の分割領域に電圧を印加している状態、(b)は右側の分割領域に電圧を印加している状態を示す。ここでは、電圧印加状態の切換えスイッチの構成図や、その動作の説明は省略する。分割電極20は少なくとも10μm程度の幅を有しているが、その電極幅の中では同電位であるため電極幅内に電界は発生しない。そのため電極近傍の液晶層内には電界が低下した部分が発生する。図20のように上下基板11,12の分割電極20の位置が光の透過方向(紙面上下方向)に対して一致している場合、図20の中央の斜線部分は(a)と(b)の両方の電界印加状態において無電界領域と隣接しているので、常に低電界部分になりやすい。この低電界部分では光学軸の傾斜角が局所的に小さくなり、有効領域全体の均一性を低下させる原因となる。特に、この低電界領域に垂直に入射する光線は、この部分の影響を受けやすくなる。
Although the optical axis deflection operation can be performed substantially uniformly over the entire effective area by the above configuration, the uniformity of the optical axis may be impaired when the vicinity of the divided electrodes is observed in detail. For example, the case where the line-shaped transparent electrode 20 is used as a division | segmentation electrode like FIG. 9 is demonstrated.
FIG. 20 is a diagram showing an electric field application state of the element similar to that in FIG. 9, and the alignment film is omitted. A broken line in the center of the figure indicates that the divided electrode 20 of the upper substrate 12 and the divided electrode 20 of the lower substrate 11 are electrically connected. 20A shows a state in which a voltage is applied to the left divided region, and FIG. 20B shows a state in which a voltage is applied to the right divided region. Here, a configuration diagram of the voltage application state changeover switch and description of its operation are omitted. The divided electrode 20 has a width of at least about 10 μm, but no electric field is generated within the electrode width because the divided electrode 20 has the same potential within the electrode width. Therefore, a portion where the electric field is reduced is generated in the liquid crystal layer near the electrode. When the positions of the divided electrodes 20 of the upper and lower substrates 11 and 12 coincide with the light transmission direction (up and down direction on the paper surface) as shown in FIG. 20, the hatched portions in the center of FIG. 20 are (a) and (b). In both electric field application states, since it is adjacent to the non-electric field region, it tends to always be a low electric field portion. In this low electric field portion, the tilt angle of the optical axis is locally reduced, which causes a decrease in the uniformity of the entire effective region. In particular, a light beam perpendicularly incident on the low electric field region is easily affected by this portion.

そこで、本発明では図21に示すように、上下の分割電極20の位置をズラして配置することで、低電界領域を液晶層の厚み方向に対して斜め方向に発生させることができる。したがって、分割電極付近の基板に垂直に入射する光線は、液晶層15の厚み方向に対して一部のみ低電界領域を通過するので、図20のように液晶層厚み全体が低電界領域になる場合に比べて影響を受け難くなる。
なお、分割電極の位置をズラして配置する構成は、図12および図13の透明抵抗体層25を設けた構成でも同様な効果が得られる。
Therefore, in the present invention, as shown in FIG. 21, the low electric field region can be generated obliquely with respect to the thickness direction of the liquid crystal layer by arranging the upper and lower divided electrodes 20 so as to be displaced. Therefore, the light beam perpendicularly incident on the substrate in the vicinity of the divided electrodes passes through the low electric field region only partially in the thickness direction of the liquid crystal layer 15, so that the entire liquid crystal layer thickness becomes the low electric field region as shown in FIG. It will be less affected than the case.
Note that the same effect can be obtained even when the transparent resistor layer 25 shown in FIGS. 12 and 13 is provided in the configuration in which the positions of the divided electrodes are shifted.

また、分割電極の構成として図10および図11のような透明ライン電極郡(多数本の透明ライン電極21)を配置した場合、図22のように分割電極として接続する上側基板12の透明ライン電極21と下側基板11の透明ライン電極21の位置が異なるように設定すれば良い。これにより、液晶層内部に発生する低電界領域を斜めに形成されることができる。したがって、分割電極付近の基板に垂直に入射する光線は、液晶層15の厚み方向に対して一部のみ低電界領域を通過するので、図20のように液晶層厚み全体が低電界領域になる場合に比べて影響を受け難くなる。   When transparent line electrode groups (multiple transparent line electrodes 21) as shown in FIG. 10 and FIG. 11 are arranged as the divided electrodes, the transparent line electrodes of the upper substrate 12 connected as divided electrodes as shown in FIG. What is necessary is just to set so that the position of 21 and the transparent line electrode 21 of the lower substrate 11 may differ. Thereby, the low electric field region generated inside the liquid crystal layer can be formed obliquely. Therefore, the light beam perpendicularly incident on the substrate in the vicinity of the divided electrodes passes through the low electric field region only partially in the thickness direction of the liquid crystal layer 15, so that the entire liquid crystal layer thickness becomes the low electric field region as shown in FIG. It will be less affected than the case.

しかし、図21や図22において上基板12と下基板11での分割電極の位置ズレが大きくなると、液晶層15の厚み方向にも電界成分が発生し、電界印加部分での光学軸傾斜方向が変化してしまう。図23に図22(b)の分割電極付近の電界方向のモデル図を示す。ここでは液晶層内の電界を単純なモデルで考える。分割電極として設定した電極の電位をV1とし、上下基板の分割電極のズレ量をΔX、素子厚み方向の電極間距離をΔZ、下側の分割電極の位置に対応した上側のライン電極の電位をV2とする。また、上側の分割電極に対応した下側のライン電極の電位はほぼV1と等しいと仮定する。厳密には基板や誘電体層、液晶層の誘電率などから内部の電界分布を推定することが好ましいが、ここでは単純化して全ての材料の誘電率は等しいと仮定する。また、液晶層内の電界方向が45度以上傾斜すると液晶層の垂直配向性が悪化し、白濁などの配向結果が発生すると考えられる。   However, in FIG. 21 and FIG. 22, when the positional deviation of the divided electrodes between the upper substrate 12 and the lower substrate 11 increases, an electric field component is generated in the thickness direction of the liquid crystal layer 15, and the optical axis tilt direction at the electric field application portion is It will change. FIG. 23 shows a model diagram of the electric field direction in the vicinity of the divided electrode in FIG. Here, the electric field in the liquid crystal layer is considered by a simple model. The potential of the electrode set as the divided electrode is V1, the deviation amount of the divided electrodes on the upper and lower substrates is ΔX, the distance between the electrodes in the element thickness direction is ΔZ, and the potential of the upper line electrode corresponding to the position of the lower divided electrode is V2. Further, it is assumed that the potential of the lower line electrode corresponding to the upper divided electrode is substantially equal to V1. Strictly speaking, it is preferable to estimate the internal electric field distribution from the dielectric constants of the substrate, the dielectric layer, and the liquid crystal layer, but it is assumed here that the dielectric constants of all the materials are the same for simplification. Further, when the electric field direction in the liquid crystal layer is inclined by 45 degrees or more, the vertical alignment property of the liquid crystal layer is deteriorated, and an alignment result such as cloudiness is generated.

そこで、本発明では、分割電極のズレ量ΔXが電極間の距離ΔZよりも小さくなるように設定する。図23のモデルでは液晶層内のA点での電界は水平方向の電界Exと厚み方向の電界Ezの合成となる。A点の電位をVA、B点の電位をVBとすると、
Ex=(VA−VB)/ΔX
Ez=(VA−V1)/(ΔZ/2)
となり、ここでVBはほぼV1と等しいので、
Ex×ΔX=Ez×(ΔZ/2)
の関係になる。
ここで、A点での電界Eの傾斜方向を45度以内に設定するためには、Ex>Ezとなれば良く、前述の関係式から(ΔZ/2)>ΔXとなる。すなわち、分割電極のズレ量ΔXは、電極間の距離ΔZの半分の値よりも小さく設定することで、斜め電界による液晶配向欠陥の発生を防止できる。
Therefore, in the present invention, the deviation amount ΔX of the divided electrodes is set to be smaller than the distance ΔZ between the electrodes. In the model of FIG. 23, the electric field at point A in the liquid crystal layer is a combination of the horizontal electric field Ex and the thickness direction electric field Ez. If the potential at point A is VA and the potential at point B is VB,
Ex = (VA−VB) / ΔX
Ez = (VA−V1) / (ΔZ / 2)
Where VB is almost equal to V1,
Ex × ΔX = Ez × (ΔZ / 2)
It becomes a relationship.
Here, in order to set the inclination direction of the electric field E at point A within 45 degrees, Ex> Ez may be satisfied, and (ΔZ / 2)> ΔX from the above-described relational expression. That is, by setting the deviation amount ΔX of the divided electrodes to be smaller than a half value of the distance ΔZ between the electrodes, it is possible to prevent occurrence of liquid crystal alignment defects due to an oblique electric field.

上記の構成は、分割電極の位置は固定されているが、本発明の他の構成では電界を印加する領域に応じて分割電極として機能させる電極の位置を変える。そのために図24に示すように、有効領域内を複数に分割する分割電極が少なくとも一対のライン状電極20a,20bからなり、各分割領域に時間順次に印加した電界が、一対のライン状電極20a,20bの間に対応する液晶層内では、電界印加期間が重なるように設定する。例えば、図24の(a)では中央付近の分割電極対20a,20bの内、右側の上下の分割電極20aと素子左端の電極間に電圧を印加することで素子左側領域に電界を印加し、(b)では中央付近の分割電極対20a,20bの内、左側の上下の分割電極20bと素子右端の電極間に電圧を印加することで素子右側領域に電界を印加する。この場合、中央付近の分割電極の間では常に電界が印加された状態となり、分割領域端部で低電界になる領域が領域の切換えに応じて移動するため、図20のような常に低電界となる領域の発生を防止できる。この場合、図20に比べて電極間の幅が広く設定されるため、同一電界を得るための電圧値を大きく設定する必要があるが、一対の分割電極間の距離は分割領域の幅に比べて十分小さいため、実用上問題にはならない。また、図22のような透明ライン電極郡(多数本の透明ライン電極21)を用いた構成でも、分割電極として選択するライン電極21を図24のように変化させることで同様な効果が得られる。   In the above configuration, the position of the divided electrode is fixed, but in the other configuration of the present invention, the position of the electrode that functions as the divided electrode is changed according to the region to which the electric field is applied. For this purpose, as shown in FIG. 24, the divided electrode that divides the effective region into a plurality is composed of at least a pair of line-shaped electrodes 20a and 20b, and the electric field applied in time to each divided region is a pair of line-shaped electrodes 20a. , 20b, the electric field application periods are set to overlap in the corresponding liquid crystal layer. For example, in FIG. 24A, an electric field is applied to the left side region of the element by applying a voltage between the upper and lower divided electrodes 20a and the leftmost electrode of the pair of divided electrodes 20a and 20b near the center. In (b), an electric field is applied to the right side region of the element by applying a voltage between the upper and lower divided electrodes 20b on the left side of the pair of divided electrodes 20a and 20b near the center and the right end electrode of the element. In this case, an electric field is always applied between the divided electrodes near the center, and a region that becomes a low electric field at the end of the divided region moves in accordance with the switching of the region. Can be prevented from occurring. In this case, since the width between the electrodes is set wider than that in FIG. 20, it is necessary to set a large voltage value for obtaining the same electric field, but the distance between the pair of divided electrodes is larger than the width of the divided region. This is not a problem for practical use. Even in the configuration using the transparent line electrode group (a large number of transparent line electrodes 21) as shown in FIG. 22, the same effect can be obtained by changing the line electrode 21 selected as the divided electrode as shown in FIG. .

以上の実施形態では、ある分割領域内に電界を生じさせるために該当する電極間にのみ電圧を印加し、その他の分割領域に対応する電極は電気的にフロート状態にしている。このような場合、電界印加領域に隣接する他の分割領域内には逆方向の電界が生じる場合がある。この逆電界は本来無電界状態にあるべき液晶層の配向状態を変化させてしまう。
そこで、本発明のさらに別の実施形態では、図14に示すように、電界印加状態の分割領域以外では、該当する電極間が同電位となるように各電極間での電圧値を制御する。すなわち、スイッチ部19の各スイッチS1〜S4のON,OFFを制御して、電界を印加しない分割領域の電極間が同電位となるようにする。これにより、無電界状態にあるべき分割領域の液晶層の光学軸の傾斜状態を乱す不要な電界の発生を確実に防止することができる。
In the above embodiment, a voltage is applied only between the corresponding electrodes in order to generate an electric field in a certain divided region, and the electrodes corresponding to the other divided regions are electrically floated. In such a case, an electric field in the reverse direction may be generated in another divided region adjacent to the electric field application region. This reverse electric field changes the alignment state of the liquid crystal layer, which should be essentially in the absence of an electric field.
Therefore, in still another embodiment of the present invention, as shown in FIG. 14, the voltage value between the electrodes is controlled so that the corresponding electrodes have the same potential except in the divided region in the electric field application state. That is, ON / OFF of the switches S1 to S4 of the switch unit 19 is controlled so that the electrodes in the divided regions where no electric field is applied have the same potential. Thereby, it is possible to reliably prevent the generation of an unnecessary electric field that disturbs the tilt state of the optical axis of the liquid crystal layer in the divided region that should be in an electric field-free state.

次に本発明のさらに別の実施の形態では、以上に説明した構成の光学軸偏向素子を光路偏向素子として用いるものであり、図15(a),(b)に示すように、光学軸偏向素子への入射光を直線偏光とし、直線偏光の偏光面を素子内の平行電界の印加方向に対して直交する方向に設定することで、入射光路に対する出射光路の位置を平行にシフトさせることができる。また、この光路偏向素子に、前述の電源18とスイッチ部19からなる電圧印加手段を接続して光路のシフトを制御することにより、電気信号に応じて光の光路を偏向する光路偏向装置が構成される。   Next, in still another embodiment of the present invention, the optical axis deflecting element having the above-described configuration is used as an optical path deflecting element. As shown in FIGS. 15 (a) and 15 (b), the optical axis deflecting element is used. Incident light to the element is linearly polarized, and the plane of polarization of the linearly polarized light is set in a direction perpendicular to the direction of application of the parallel electric field in the element, thereby shifting the position of the outgoing optical path with respect to the incident optical path in parallel. Can do. In addition, an optical path deflecting device that deflects the optical path of light in accordance with an electrical signal is configured by connecting the voltage applying means including the power source 18 and the switch unit 19 to the optical path deflecting element to control the shift of the optical path. Is done.

ここで、図15(a),(b)は、光学軸偏向素子からなる光路偏向素子の液晶分子の配向状態を模式的に示したものであり、垂直配向膜、スペーサー、電極等の図示は省略してある。図15では便宜上紙面表裏方向に電圧印加されるように描き、電界は紙面表裏方向に作用する。電界方向は目的とする光学軸の傾斜方向に対応して図示しない電圧印加手段により切換えられる。図15(a)のように紙面手前側への電界が印加された場合、液晶分子の自発分極が正ならば液晶ダイレクタが図の右上に傾斜した分子数が増加し、液晶層としての平均的な光学軸も図の右上方向に傾斜して複屈折板として機能する。キラルスメクチックC相の螺旋構造が解ける閾値電界以上では、全ての液晶ダイレクタがチルト角θを示し、光学軸が上側に角度θで傾斜した複屈折板となる。従って、異常光として図の左側から入射した直線偏光は図の上側に平行シフトする。ここで、液晶分子の長軸方向の屈折率をne、短軸方向の屈折率をno、液晶層の厚み(ギャップ)をdとするとき、シフト量Sは以下の式1で表される(例えば、非特許文献1参照)。
S=[(1/no)2−(1/ne)2]sin(2θ)×d
÷[2((1/ne)2sin2θ+(1/no)2cos2θ)] ・・・式1
Here, FIGS. 15A and 15B schematically show the alignment state of the liquid crystal molecules of the optical path deflecting element formed of the optical axis deflecting element, and the vertical alignment film, the spacer, the electrode, etc. are illustrated. It is omitted. In FIG. 15, for the sake of convenience, a voltage is applied in the front and back direction of the paper, and the electric field acts in the front and back direction of the paper. The direction of the electric field is switched by a voltage applying means (not shown) corresponding to the intended tilt direction of the optical axis. When an electric field to the front side of the paper is applied as shown in FIG. 15A, if the spontaneous polarization of the liquid crystal molecules is positive, the number of molecules in which the liquid crystal director is inclined to the upper right of the figure increases, and the average as the liquid crystal layer The optical axis also tilts in the upper right direction of the figure and functions as a birefringent plate. Above the threshold electric field above which the helical structure of the chiral smectic C phase can be solved, all the liquid crystal directors exhibit a tilt angle θ and become birefringent plates with the optical axis inclined upward at an angle θ. Therefore, the linearly polarized light incident as the extraordinary light from the left side of the figure is shifted in parallel to the upper side of the figure. Here, when the refractive index in the major axis direction of the liquid crystal molecules is ne, the refractive index in the minor axis direction is no, and the thickness (gap) of the liquid crystal layer is d, the shift amount S is expressed by the following formula 1 ( For example, refer nonpatent literature 1).
S = [(1 / no) 2 − (1 / ne) 2 ] sin (2θ) × d
÷ [2 ((1 / ne) 2 sin 2 θ + (1 / no) 2 cos 2 θ)] Equation 1

同様に図15(b)のように電極への印加電圧を反転して紙面奥側への電界が印加された場合、液晶分子の自発分極が正ならば液晶ダイレクタは図の右下に傾斜し、光学軸が下側に角度θで傾斜した複屈折板として機能する。従って、異常光として図の左側から入射した直線偏光は図の下側に平行シフトする。また、電界方向の反転によって、2S分の光路偏向量が得られる。
従って、電界方向を切換えて光学軸の傾斜方向を切換えることで、光線の出射位置を切換えることができる。これにより、大きな有効面積に対して、比較的小さな印加電圧で駆動が可能な光路偏向装置が得られる。
Similarly, when the applied voltage to the electrode is reversed as shown in FIG. 15B and an electric field toward the back of the paper is applied, the liquid crystal director tilts to the lower right in the figure if the spontaneous polarization of the liquid crystal molecules is positive. The optical axis functions as a birefringent plate inclined downward at an angle θ. Therefore, the linearly polarized light incident as the extraordinary light from the left side of the figure is shifted in parallel to the lower side of the figure. In addition, an optical path deflection amount of 2S can be obtained by reversing the electric field direction.
Therefore, the emission position of the light beam can be switched by switching the electric field direction and switching the tilt direction of the optical axis. This provides an optical path deflecting device that can be driven with a relatively small applied voltage with respect to a large effective area.

次に本発明のさらに別の実施形態を図16に基づいて説明する。本実施形態は、以上に説明した構成の光路偏向装置(光学軸偏向装置)を画像表示装置80の光路偏向手段に適用した例を示すものである。図16において、図中の符号81はLEDランプを2次元アレイ状に配列した光源であり、この光源81からスクリーン86に向けて発せられる光の進行方向には拡散板82、コンデンサレンズ83、画像表示素子としての透過型液晶パネル84、画像パターンを観察するための光学部材としての投射レンズ85が順に配設されている。また、符号87は光源81に対する光源ドライブ部、88は透過型液晶パネル84に対するドライブ部である。   Next, still another embodiment of the present invention will be described with reference to FIG. This embodiment shows an example in which the optical path deflecting device (optical axis deflecting device) having the above-described configuration is applied to the optical path deflecting means of the image display device 80. In FIG. 16, reference numeral 81 in the figure denotes a light source in which LED lamps are arranged in a two-dimensional array, and in the traveling direction of light emitted from the light source 81 toward the screen 86, a diffusion plate 82, a condenser lens 83, an image A transmissive liquid crystal panel 84 as a display element and a projection lens 85 as an optical member for observing the image pattern are sequentially arranged. Reference numeral 87 denotes a light source drive unit for the light source 81, and 88 denotes a drive unit for the transmissive liquid crystal panel 84.

ここで、透過型液晶パネル84と投射レンズ85との間の光路上にはピクセルシフト素子として機能する光路偏向手段89が介在されており、ドライブ部90に接続されている。このような光路偏向手段89としては、前述したような構成の光路偏向装置(光学軸偏向装置)が用いられている。   Here, on the optical path between the transmissive liquid crystal panel 84 and the projection lens 85, optical path deflecting means 89 that functions as a pixel shift element is interposed and connected to the drive unit 90. As such an optical path deflecting unit 89, an optical path deflecting device (optical axis deflecting device) having the above-described configuration is used.

光源ドライブ部87で制御されて光源81から放出された照明光は、拡散板82により均一化された照明光となり、コンデンサレンズ83により液晶ドライブ部88で照明光源と同期して制御されて透過型液晶パネル84をクリティカル照明する。この透過型液晶パネル84で空間光変調された照明光は、画像光として光路偏向装置89に入射し、この光路偏向装置89によって画像光が画素の配列方向に任意の距離だけシフトされる。この光は投射レンズ85で拡大されスクリーン86上に投射される。   The illumination light that is controlled by the light source drive unit 87 and emitted from the light source 81 becomes illumination light that is made uniform by the diffuser plate 82, and is controlled by the condenser lens 83 in synchronization with the illumination light source by the liquid crystal drive unit 88 and is transmissive. The liquid crystal panel 84 is critically illuminated. The illumination light spatially modulated by the transmissive liquid crystal panel 84 enters the optical path deflecting device 89 as image light, and the optical path deflecting device 89 shifts the image light by an arbitrary distance in the pixel arrangement direction. This light is magnified by the projection lens 85 and projected onto the screen 86.

ここで、光路偏向装置89により画像フィールドを時間的に分割した複数のサブフィールド毎の光路の偏向に応じて表示位置がずれている状態の画像パターンを透過型液晶パネル84に表示させることで、透過型液晶パネル84の見掛け上の画素数を増倍して表示することができる。このように光路偏向装置89によるシフト量は透過型液晶パネル84の画素の配列方向に対して2倍の画像増倍を行うことから、画素ピッチの1/2に設定される。シフト量に応じて透過型液晶パネル84を駆動する画像信号をシフト量分だけ補正することで、見掛け上高精細な画像を表示することができる。この際、光路偏向装置89として、前述した各実施形態のような光学軸偏向装置を用いているので、光の利用効率を向上させ、光源の負荷を増加することなく、観察者に、より明るく高品質の画像を提供することができる。   Here, by displaying on the transmissive liquid crystal panel 84 an image pattern in which the display position is shifted in accordance with the deflection of the optical path for each of the plurality of subfields obtained by temporally dividing the image field by the optical path deflecting device 89. The apparent number of pixels of the transmissive liquid crystal panel 84 can be multiplied and displayed. Thus, the amount of shift by the optical path deflecting device 89 is set to ½ of the pixel pitch because the image multiplication is performed twice as much as the pixel arrangement direction of the transmissive liquid crystal panel 84. By correcting the image signal for driving the transmissive liquid crystal panel 84 according to the shift amount by the shift amount, an apparently high-definition image can be displayed. At this time, since the optical axis deflecting device as in each of the above-described embodiments is used as the optical path deflecting device 89, the use efficiency of light is improved, and the observer is brighter without increasing the load on the light source. High quality images can be provided.

なお、画像表示装置としては画像表示素子に透過型液晶パネル84を用いるタイプに限らず、例えば、図17に示す画像表示装置94のように、反射型液晶パネル91を用いるタイプにも同様に適用できる。なお、符号92は反射型液晶パネル91に対するドライブ部である。この構成の場合、図16に示した画像表示装置80に比較して偏光ビームスプリッタ(PBS)93が付加され、照明系からの光はPBS93により反射型液晶パネル91側に折り返され、光路偏向装置89を介して反射型液晶パネル91に照射される。この反射型液晶パネル91に入射した照明光は、反射型液晶パネル91によって反射されながら画像に対応した空間変調を受け画像光として出射する。その後、光路偏向装置89に入射し、この光路偏向装置89によって画像光が画素の配列方向に所定距離だけシフトされる。その後の経路は図16に示した画像表示装置の場合と同様である。   The image display device is not limited to the type that uses the transmissive liquid crystal panel 84 as the image display element, and similarly applies to a type that uses the reflective liquid crystal panel 91, such as the image display device 94 shown in FIG. it can. Reference numeral 92 denotes a drive unit for the reflective liquid crystal panel 91. In the case of this configuration, a polarization beam splitter (PBS) 93 is added as compared with the image display device 80 shown in FIG. 16, and the light from the illumination system is folded back to the reflective liquid crystal panel 91 side by the PBS 93, and the optical path deflecting device. The reflection type liquid crystal panel 91 is irradiated through 89. The illumination light incident on the reflective liquid crystal panel 91 undergoes spatial modulation corresponding to the image while being reflected by the reflective liquid crystal panel 91 and is emitted as image light. Thereafter, the light enters the optical path deflecting device 89, and the optical path deflecting device 89 shifts the image light by a predetermined distance in the pixel arrangement direction. The subsequent route is the same as that of the image display apparatus shown in FIG.

次に本発明の具体的な実施例と比較例について説明する。   Next, specific examples and comparative examples of the present invention will be described.

[実施例1]
まず、図1に示すような構成の光学軸偏向素子10を作成する。厚さ1.1mm、大きさ10mm×8mmと5mm×7mmの二種類のガラス基板の中央部表面の短辺方向に幅5μm、長さ8mmまたは7mmのクロム電極ライン(分割電極17)を形成した。大きい基板の電極ラインの一端は配線接続用に数ミリ幅に拡大した。電極を形成した面に厚み0.06μmのポリイミド化合物の垂直(ホメオトロピック)配向膜13,14を形成した。ポリイミド配向膜は、ポリアミック酸溶液をスピンコートにより塗布し、約180℃の加熱処理によるイミド化処理によりポリイミド膜を得た。厚み80μm、幅約1mm、長さ8mmのアルミシートを素子両端部の有効面積外に、スペーサ部材兼電極16a,16bとして挟んで、二枚の基板11,12を対向させて、セルを作成した。この時、上下基板の有効面積内のクロム電極ラインが上から見て互い重なるように張り合わせ、上下基板のクロム電極間を導電性ペーストを少量挟んで導通させた。セルを約90℃に加熱した状態で、基板間の空間に強誘電性液晶(チッソ製CS1024)を毛管法にて注入した。冷却後、接着剤で封止し、液晶層15の厚み80μm、有効面積8mm×7mm角の光学軸偏向素子10を作成した。
[Example 1]
First, an optical axis deflection element 10 having a configuration as shown in FIG. 1 is created. A chromium electrode line (divided electrode 17) having a width of 5 μm and a length of 8 mm or 7 mm was formed in the short side direction of the center surface of two types of glass substrates having a thickness of 1.1 mm and a size of 10 mm × 8 mm and 5 mm × 7 mm. . One end of the electrode line on the large substrate was expanded to several millimeters for wiring connection. The vertical (homeotropic) alignment films 13 and 14 of the polyimide compound having a thickness of 0.06 μm were formed on the surface on which the electrodes were formed. As the polyimide alignment film, a polyamic acid solution was applied by spin coating, and a polyimide film was obtained by imidization treatment by heat treatment at about 180 ° C. A cell was produced by sandwiching an aluminum sheet having a thickness of 80 μm, a width of about 1 mm, and a length of 8 mm outside the effective area of both ends of the element as spacer members / electrodes 16a and 16b, with the two substrates 11 and 12 facing each other. . At this time, the chrome electrode lines within the effective area of the upper and lower substrates were laminated so as to overlap each other when viewed from above, and the chrome electrodes of the upper and lower substrates were connected with a small amount of conductive paste interposed therebetween. While the cell was heated to about 90 ° C., ferroelectric liquid crystal (CS1024 manufactured by Chisso) was injected into the space between the substrates by a capillary method. After cooling, it was sealed with an adhesive, and the optical axis deflecting element 10 having a thickness of the liquid crystal layer 15 of 80 μm and an effective area of 8 mm × 7 mm square was produced.

この光学軸偏向素子10からは両端のスペーサ部材兼電極16a,16bのアルミシートと、大きい基板上のクロム電極(分割電極)17の拡大部が露出しており、それぞれを図3のように電界印加可能な状態にスイッチ部19を介して電源18に接続し、4mm幅の有効領域に2分割された光学軸偏向装置を得た。
この光学軸偏向装置を構成する光学軸偏向素子10の液晶層15に電圧印加手段でE=150V/mmの電界をONした時の応答時間は0.5msecと十分速く、電界OFF時の再配向時間は数百msec程度と非常に遅い。
From this optical axis deflecting element 10, the aluminum sheets of the spacer members and electrodes 16a and 16b at both ends and the enlarged portion of the chromium electrode (divided electrode) 17 on the large substrate are exposed. An optical axis deflecting device that was divided into two effective areas of 4 mm width was obtained by connecting to the power source 18 via the switch unit 19 in a state where application is possible.
The response time when the electric field of E = 150 V / mm is turned on by the voltage applying means to the liquid crystal layer 15 of the optical axis deflecting element 10 constituting this optical axis deflecting device is sufficiently fast as 0.5 msec, and realignment when the electric field is turned off. The time is very slow, about several hundred msec.

上記光学軸偏向素子の光学軸の傾斜角をコノスコープ観察により測定した。測定には白色レーザーを光源として用い、ビームエキスパンダー、ポーラサラザー、NA=0.75の顕微鏡対物レンズの順に通して、発散光を素子の有効領域に照射した。そして、素子の液晶層を通過した透過光をアナライザーを通して透過型スクリーン面に投射することにより、コノスコープ像が得られる。このコノスコープ像をCCDカメラあるいは高速度カメラなどによって撮影し、コノスコープ像の十字状の影の位置を解析することで光学軸の傾斜角を測定した。図3のように有効分割領域(1) と有効分割領域(2) に600Vの直流電圧を5msecづつ交互に、100周期で1秒間印加した。この1秒間の傾斜角の状態を解析したところ、両有効領域内で略均一に25度の傾斜角を維持していることが確認できた。   The inclination angle of the optical axis of the optical axis deflection element was measured by conoscopic observation. For the measurement, a white laser was used as a light source, and a beam expander, a polar laser, and a microscope objective lens with NA = 0.75 were passed in this order to irradiate the effective area of the device. A conoscopic image is obtained by projecting the transmitted light that has passed through the liquid crystal layer of the element onto a transmissive screen surface through an analyzer. The conoscopic image was taken with a CCD camera or a high-speed camera, and the tilt angle of the optical axis was measured by analyzing the position of the cross-shaped shadow of the conoscopic image. As shown in FIG. 3, a DC voltage of 600 V was alternately applied to the effective divided region (1) and the effective divided region (2) every 5 msec for 1 second in 100 cycles. When the state of the inclination angle for 1 second was analyzed, it was confirmed that the inclination angle of 25 degrees was maintained substantially uniformly in both effective regions.

[比較例1]
比較例1として、有効領域の中央部にクロム電極(分割電極)を設けないこと以外は実施例1と同様にして有効面積8mm×7mm角の図4のような構成の光学軸偏向素子を作成した。実施例1と同様な平行電界強度E=150V/mmが印加されるように、素子両端部の電極6a,6bに1200Vの直流電圧を1秒間印加した。その結果、両端の電極近傍では25度の傾斜角を示していたが、中央付近では約20度程度であった。これは、比較的幅の広い素子の両端に単純に電圧を印加しても、中央部には十分な電界が印加されないことを示している。また、実施例1に比べて二倍の高電圧の印加が必要であった。
[Comparative Example 1]
As Comparative Example 1, an optical axis deflecting element having an effective area of 8 mm × 7 mm square and having an arrangement as shown in FIG. 4 was prepared in the same manner as in Example 1 except that a chromium electrode (divided electrode) was not provided at the center of the effective area. did. A DC voltage of 1200 V was applied to the electrodes 6a and 6b at both ends of the element for 1 second so that the same parallel electric field strength E = 150 V / mm as in Example 1 was applied. As a result, an inclination angle of 25 degrees was shown near the electrodes at both ends, but about 20 degrees near the center. This indicates that a sufficient electric field is not applied to the central portion even if a voltage is simply applied to both ends of a relatively wide element. In addition, it was necessary to apply a voltage twice as high as that in Example 1.

[実施例2]
次に図10及び図11に示すような構成の光学軸偏向素子30を作成する。厚さ1.1mm、大きさ50mm×50mmのガラス基板11,12の表面に幅10μm、長さ45mmのITO透明ライン電極21を平行に100μmピッチで420本形成した。両端の透明ライン電極21は幅4mm、長さ50mmと広めに形成し、中央部の一本の透明ライン電極21は長さを50mmとして、その一端は配線の取り出し用に数ミリ幅に広げて形成した。この透明電極ライン郡の有効面積は約42mm×40mm角であり、この上に誘電体層22として厚み150μmのガラスを紫外線硬化接着剤によって張り合わせた。接着剤の厚みは10μm程度とした。透明ライン電極21が露出している幅5mmの部分に、抵抗体24として表面抵抗が1×10Ω/□のCrSiO膜をスパッタ法により成膜した。
[Example 2]
Next, an optical axis deflecting element 30 having a configuration as shown in FIGS. 10 and 11 is prepared. 420 ITO transparent line electrodes 21 having a width of 10 μm and a length of 45 mm were formed in parallel at a pitch of 100 μm on the surfaces of glass substrates 11 and 12 having a thickness of 1.1 mm and a size of 50 mm × 50 mm. The transparent line electrodes 21 at both ends are formed to have a wide width of 4 mm and a length of 50 mm, and the single transparent line electrode 21 at the center has a length of 50 mm, and one end of the transparent line electrode 21 is widened to several millimeters for wiring extraction. Formed. The effective area of the transparent electrode line group is about 42 mm × 40 mm square, and glass having a thickness of 150 μm is pasted thereon as a dielectric layer 22 with an ultraviolet curable adhesive. The thickness of the adhesive was about 10 μm. A portion of the width 5mm transparent line electrode 21 is exposed, the surface resistance as a resistor 24 is deposited by sputtering a 1 × 10 8 Ω / □ CrSiO film.

図10に示す素子断面図のように透明ガラス基板11,12の内部に透明ライン電極21が埋め込まれている形となり、図11(a)に示すように、各透明ライン電極21を抵抗体膜24によって直列に接続した状態とした。この基板表面に厚み0.06μmのポリイミド化合物の垂直(ホメオトロピック)配向膜13,14を形成した。ポリイミド配向膜は、ポリアミック酸溶液をスピンコートにより塗布し、約180℃の加熱処理によるイミド化処理によりポリイミド膜を得た。80μmのスペーサーシート23を有効面積外に挟んで、二枚の基板11,12を対向させて、上下基板の有効面積内の透明電極ラインが上から見て互いに一致するように張り合わせた。このセルを約90℃に加熱した状態で、基板間の空間に強誘電性液晶(チッソ製CS1024)を毛管法にて注入した。冷却後、接着剤で封止し、液晶層15の厚み80μm、有効面積が約42mm×40mm角の光学軸偏向素子30を作成した。   As shown in the cross-sectional view of the element shown in FIG. 10, the transparent line electrodes 21 are embedded in the transparent glass substrates 11 and 12, and each transparent line electrode 21 is formed of a resistor film as shown in FIG. 24 were connected in series. On the surface of the substrate, vertical (homeotropic) alignment films 13 and 14 of a polyimide compound having a thickness of 0.06 μm were formed. As the polyimide alignment film, a polyamic acid solution was applied by spin coating, and a polyimide film was obtained by imidization treatment by heat treatment at about 180 ° C. The 80 μm spacer sheet 23 was sandwiched outside the effective area, the two substrates 11 and 12 were opposed, and the transparent electrode lines within the effective area of the upper and lower substrates were bonded to each other when viewed from above. While the cell was heated to about 90 ° C., ferroelectric liquid crystal (CS1024 manufactured by Chisso) was injected into the space between the substrates by a capillary method. After cooling, it was sealed with an adhesive, and an optical axis deflecting element 30 having a liquid crystal layer 15 thickness of 80 μm and an effective area of about 42 mm × 40 mm square was produced.

この光学軸偏向素子30の両端の透明ライン電極と中央の透明ライン電極のそれぞれを図11(a)のように電界印加可能な状態にスイッチ部19を介して電源18に接続し、光学軸偏向装置を得た。
電源部18にパルスジェネレータと高圧アンプを用い、スイッチ部19にフォトカプラーを組み合わせた高電圧切換えスイッチを用いて、図6のような電圧印加タイミングで、上記素子を駆動した。矩形波交流電源の電圧は±3.15kV、周波数60Hzとした。分割領域幅は21mmなので、各分割領域の電界強度はE=150V/mmとなる。60Hz駆動の1周期は16.67msecであり、片側極性の期間はT=8.33msecとなる。図6のような駆動タイミングでは、各分割領域の一度の電界印加時間は1.85msecとした。動作初期状態を除く定常的な駆動状態では、プラス極性の電圧をそれぞれの領域で2回づつ印加した後(1.85×4=7.4msec)、電圧反転時の動作として0.52msecの短いマイナス極性の電界を1回づつ印加し(0.46×2=0.93msec)、ここまでの期間を半周期のT=8.33msecとする。このように短時間の電圧印加を行うことで、前述した電圧反転に伴う二つの領域の光学軸方向の不一致時間を0.46msec程度に短縮することができる。この時間は本来の液晶層の電界応答時間と同程度であり、実用上問題ないと判断できる。
The transparent line electrodes at both ends and the transparent line electrode at the center of the optical axis deflecting element 30 are connected to the power source 18 via the switch unit 19 so that an electric field can be applied as shown in FIG. Got the device.
The above elements were driven at the voltage application timing as shown in FIG. 6 using a pulse generator and a high-voltage amplifier for the power supply unit 18 and a high voltage changeover switch combined with a photocoupler for the switch unit 19. The voltage of the rectangular wave AC power source was ± 3.15 kV and the frequency was 60 Hz. Since the divided region width is 21 mm, the electric field strength of each divided region is E = 150 V / mm. One period of 60 Hz driving is 16.67 msec, and the period of one-side polarity is T = 8.33 msec. At the drive timing as shown in FIG. 6, the electric field application time for each divided region is 1.85 msec. In the steady driving state except the initial operation state, a positive polarity voltage is applied twice in each region (1.85 × 4 = 7.4 msec), and the operation at the time of voltage reversal is as short as 0.52 msec. A negative polarity electric field is applied once (0.46 × 2 = 0.93 msec), and the period up to this time is set to T = 8.33 msec of a half cycle. By applying the voltage for a short time in this way, the mismatch time in the optical axis direction of the two regions accompanying the voltage inversion described above can be shortened to about 0.46 msec. This time is comparable to the original electric field response time of the liquid crystal layer, and it can be determined that there is no practical problem.

このように素子全体として光学軸の反転動作を60Hzで繰り返す状態でコノスコープ像を観察したところ、42mm幅の全面で略均一に±約25度の光学軸の傾斜角の反転動作が確認できた。但し、厳密に見ると、中央の分割部の周囲の傾斜角が僅かに小さく観測された。また、この素子にHe−Neレーザー光を入射したところ、出射光にわずかな回折パターンが観測された。これは、ITO透明電極と接着剤との屈折率差による周期的な位相変調によるものと考えられる。   In this way, when the conoscopic image was observed in a state where the optical axis reversal operation was repeated at 60 Hz for the entire device, the reversal operation of the tilt angle of the optical axis of about ± 25 degrees was confirmed almost uniformly over the entire 42 mm width. . However, strictly speaking, the inclination angle around the central division was observed to be slightly smaller. When a He—Ne laser beam was incident on this element, a slight diffraction pattern was observed in the emitted light. This is considered to be due to the periodic phase modulation due to the refractive index difference between the ITO transparent electrode and the adhesive.

[実施例3]
次に図12及び図13に示すような構成の光学軸偏向素子40を作成する。厚さ1.1mm、大きさ50mm×50mmのガラス基板11,12の両端部に幅4mm、長さ50mmの広めの透明ライン電極21を42mmの間隔を空けて形成し、その中央部に幅10μm、長さを50mmの一本の透明ライン電極21を形成した。中央の透明ライン電極の一端は配線の取り出し用に数ミリ幅に広げて形成した。この基板上の図13に示すような範囲に透明抵抗体膜25を成膜した。透明抵抗体膜25は、高周波マグネトロンスパッタ法により厚さ0.1μmの酸化スズ膜を形成した。ターゲットには酸化スズの焼結体を用いた。スパッタ中はアルゴンガスと酸素を流し、その流量比が約1:4となるようにした。この際、基板の加熱や冷却は行っていない。この条件の下で形成される酸化スズ膜の体積抵抗率は約5×10Ωcmと高抵抗であり、厚さ0.1μmの場合の表面抵抗率は5×10Ω/□である。この酸化スズ膜の可視光透過率は90%以上であった。各透明ライン電極21を透明抵抗体膜25によって直列に接続した状態とした。この基板表面に厚み0.06μmのポリイミド化合物の垂直(ホメオトロピック)配向膜13,14を形成した。ポリイミド配向膜は、ポリアミック酸溶液をスピンコートにより塗布し、約180℃の加熱処理によるイミド化処理によりポリイミド膜を得た。80μmのスペーサーシート23を有効面積外に挟んで、二枚の基板を対向させて、上下基板の有効面積内の透明電極ラインが上から見て互いに一致するように張り合わせた。このセルを約90℃に加熱した状態で、基板間の空間に強誘電性液晶(チッソ製CS1024)を毛管法にて注入した。冷却後、接着剤で封止し、液晶層15の厚み80μm、有効面積が約42mm×40mm角の光学軸偏向素子40を作成した。
[Example 3]
Next, an optical axis deflecting element 40 having a configuration as shown in FIGS. 12 and 13 is prepared. Wide transparent line electrodes 21 having a width of 4 mm and a length of 50 mm are formed at both ends of glass substrates 11 and 12 having a thickness of 1.1 mm and a size of 50 mm × 50 mm with a spacing of 42 mm, and a width of 10 μm is formed at the center thereof. A single transparent line electrode 21 having a length of 50 mm was formed. One end of the central transparent line electrode was formed to be several millimeters wide for wiring extraction. A transparent resistor film 25 was formed on the substrate in the range as shown in FIG. As the transparent resistor film 25, a tin oxide film having a thickness of 0.1 μm was formed by a high frequency magnetron sputtering method. A sintered body of tin oxide was used as a target. During sputtering, argon gas and oxygen were flowed so that the flow rate ratio was about 1: 4. At this time, the substrate is not heated or cooled. The volume resistivity of the tin oxide film formed under these conditions is as high as about 5 × 10 3 Ωcm, and the surface resistivity when the thickness is 0.1 μm is 5 × 10 8 Ω / □. The visible light transmittance of this tin oxide film was 90% or more. Each transparent line electrode 21 was connected in series by a transparent resistor film 25. On the surface of the substrate, vertical (homeotropic) alignment films 13 and 14 of a polyimide compound having a thickness of 0.06 μm were formed. As the polyimide alignment film, a polyamic acid solution was applied by spin coating, and a polyimide film was obtained by imidization treatment by heat treatment at about 180 ° C. The 80 μm spacer sheet 23 was sandwiched outside the effective area, the two substrates were opposed to each other, and the transparent electrode lines within the effective area of the upper and lower substrates were bonded to each other when viewed from above. While the cell was heated to about 90 ° C., ferroelectric liquid crystal (CS1024 manufactured by Chisso) was injected into the space between the substrates by a capillary method. After cooling, it was sealed with an adhesive to produce an optical axis deflecting element 40 having a liquid crystal layer 15 thickness of 80 μm and an effective area of about 42 mm × 40 mm square.

この光学軸偏向素子40の両端の透明ライン電極と中央の透明ライン電極のそれぞれを図13(a)のように電界印加可能な状態にスイッチ部19を介して電源18に接続し、光学軸偏向装置を得た。
電源部18にパルスジェネレータと高圧アンプを用い、スイッチ部19にフォトカプラーを組み合わせた高電圧切換えスイッチを用いて、実施例2と同一の電圧パターンを印加してコノスコープ像を観察したところ、42mm幅の全面で略均一に±約25度の光学軸の傾斜角の反転動作が確認できた。但し、この実施例でも厳密に見ると、中央の分割部の周囲の傾斜角が僅かに小さく観測された。また、この素子にHe−Neレーザー光を入射したところ、実施例2で観測されたような回折パターンは観測されなかった。
The transparent line electrodes at both ends and the transparent line electrode at the center of the optical axis deflecting element 40 are connected to the power source 18 through the switch unit 19 so that an electric field can be applied as shown in FIG. Got the device.
A conoscopic image was observed by applying the same voltage pattern as in Example 2 using a high voltage changeover switch in which a pulse generator and a high-voltage amplifier were used for the power supply unit 18 and a photocoupler was used for the switch unit 19. An inversion operation of the tilt angle of the optical axis of about ± 25 degrees was confirmed substantially uniformly over the entire width. However, in this example as well, when observed strictly, the inclination angle around the central divided portion was observed to be slightly smaller. Further, when a He—Ne laser beam was incident on this element, a diffraction pattern as observed in Example 2 was not observed.

[実施例4]
実施例3と同様な光学軸偏向素子40を用い、図14のように電界印加領域以外の電極対を導通して同電位となるようにフォトカプラーの組合せによる高電圧スイッチ部19を改良した。その結果、実施例3で見られた、中央の分割部の周囲の傾斜角のわずかな減少は観測されなかった。これは、電界を印加している分割領域の隣接領域内が確実に無電界状態に維持されて、非電界印加時における光学軸の傾斜角が大きく維持されているためと考えられる。
[Example 4]
Using the same optical axis deflecting element 40 as in Example 3, the high-voltage switch unit 19 using a combination of photocouplers was improved so that the electrode pairs other than the electric field application region are made conductive and have the same potential as shown in FIG. As a result, the slight decrease in the inclination angle around the central divided portion, which was observed in Example 3, was not observed. This is presumably because the region adjacent to the divided region to which the electric field is applied is surely maintained in the non-electric field state, and the tilt angle of the optical axis when the non-electric field is applied is maintained large.

[実施例5]
実施例2では中央部の一本の透明ライン電極21は長さを50mmとして、その一端は配線の取り出し用に数ミリ幅に広げた基板を用い、上下の基板11,12を重ねた時にこの取り出し用の透明ライン電極が重なるように配置したが、実施例5では、上下の基板11,12を重ねた時に、上と下で取り出し用の透明ライン電極21の位置が一本分ずれるように、各々の基板の取り出し電極位置を設定した。その他の構成は実施例2と同様にして図22に示すような光学軸偏向素子を作成した。この素子では、上下基板での分割電極のズレ量はΔXは100μmであり、誘電体層と液晶層を介した上下の電極間距離ΔZは約400μmであるから、液晶層内での斜め方向の電界発生を防止する条件
(ΔZ/2)>ΔX
を満たしている。
[Example 5]
In Example 2, the single transparent line electrode 21 in the center is 50 mm in length, and one end of the transparent line electrode 21 is widened to several millimeters for taking out the wiring. When the upper and lower substrates 11 and 12 are overlapped, Although the transparent line electrodes for extraction are arranged so as to overlap each other, in Example 5, when the upper and lower substrates 11 and 12 are stacked, the position of the transparent line electrode 21 for extraction is shifted by one by one above and below. The position of the electrode for taking out the substrate was set. Other configurations were the same as in Example 2 to produce an optical axis deflecting element as shown in FIG. In this element, the deviation amount of the divided electrodes on the upper and lower substrates is ΔX of 100 μm, and the distance ΔZ between the upper and lower electrodes through the dielectric layer and the liquid crystal layer is about 400 μm. Conditions for preventing electric field generation (ΔZ / 2)> ΔX
Meet.

実施例2と同様に電源部18と高電圧切換えスイッチ19を用いて、光学軸の反転動作をコノスコープ像で確認したところ、42mm幅の全面で略均一に±約25度の光学軸の傾斜角の反転動作が確認できた。また、実施例2で見られた中央の分割部の周囲の傾斜角が僅かに小さく観測された現象は見られなかった。但し、偏光板のクロスニコル中に素子を配置して顕微鏡観察すると、中央付近に僅かに光散乱によると考えられる光漏れが見られた。これは、分割電極近傍に発生する斜め電界の影響で液晶層が歪むため、僅かに光散乱が生じたと考えられるが、実用上問題無い範囲であった。   Similar to the second embodiment, the inversion operation of the optical axis was confirmed by a conoscopic image using the power supply unit 18 and the high voltage changeover switch 19. As a result, the inclination of the optical axis was approximately uniform about ± 25 degrees across the entire 42 mm width. The corner reversal operation was confirmed. In addition, the phenomenon in which the inclination angle around the central divided portion observed in Example 2 was observed to be slightly small was not observed. However, when the element was placed in the crossed Nicols of the polarizing plate and observed with a microscope, light leakage considered to be slightly caused by light scattering was observed near the center. This is considered to be caused by slight light scattering because the liquid crystal layer is distorted by the influence of the oblique electric field generated in the vicinity of the divided electrodes, but it was in a range where there is no practical problem.

[実施例6]
実施例2では中央部の一本の透明ライン電極21は長さを50mmとして、その一端は配線の取り出し用に数ミリ幅に広げた基板を用い、上下の基板11,12を重ねた時にこの取り出し用の透明ライン電極が重なるように配置したが、実施例6では、上下の各基板11,12の中央部の2本の透明ライン電極20a,20bを50mmとして、それぞれの一端は配線の取り出し用に広げた。その他の構成は実施例2と同様にして図24に示すような光学軸偏向素子を作成した。
また、実施例2と同様に電源部18と高電圧切換えスイッチ19を用いたが、分割領域に対する分割電極の位置を切換えられるように図示しないスイッチを追加した。このスイッチの追加によって図24(a),(b)のような電圧印加動作が可能となった。分割領域の幅は、実施例2の21mmに対して、実施例6では21.1mmに広がったが、それに伴う電界強度の低下は実用上問題無い。
[Example 6]
In Example 2, the single transparent line electrode 21 in the center is 50 mm in length, and one end of the transparent line electrode 21 is widened to several millimeters for taking out the wiring. When the upper and lower substrates 11 and 12 are overlapped, Although the transparent line electrodes for extraction are arranged so as to overlap each other, in Example 6, the two transparent line electrodes 20a and 20b at the center of each of the upper and lower substrates 11 and 12 are set to 50 mm, and one end of each wiring is taken out. Expanded for use. Other configurations were the same as in Example 2, and an optical axis deflection element as shown in FIG. 24 was prepared.
Moreover, although the power supply unit 18 and the high voltage changeover switch 19 are used as in the second embodiment, a switch (not shown) is added so that the position of the divided electrode with respect to the divided region can be switched. By adding this switch, the voltage application operation as shown in FIGS. 24A and 24B becomes possible. Although the width of the divided region has increased to 21. 1 mm in Example 6 compared to 21 mm in Example 2, there is no practical problem with the reduction in the electric field strength associated therewith.

実施例2と同様に光学軸の反転動作をコノスコープ像で確認したところ、42mm幅の全面で略均一に±約25度の光学軸の傾斜角の反転動作が確認できた。また、実施例2で見られた中央の分割部の周囲の傾斜角が僅かに小さく観測された現象は見られなかった。さらに、偏光板のクロスニコル中に素子を配置して顕微鏡観察したが、実施例5で見られたような中央付近での光漏れは観察されなかった。これは、分割電極近傍に発生する斜め電界の発生が無くなったためと考えられる。   As in Example 2, the inversion operation of the optical axis was confirmed with a conoscopic image, and the inversion operation of the inclination angle of the optical axis of about ± 25 degrees was confirmed almost uniformly over the entire 42 mm width. In addition, the phenomenon in which the inclination angle around the central divided portion observed in Example 2 was observed to be slightly small was not observed. Furthermore, although the element was placed in the crossed Nicols of the polarizing plate and observed with a microscope, light leakage near the center as observed in Example 5 was not observed. This is presumably because the generation of the oblique electric field generated in the vicinity of the divided electrodes is eliminated.

[実施例7]
次に図16に類似の構成の画像表示装置を作製した。画像表示素子84として対角0.9インチXGA(1024×768ドット)のポリシリコンTFT液晶パネルを3枚用いた。図16では液晶パネルが一枚の場合を例示しているが、3枚の液晶パネルからの光を図示しない合成プリズムによって合成し、一つの投射レンズ85で投射する。液晶パネルの画素ピッチは縦横ともに約18μmである。画素の開口率は約50%である。また、画像表示素子の光源側にマイクロレンズアレイを設けて照明光の集光率を高める構成とした。本実施例では、画像表示のフレーム周波数が60Hz、ピクセルシフトによる2倍の画素増倍のためのサブフィールド周波数が2倍の120Hzとした。三枚の液晶パネルをそれぞれRGBの三色の光源あるいは白色光源をプリズムやフィルターにより色分解した光で照明し、各色の画像を図示しない合成プリズムで合成することでフルカラー画像を表示する。また、液晶パネル84を出射した光の偏光方向を光学軸偏向装置89の光学軸の傾斜方向と一致させることで、光路シフト機能を発現させ、偏光方向に光路をシフトさせることができる。実施例4の光学軸軸偏向装置を光路偏向装置として用いた場合の光路シフト量は約9μmであり、液晶パネルの画素ピッチの1/2である。また、光路偏向装置への入射光の偏光度を確実にするために、装置の入射面側に直線偏光板を設けた。
[Example 7]
Next, an image display apparatus having a configuration similar to that of FIG. 16 was produced. As the image display element 84, three 0.9 inch diagonal XGA (1024 × 768 dots) polysilicon TFT liquid crystal panels were used. FIG. 16 illustrates the case where the number of liquid crystal panels is one, but the light from the three liquid crystal panels is synthesized by a synthesis prism (not shown) and projected by one projection lens 85. The pixel pitch of the liquid crystal panel is about 18 μm both vertically and horizontally. The aperture ratio of the pixel is about 50%. Further, a microlens array is provided on the light source side of the image display element to increase the collection rate of illumination light. In this embodiment, the frame frequency of image display is 60 Hz, and the subfield frequency for double pixel multiplication by pixel shift is 120 Hz which is double. Each of the three liquid crystal panels is illuminated with light obtained by color separation of RGB three-color light sources or white light sources using a prism or filter, and a full-color image is displayed by combining the images of the respective colors with a combining prism (not shown). In addition, by making the polarization direction of the light emitted from the liquid crystal panel 84 coincide with the tilt direction of the optical axis of the optical axis deflecting device 89, the optical path shift function can be exhibited and the optical path can be shifted in the polarization direction. When the optical axis deflection apparatus of Example 4 is used as an optical path deflection apparatus, the optical path shift amount is about 9 μm, which is ½ of the pixel pitch of the liquid crystal panel. Further, in order to ensure the degree of polarization of incident light to the optical path deflecting device, a linearly polarizing plate was provided on the incident surface side of the device.

光路偏向装置に印加する電圧と動作タイミングは、実施例4と同様に±3.15kV、周波数60Hzとした。光路シフト位置の切換えタイミングに同期して、画像表示素子に表示するサブフィールド画像をT=8,33msecで書き換えることで、見かけ上の画素数が2倍に増倍した高精細画像が表示できた。この時、液晶層全体に印加される平行電界強度は150V/mmで、光路の切換え時間は約0.5msecであり、充分なピクセルシフト効果と光利用効率が得られた。   The voltage applied to the optical path deflecting device and the operation timing were set to ± 3.15 kV and the frequency was 60 Hz as in Example 4. In synchronization with the switching timing of the optical path shift position, the subfield image displayed on the image display element was rewritten at T = 8, 33 msec, so that a high-definition image in which the number of apparent pixels was doubled could be displayed. . At this time, the intensity of the parallel electric field applied to the entire liquid crystal layer was 150 V / mm and the switching time of the optical path was about 0.5 msec, and a sufficient pixel shift effect and light utilization efficiency were obtained.

本発明に係る光学軸偏向素子や光路偏向素子、及びそれらを用いた光学軸偏向装置や光路偏向装置は、プロジェクションディスプレイ、ヘッドマウントディスプレイなどの画像表示装置に好適に利用できるが、この他、デジタル複写機、レーザープリンター、レーザープロッター、レーザーファクシミリなどの画像形成装置の光書込み装置等にも利用することができる。また、この他、画像入力装置や、レーザー計測装置等にも利用することができる。   The optical axis deflecting element and the optical path deflecting element according to the present invention, and the optical axis deflecting apparatus and the optical path deflecting apparatus using them can be suitably used for image display devices such as a projection display and a head mounted display. It can also be used for an optical writing device of an image forming apparatus such as a copying machine, a laser printer, a laser plotter, and a laser facsimile. In addition, it can be used for an image input device, a laser measuring device, and the like.

本発明の一実施形態を示す光学軸偏向素子の概略断面図である。It is a schematic sectional drawing of the optical axis deflection | deviation element which shows one Embodiment of this invention. 光軸軸偏向素子に印加される電界方向と液晶分子の配向方向の関係を模式的に示す図である。It is a figure which shows typically the relationship between the electric field direction applied to an optical axis deflection element, and the orientation direction of a liquid crystal molecule. 本発明の一実施形態を示す図であって、図1に示す光軸軸偏向素子を用いた光学軸偏向装置の構成例と電圧印加方法の説明図である。It is a figure which shows one Embodiment of this invention, Comprising: It is explanatory drawing of the structural example of the optical axis deflection | deviation apparatus using the optical axis deflection element shown in FIG. 1, and a voltage application method. 従来の光学軸偏向装置の構成例と電圧印加方法の説明図である。It is explanatory drawing of the structural example and voltage application method of the conventional optical axis deflection | deviation apparatus. 本発明の別の実施形態を示す図であって、光軸軸偏向素子を用いた光学軸偏向装置の構成例と電圧印加方法の説明図である。It is a figure which shows another embodiment of this invention, Comprising: It is explanatory drawing of the structural example of the optical axis deflection | deviation apparatus using an optical axis deflection element, and a voltage application method. 本発明の光学軸偏向素子の駆動タイミングの一例を示す図である。It is a figure which shows an example of the drive timing of the optical-axis deflection | deviation element of this invention. 本発明の光学軸偏向素子の駆動タイミングの別の例を示す図である。It is a figure which shows another example of the drive timing of the optical-axis deflection | deviation element of this invention. 本発明の光学軸偏向素子の駆動タイミングのさらに別の例を示す図である。It is a figure which shows another example of the drive timing of the optical-axis deflection | deviation element of this invention. 本発明の別の実施形態を示す図であって、(a)は光学軸偏向素子の概略断面図、(b)光学軸偏向素子の概略平面図である。It is a figure which shows another embodiment of this invention, Comprising: (a) is a schematic sectional drawing of an optical axis deflection element, (b) It is a schematic plan view of an optical axis deflection element. 本発明のさらに別の実施形態を示す光学軸偏向素子の概略断面図である。It is a schematic sectional drawing of the optical axis deflection | deviation element which shows another embodiment of this invention. 本発明のさらに別の実施形態を示す図であって、(a)は図10に示す光軸軸偏向素子を用いた光学軸偏向装置の概略平面図、(b)光学軸偏向素子のライン電極に平行な方向の概略断面図である。FIG. 11 is a diagram showing still another embodiment of the present invention, in which (a) is a schematic plan view of an optical axis deflection device using the optical axis deflection element shown in FIG. 10, and (b) a line electrode of the optical axis deflection element. It is a schematic sectional drawing of the direction parallel to. 本発明のさらに別の実施形態を示す光学軸偏向素子の概略断面図である。It is a schematic sectional drawing of the optical axis deflection | deviation element which shows another embodiment of this invention. 本発明のさらに別の実施形態を示す図であって、(a)は図10に示す光軸軸偏向素子を用いた光学軸偏向装置の概略平面図、(b)光学軸偏向素子のライン電極に平行な方向の概略断面図である。FIG. 11 is a diagram showing still another embodiment of the present invention, in which (a) is a schematic plan view of an optical axis deflection device using the optical axis deflection element shown in FIG. 10, and (b) a line electrode of the optical axis deflection element. It is a schematic sectional drawing of the direction parallel to. 本発明のさらに別の実施形態を示す図であって、光軸軸偏向素子を用いた光学軸偏向装置の構成例と電圧印加方法の説明図である。It is a figure which shows another embodiment of this invention, Comprising: It is explanatory drawing of the structural example of the optical axis deflection | deviation apparatus using an optical axis deflection element, and a voltage application method. 本発明の光学軸偏向素子を光路偏向素子として用いた場合の、液晶層の光学軸偏向動作と光路偏向動作の原理説明図である。FIG. 6 is a diagram illustrating the principle of an optical axis deflection operation and an optical path deflection operation of a liquid crystal layer when the optical axis deflection element of the present invention is used as an optical path deflection element. 本発明のさらに別の実施形態を示す図であって、光路偏向装置を用いた画像表示装置の一例を示す概略構成図である。It is a figure which shows another embodiment of this invention, Comprising: It is a schematic block diagram which shows an example of the image display apparatus using an optical path deflection | deviation apparatus. 本発明のさらに別の実施形態を示す図であって、光路偏向装置を用いた画像表示装置の別の例を示す概略構成図である。It is a figure which shows another embodiment of this invention, Comprising: It is a schematic block diagram which shows another example of the image display apparatus using an optical path deflection apparatus. 従来技術の一例を示す光路偏向素子の概略断面図である。It is a schematic sectional drawing of the optical path deflection element which shows an example of a prior art. キラルスメクチックC相の液晶分子配列のモデル(電界による螺旋構造変化のモデル)を示す図である。It is a figure which shows the model (model of the helical structure change by an electric field) of the liquid crystal molecular arrangement | sequence of a chiral smectic C phase. 本発明の光学軸偏向素子の分割した境界付近での電界印加状態を示す概念図である。It is a conceptual diagram which shows the electric field application state in the vicinity of the divided | segmented boundary of the optical axis deflection | deviation element of this invention. 本発明の光学軸偏向素子の分割電極の位置ずらし効果の説明図である。It is explanatory drawing of the position shift effect of the division | segmentation electrode of the optical axis deflection | deviation element of this invention. 本発明の光学軸偏向素子の分割電極の設定位置のずらし効果の説明図である。It is explanatory drawing of the shift effect of the setting position of the division | segmentation electrode of the optical axis deflection | deviation element of this invention. 図22(b)の光学軸偏向素子の分割電極近傍での電界を示す概念図である。It is a conceptual diagram which shows the electric field in the vicinity of the division | segmentation electrode of the optical axis deflection | deviation element of FIG.22 (b). 本発明の光学軸偏向素子の分割電極位置の時間変化による効果の説明図である。It is explanatory drawing of the effect by the time change of the division | segmentation electrode position of the optical axis deflection | deviation element of this invention.

符号の説明Explanation of symbols

10,30,40:光学軸偏向素子(光路偏向素子)
11,12:基板
13,14:配向膜
15:液晶層
16a,16b:電極
17,17a,17b:分割電極
18:電源
19:スイッチ部
20:透明電極
21:透明ライン電極
22:誘電体層
23:スペーサー
24:抵抗体
25:透明抵抗体層
80,94:画像表示装置
81:光源
82:拡散板
83:コンデンサレンズ
84:透過型液晶パネル(画像表示素子)
85:投射レンズ
86:スクリーン
87:光源ドライブ部
88:透過型液晶パネルのドライブ部
89:光路偏向装置(光路偏向手段)
90:光路偏向装置のドライブ部
91:反射型液晶パネル(画像表示素子)
92:反射型液晶パネルのドライブ部
93:偏光ビームスプリッタ(PBS)
10, 30, 40: Optical axis deflection element (optical path deflection element)
DESCRIPTION OF SYMBOLS 11, 12: Substrate 13, 14: Alignment film 15: Liquid crystal layer 16a, 16b: Electrode 17, 17a, 17b: Divided electrode 18: Power supply 19: Switch part 20: Transparent electrode 21: Transparent line electrode 22: Dielectric layer 23 : Spacer 24: Resistor 25: Transparent resistor layer 80, 94: Image display device 81: Light source 82: Diffuser plate 83: Condenser lens 84: Transmission type liquid crystal panel (image display element)
85: Projection lens 86: Screen 87: Light source drive unit 88: Drive unit of transmissive liquid crystal panel 89: Optical path deflecting device (optical path deflecting means)
90: Drive unit of optical path deflecting device 91: Reflective liquid crystal panel (image display element)
92: Drive unit of reflective liquid crystal panel 93: Polarizing beam splitter (PBS)

Claims (29)

透明な一対の基板と、その一対の基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相を形成可能な液晶層と、少なくとも前記液晶層の両端側に配置され基板面に平行な方向の電界(以下、平行電界と言う)を発生させる電極とを有する光学軸偏向素子において、
前記電極間の有効領域内を複数の領域に分割して、個々の領域に独自に平行電界が印加可能となるように1以上の分割電極を配置したことを特徴とする光学軸偏向素子。
A pair of transparent substrates, a liquid crystal layer capable of forming a homeotropically aligned chiral smectic C phase filled between the pair of substrates, and arranged at least on both ends of the liquid crystal layer in a direction parallel to the substrate surface In an optical axis deflection element having an electrode that generates an electric field (hereinafter referred to as a parallel electric field),
An optical axis deflection element, wherein an effective area between the electrodes is divided into a plurality of areas, and one or more divided electrodes are arranged so that a parallel electric field can be independently applied to each area.
請求項1記載の光学軸偏向素子において、
前記電極間の有効領域の幅をL、該有効領域の幅全体に電圧を印加する場合の電圧値をV、この時印加される平均的な電界強度をE、一定の電界印加期間をTとした時、前記有効領域を電界印加方向に対してN個(Nは2以上の整数)に分割して平行電界が印加可能となるように1以上の分割電極を配置したことを特徴とする光学軸偏向素子。
The optical axis deflecting element according to claim 1, wherein
The width of the effective area between the electrodes is L, the voltage value when a voltage is applied to the entire width of the effective area is V, the average electric field strength applied at this time is E, and the constant electric field application period is T Then, the effective region is divided into N pieces (N is an integer of 2 or more) in the electric field application direction, and one or more divided electrodes are arranged so that a parallel electric field can be applied. Axial deflection element.
請求項1または2記載の光学軸偏向素子において、
前記有効領域内の前記分割電極が、各分割領域の両端部に対応して基板面に形成されたライン状の透明電極であることを特徴とする光学軸偏向素子。
The optical axis deflecting element according to claim 1 or 2,
The optical axis deflecting element, wherein the divided electrode in the effective area is a line-shaped transparent electrode formed on a substrate surface corresponding to both ends of each divided area.
請求項1または2記載の光学軸偏向素子において、
前記有効領域内の前記分割電極が、基板面上に形成された多数本の透明ライン電極から成り、該透明ライン電極郡の面と液晶層との間に誘電体層を形成し、各透明ライン電極が抵抗体によって電気的に直列に接続されていることを特徴とする光学軸偏向素子。
The optical axis deflecting element according to claim 1 or 2,
The divided electrode in the effective area is composed of a large number of transparent line electrodes formed on the substrate surface, and a dielectric layer is formed between the surface of the transparent line electrode group and the liquid crystal layer, and each transparent line An optical axis deflecting element, wherein the electrodes are electrically connected in series by a resistor.
請求項1または2記載の光学軸偏向素子において、
前記電極及び前記有効領域内の前記分割電極が、各分割領域の両端部に対応して基板面に形成されたライン状の透明電極であり、かつ前記基板面に透明な抵抗体層が形成されていることを特徴とする光学軸偏向素子。
The optical axis deflecting element according to claim 1 or 2,
The electrodes and the divided electrodes in the effective area are line-shaped transparent electrodes formed on the substrate surface corresponding to both ends of each divided area, and a transparent resistor layer is formed on the substrate surface. An optical axis deflecting element characterized by comprising:
請求項3または5記載の光学軸偏向素子において、
一対の両基板面に形成された前記ライン状の透明電極は、光の透過方向に対する投影面上で異なる位置に配置してあることを特徴とする光学軸偏向素子。
The optical axis deflection element according to claim 3 or 5,
The optical axis deflection element, wherein the line-shaped transparent electrodes formed on a pair of substrate surfaces are arranged at different positions on a projection plane with respect to a light transmission direction.
請求項4記載の光学軸偏向素子において、
前記多数本の透明ライン電極の内、電源に直接接続して分割電極として機能させる透明ライン電極の両基板上での位置を、光の透過方向に対する投影面上で異なる位置に設定することを特徴とする光学軸偏向素子。
The optical axis deflecting element according to claim 4, wherein
Of the multiple transparent line electrodes, the positions of the transparent line electrodes that are directly connected to the power source and function as the divided electrodes on both substrates are set to different positions on the projection plane with respect to the light transmission direction. An optical axis deflection element.
請求項6または7記載の光学軸偏向素子において、
異なる位置あるいは交差するように配置してある前記分割電極の位置関係に対して、光の透過方向に対する投影面上での前記平行電界方向へズレ量の最大値をΔXとし、液晶層厚み方向での間隔をΔZとした時、(ΔZ/2)>ΔXに設定したことを特徴とする光学軸偏向素子。
The optical axis deflecting element according to claim 6 or 7,
With respect to the positional relationship of the divided electrodes arranged at different positions or intersecting with each other, the maximum deviation amount in the parallel electric field direction on the projection plane with respect to the light transmission direction is ΔX, and the liquid crystal layer thickness direction An optical axis deflecting element characterized in that (ΔZ / 2)> ΔX is set, where ΔZ is ΔZ.
請求項1〜8のいずれか一つに記載の光学軸偏向素子において、
有効領域内を複数に分割する分割電極が少なくとも一対のライン状電極からなり、各分割領域に時間順次に印加した電界が、一対のライン状電極の間に対応する液晶層内では、電界印加期間が重なるように設定したことを特徴とする光学軸偏向素子。
In the optical axis deflection element according to any one of claims 1 to 8,
The divided electrode that divides the effective region into a plurality is composed of at least a pair of line-shaped electrodes, and the electric field applied in order to each divided region in time is the electric field application period in the liquid crystal layer corresponding to the pair of line-shaped electrodes. The optical axis deflecting element is set so as to overlap each other.
電気信号に応じて光の光路を偏向する光路偏向素子であって、
請求項1〜9のいずれか一つに記載の光学軸偏向素子から成り、該光学軸偏向素子への入射光を直線偏光とし、該直線偏光の偏光面を素子内の平行電界の印加方向に対して直交する方向に設定することで、入射光路に対する出射光路の位置を平行にシフトすることを特徴とする光路偏向素子。
An optical path deflecting element that deflects an optical path of light according to an electrical signal,
The optical axis deflecting element according to any one of claims 1 to 9, wherein incident light to the optical axis deflecting element is linearly polarized light, and a polarization plane of the linearly polarized light is applied in a direction of applying a parallel electric field in the element. An optical path deflecting element characterized by shifting the position of the outgoing optical path with respect to the incident optical path in parallel by setting in a direction orthogonal to the optical path.
透明な一対の基板と、その一対の基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相を形成可能な液晶層と、少なくとも前記液晶層の両端側に配置され基板面に平行な方向の電界(以下、平行電界と言う)を発生させる電極とを有する光学軸偏向素子と、
前記光学軸偏向素子の電極に電圧を印加する電圧印加手段とを用い、
前記光学軸偏向素子の電界方向の切換えによって液晶分子の配向方向を切換えて液晶層の層法線に対する光学軸の傾斜方向を切換えて、入射光に対する出射光路を切換える光学軸偏向方法において、
前記光学軸偏向素子として請求項1〜9のいずれか一つに記載の光学軸偏向素子を用い、前記電圧印加手段により、前記光学軸偏向素子の各電極に選択的に電圧を印加することを特徴とする光学軸偏向方法。
A pair of transparent substrates, a liquid crystal layer capable of forming a homeotropically aligned chiral smectic C phase filled between the pair of substrates, and arranged at least on both ends of the liquid crystal layer in a direction parallel to the substrate surface An optical axis deflection element having an electrode for generating an electric field (hereinafter referred to as a parallel electric field);
Using voltage applying means for applying a voltage to the electrode of the optical axis deflection element;
In the optical axis deflection method for switching the orientation direction of the liquid crystal molecules by switching the electric field direction of the optical axis deflection element and switching the tilt direction of the optical axis with respect to the layer normal of the liquid crystal layer, and switching the outgoing optical path for incident light,
The optical axis deflection element according to any one of claims 1 to 9 is used as the optical axis deflection element, and a voltage is selectively applied to each electrode of the optical axis deflection element by the voltage application unit. An optical axis deflection method.
請求項11記載の光学軸偏向方法において、
前記光学軸偏向素子の有効領域の幅をL、該有効領域の幅全体に電圧を印加する場合の電圧値をV、この時印加される平均的な平行電界強度をE、一定の電界印加期間をTとした時、前記有効領域を電界印加方向に対してN個(Nは2以上の整数)に分割して電界が印加可能となるように1以上の分極電極を配置し、各分割領域の幅であるL/Nに対して、平均的な平行電界強度Eを印加するために、V/Nの電圧値をT/N以内の時間だけ一時的に印加し、一時的に電圧を印加する領域を時間順次に切換えることにより、時間平均すると有効領域全体に均等に平行電界強度Eを印加することを特徴とする光学軸偏向方法。
The optical axis deflection method according to claim 11, wherein
The effective area width of the optical axis deflecting element is L, the voltage value when a voltage is applied to the entire effective area width is V, the average parallel electric field strength applied at this time is E, and the constant electric field application period Where T is T, one or more polarization electrodes are arranged so that an electric field can be applied by dividing the effective region into N (N is an integer of 2 or more) with respect to the direction of electric field application. In order to apply an average parallel electric field strength E to L / N, which is the width of V / N, a voltage value of V / N is temporarily applied for a time within T / N, and a voltage is temporarily applied. A method of deflecting an optical axis, wherein the parallel electric field strength E is uniformly applied to the entire effective area when time averaged by switching the areas to be performed in time sequence.
請求項11記載の光学軸偏向方法において、
前記光学軸偏向素子の有効領域を少なくとも第一領域と第二領域に分割し、第一領域に電界を生じさせる第一電極間に一時的に電圧を印加して第一領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第一領域の電圧を除去し、その後、直ちに第二領域に電界を生じさせる第二電極間に一時的に電圧を印加して第二領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第二領域の電圧を除去し、前記第一領域の光学軸傾斜状態が初期状態に戻る時間よりも前に、再び第一電極間に一時的に前回と同極性あるいは逆極性の電界を印加することで、第一領域の液晶層の光学軸傾斜状態を保つ、あるいは逆極性の傾斜状態に切換えるという動作を、前記第1領域と第二領域の間で順次行うことで、ある一定期間内において有効領域全体として光学軸の傾斜状態を略均一に保つことを特徴とする光学軸偏向方法。
The optical axis deflection method according to claim 11, wherein
The effective region of the optical axis deflecting element is divided into at least a first region and a second region, and a voltage is temporarily applied between the first electrodes that generate an electric field in the first region, so that the optical region of the liquid crystal layer in the first region After the axis is tilted and the desired optical axis tilt state is reached, the voltage in the first region is removed, and then a voltage is temporarily applied between the second electrodes that immediately generate an electric field in the second region. The optical axis of the liquid crystal layer in the two regions is tilted, the voltage in the second region is removed after the desired optical axis tilt state is reached, and the time before the optical axis tilt state of the first region returns to the initial state is reached. In addition, by temporarily applying an electric field of the same polarity or reverse polarity to the first electrode again between the first electrodes, the operation of maintaining the optical axis tilt state of the liquid crystal layer in the first region or switching to the reverse polarity tilt state. Are sequentially performed between the first area and the second area, so that the The optical axis deflection method characterized by maintaining the inclined state of the optical axis substantially uniformly as a whole Oite effective area.
請求項11記載の光学軸偏向方法において、
前記光学軸偏向素子の有効領域を第一領域〜第N領域のN個(Nは2以上の整数)に分割し、第一領域に電界を生じさせる第一電極間に一時的に電圧を印加して第一領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第一領域の電圧を除去し、その後、直ちに第二領域に電界を生じさせる第二電極間に一時的に電圧を印加して第二領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第二領域の電圧を除去し、という動作を第N領域まで行い、前記第一領域の光学軸傾斜状態が初期状態に戻る時間よりも前に、再び第一電極間に一時的に前回と同極性あるいは逆極性の電界を印加することで、第一領域の液晶層の光学軸傾斜状態を保つ、あるいは逆極性の傾斜状態に切換えるという動作を、前記第1領域〜第N領域の間で順次行うことで、ある一定期間内において有効領域全体として光学軸の傾斜状態を略均一に保つことを特徴とする光学軸偏向方法。
The optical axis deflection method according to claim 11, wherein
The effective region of the optical axis deflecting element is divided into N (N is an integer of 2 or more) from the first region to the Nth region, and a voltage is temporarily applied between the first electrodes that generate an electric field in the first region. Then, the optical axis of the liquid crystal layer in the first region is tilted, and after the desired optical axis tilt state is reached, the voltage in the first region is removed, and then an electric field is immediately generated in the second region between the second electrodes. A voltage is temporarily applied to tilt the optical axis of the liquid crystal layer in the second region, and after the desired optical axis tilt state is reached, the voltage in the second region is removed to the Nth region. By applying an electric field of the same polarity or reverse polarity as the previous time temporarily between the first electrodes again before the time when the optical axis tilt state of the first region returns to the initial state, the liquid crystal of the first region The operation of maintaining the tilted state of the optical axis of the layer or switching to the tilted state of reverse polarity is performed in the first region. By sequentially performed between the first N region, it is an optical axis deflection method characterized by maintaining the inclined state of the optical axis substantially uniformly as a whole effective region within a certain period.
請求項11〜14のいずれか一つに記載の光学軸偏向方法において、
前記光学軸偏向素子の有効領域全体の平行電界の方向を反転させるタイミングにおいては、光学軸の方向を反転させるための一時的な電界印加時間を、一方向に光学軸を維持するための一時的な電界印加時間よりも短く設定することを特徴とする光学軸偏向方法。
The optical axis deflection method according to any one of claims 11 to 14,
At the timing of reversing the direction of the parallel electric field of the entire effective area of the optical axis deflecting element, a temporary electric field application time for reversing the direction of the optical axis is temporarily used to maintain the optical axis in one direction. An optical axis deflection method characterized in that the optical axis deflection time is set shorter than an appropriate electric field application time.
請求項11〜15のいずれか一つに記載の光学軸偏向方法において、
前記光学軸偏向素子の有効領域内に平行電界を印加する分割電極が、基板面上に形成された多数本の透明ライン電極から成り、該透明ライン電極郡の面と液晶層との間に誘電体層が形成され、各透明ライン電極が抵抗体によって電気的に直列に接続され、前記分割領域の幅に対応する位置の二本の透明ライン電極の間に電位差を印加することを特徴とする光学軸偏向方法。
In the optical axis deflection method according to any one of claims 11 to 15,
A split electrode for applying a parallel electric field in an effective area of the optical axis deflecting element comprises a plurality of transparent line electrodes formed on a substrate surface, and a dielectric is formed between the surface of the transparent line electrode group and the liquid crystal layer. A body layer is formed, each transparent line electrode is electrically connected in series by a resistor, and a potential difference is applied between two transparent line electrodes at a position corresponding to the width of the divided region. Optical axis deflection method.
請求項11〜16のいずれか一つに記載の光学軸偏向方法において、
前記光学軸偏向素子の或る分割領域内に電界を生じさせるために該当する電極間に電圧を印加している状態において、隣接する分割領域内に不要な電界が生じないように該当する電極間が同電位となるように各電極間での電圧値を制御することを特徴とする光学軸偏向方法。
The optical axis deflection method according to any one of claims 11 to 16,
In a state where a voltage is applied between the corresponding electrodes in order to generate an electric field in a certain divided region of the optical axis deflecting element, between the corresponding electrodes so that an unnecessary electric field is not generated in the adjacent divided region. A method of deflecting an optical axis, characterized in that the voltage value between the electrodes is controlled so as to have the same potential.
請求項11〜17のいずれか一つに記載の光学軸偏向方法を用い、前記光学軸偏向素子への入射光を直線偏光とし、該直線偏光の偏光面を素子内の平行電界の印加方向に対して直交する方向に設定することで、入射光路に対する出射光路の位置を平行にシフトすることを特徴とする光路偏向方法。   The optical axis deflection method according to any one of claims 11 to 17, wherein incident light to the optical axis deflection element is linearly polarized light, and a polarization plane of the linearly polarized light is applied in a direction of applying a parallel electric field in the element. An optical path deflection method characterized by shifting the position of the outgoing optical path with respect to the incident optical path in parallel by setting in a direction orthogonal to the incident optical path. 透明な一対の基板と、その一対の基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相を形成可能な液晶層と、少なくとも前記液晶層の両端側に配置され基板面に平行な方向の電界(以下、平行電界と言う)を発生させる電極とを有する光学軸偏向素子と、
前記光学軸偏向素子の電極に電圧を印加する電圧印加手段とを備え、
前記光学軸偏向素子の電界方向の切換えによって液晶分子の配向方向を切換えて液晶層の層法線に対する光学軸の傾斜方向を切換えて、入射光に対する出射光路を切換える光学軸偏向装置において、
前記光学軸偏向素子として請求項1〜9のいずれか一つに記載の光学軸偏向素子を備え、前記電圧印加手段は、前記光学軸偏向素子の各電極に選択的に電圧を印加する手段を有することを特徴とする光学軸偏向装置。
A pair of transparent substrates, a liquid crystal layer capable of forming a homeotropically aligned chiral smectic C phase filled between the pair of substrates, and arranged at least on both ends of the liquid crystal layer in a direction parallel to the substrate surface An optical axis deflection element having an electrode for generating an electric field (hereinafter referred to as a parallel electric field);
Voltage application means for applying a voltage to the electrode of the optical axis deflection element,
In the optical axis deflecting device for switching the orientation direction of the liquid crystal molecules by switching the electric field direction of the optical axis deflecting element and switching the tilt direction of the optical axis with respect to the layer normal of the liquid crystal layer, and switching the outgoing optical path for incident light,
The optical axis deflection element according to any one of claims 1 to 9, wherein the voltage application means includes means for selectively applying a voltage to each electrode of the optical axis deflection element. An optical axis deflecting device comprising:
請求項19記載の光学軸偏向装置において、
前記光学軸偏向素子の有効領域の幅をL、該有効領域の幅全体に電圧を印加する場合の電圧値をV、この時印加される平均的な平行電界強度をE、一定の電界印加期間をTとした時、前記有効領域を電界印加方向に対してN個(Nは2以上の整数)に分割して電界が印加可能となるように1以上の分極電極を配置し、各分割領域の幅であるL/Nに対して、平均的な平行電界強度Eを印加するために、V/Nの電圧値をT/N以内の時間だけ一時的に印加し、一時的に電圧を印加する領域を時間順次に切換えることにより、時間平均すると有効領域全体に均等に平行電界強度Eを印加することを特徴とする光学軸偏向装置。
The optical axis deflecting device according to claim 19,
The effective area width of the optical axis deflecting element is L, the voltage value when a voltage is applied to the entire effective area width is V, the average parallel electric field strength applied at this time is E, and the constant electric field application period Where T is T, one or more polarization electrodes are arranged so that an electric field can be applied by dividing the effective region into N (N is an integer of 2 or more) with respect to the direction of electric field application. In order to apply an average parallel electric field strength E to L / N, which is the width of V / N, a voltage value of V / N is temporarily applied for a time within T / N, and a voltage is temporarily applied. An optical axis deflecting device characterized in that the parallel electric field strength E is uniformly applied to the entire effective area when time averaged by switching the areas to be performed in time sequence.
請求項19記載の光学軸偏向装置において、
前記光学軸偏向素子の有効領域を少なくとも第一領域と第二領域に分割し、第一領域に電界を生じさせる第一電極間に一時的に電圧を印加して第一領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第一領域の電圧を除去し、その後、直ちに第二領域に電界を生じさせる第二電極間に一時的に電圧を印加して第二領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第二領域の電圧を除去し、前記第一領域の光学軸傾斜状態が初期状態に戻る時間よりも前に、再び第一電極間に一時的に前回と同極性あるいは逆極性の電界を印加することで、第一領域の液晶層の光学軸傾斜状態を保つ、あるいは逆極性の傾斜状態に切換えるという動作を、前記第1領域と第二領域の間で順次行うことで、ある一定期間内において有効領域全体として光学軸の傾斜状態を略均一に保つことを特徴とする光学軸偏向装置。
The optical axis deflecting device according to claim 19,
The effective region of the optical axis deflecting element is divided into at least a first region and a second region, and a voltage is temporarily applied between the first electrodes that generate an electric field in the first region, so that the optical region of the liquid crystal layer in the first region After the axis is tilted and the desired optical axis tilt state is reached, the voltage in the first region is removed, and then a voltage is temporarily applied between the second electrodes that immediately generate an electric field in the second region. The optical axis of the liquid crystal layer in the two regions is tilted, the voltage in the second region is removed after the desired optical axis tilt state is reached, and the time before the optical axis tilt state of the first region returns to the initial state is reached. In addition, by temporarily applying an electric field of the same polarity or reverse polarity to the first electrode again between the first electrodes, the operation of maintaining the optical axis tilt state of the liquid crystal layer in the first region or switching to the reverse polarity tilt state. Are sequentially performed between the first area and the second area, so that the Oite optical axis deflection device, characterized in that to maintain the inclination of the optical axis substantially uniformly as a whole effective area.
請求項19記載の光学軸偏向装置において、
前記光学軸偏向素子の有効領域を第一領域〜第N領域のN個(Nは2以上の整数)に分割し、第一領域に電界を生じさせる第一電極間に一時的に電圧を印加して第一領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第一領域の電圧を除去し、その後、直ちに第二領域に電界を生じさせる第二電極間に一時的に電圧を印加して第二領域の液晶層の光学軸を傾斜させ、所望の光学軸傾斜状態となった後で第二領域の電圧を除去し、という動作を第N領域まで行い、前記第一領域の光学軸傾斜状態が初期状態に戻る時間よりも前に、再び第一電極間に一時的に前回と同極性あるいは逆極性の電界を印加することで、第一領域の液晶層の光学軸傾斜状態を保つ、あるいは逆極性の傾斜状態に切換えるという動作を、前記第1領域〜第N領域の間で順次行うことで、ある一定期間内において有効領域全体として光学軸の傾斜状態を略均一に保つことを特徴とする光学軸偏向装置。
The optical axis deflecting device according to claim 19,
The effective region of the optical axis deflecting element is divided into N (N is an integer of 2 or more) from the first region to the Nth region, and a voltage is temporarily applied between the first electrodes that generate an electric field in the first region. Then, the optical axis of the liquid crystal layer in the first region is tilted, and after the desired optical axis tilt state is reached, the voltage in the first region is removed, and then an electric field is immediately generated in the second region between the second electrodes. A voltage is temporarily applied to tilt the optical axis of the liquid crystal layer in the second region, and after the desired optical axis tilt state is reached, the voltage in the second region is removed to the Nth region. By applying an electric field of the same polarity or reverse polarity as the previous time temporarily between the first electrodes again before the time when the optical axis tilt state of the first region returns to the initial state, the liquid crystal of the first region The operation of maintaining the tilted state of the optical axis of the layer or switching to the tilted state of reverse polarity is performed in the first region. The N region is sequentially carried out that between the optical axis deflection apparatus characterized by maintaining substantially uniform inclination of the optical axis as a whole effective region within a certain period of time.
請求項19〜22のいずれか一つに記載の光学軸偏向装置において、
前記光学軸偏向素子の有効領域全体の平行電界の方向を反転させるタイミングにおいては、光学軸の方向を反転させるための一時的な電界印加時間を、一方向に光学軸を維持するための一時的な電界印加時間よりも短く設定することを特徴とする光学軸偏向装置。
The optical axis deflecting device according to any one of claims 19 to 22,
At the timing of reversing the direction of the parallel electric field of the entire effective area of the optical axis deflecting element, a temporary electric field application time for reversing the direction of the optical axis is temporarily used to maintain the optical axis in one direction. An optical axis deflecting device characterized in that the optical axis deflecting device is set shorter than an appropriate electric field application time.
請求項19〜23のいずれか一つに記載の光学軸偏向装置において、
前記光学軸偏向素子の有効領域内に平行電界を印加する分割電極が、基板面上に形成された多数本の透明ライン電極から成り、該透明ライン電極郡の面と液晶層との間に誘電体層が形成され、各透明ライン電極が抵抗体によって電気的に直列に接続され、前記分割領域の幅に対応する位置の二本の透明ライン電極の間に電位差を印加することを特徴とする光学軸偏向装置。
The optical axis deflecting device according to any one of claims 19 to 23,
A split electrode for applying a parallel electric field in an effective area of the optical axis deflecting element comprises a plurality of transparent line electrodes formed on a substrate surface, and a dielectric is formed between the surface of the transparent line electrode group and the liquid crystal layer. A body layer is formed, each transparent line electrode is electrically connected in series by a resistor, and a potential difference is applied between two transparent line electrodes at a position corresponding to the width of the divided region. Optical axis deflection device.
請求項19〜24のいずれか一つに記載の光学軸偏向装置において、
前記光学軸偏向素子の或る分割領域内に電界を生じさせるために該当する電極間に電圧を印加している状態において、隣接する分割領域内に不要な電界が生じないように該当する電極間が同電位となるように各電極間での電圧値を制御することを特徴とする光学軸偏向装置。
The optical axis deflecting device according to any one of claims 19 to 24,
In a state where a voltage is applied between the corresponding electrodes in order to generate an electric field in a certain divided region of the optical axis deflecting element, between the corresponding electrodes so that an unnecessary electric field is not generated in the adjacent divided region. An optical axis deflecting device that controls the voltage value between the electrodes so as to have the same potential.
電気信号に応じて光の光路を偏向する光路偏向装置において、
請求項10記載の光路偏向素子と、前記電気信号に応じて前記光路偏向素子の各電極に選択的に電圧を印加する電圧印加手段とを備えたことを特徴とする光路偏向装置。
In an optical path deflecting device that deflects the optical path of light in response to an electrical signal,
11. An optical path deflecting device comprising: the optical path deflecting element according to claim 10; and voltage applying means for selectively applying a voltage to each electrode of the optical path deflecting element in accordance with the electrical signal.
電気信号に応じて光の光路を偏向する光路偏向装置において、
請求項19〜25のいずれか一つに記載の光学軸偏向装置からなり、前記光学軸偏向素子への入射光を直線偏光とし、該直線偏光の偏光面を素子内の平行電界の印加方向に対して直交する方向に設定することで、入射光路に対する出射光路の位置を平行にシフトすることを特徴とする光路偏向装置。
In an optical path deflecting device that deflects the optical path of light in response to an electrical signal,
26. The optical axis deflecting device according to any one of claims 19 to 25, wherein incident light to the optical axis deflecting element is linearly polarized light, and a polarization plane of the linearly polarized light is applied in a direction of applying a parallel electric field in the element. An optical path deflecting device characterized by shifting the position of the outgoing optical path with respect to the incident optical path in parallel by setting in a direction perpendicular to the optical path.
画像情報に従って光を制御可能な複数の画素が二次元的に配列した画像表示素子と、該画像表示素子を照明する光源及び照明装置と、前記画像表示素子に表示した画像パターンを観察するための光学装置と、画像フィールドを時間的に分割した複数のサブフィールドで形成する表示駆動手段と、各画素からの出射光の光路を偏向する光路偏向手段を有する画像表示装置において、
前記光路偏向手段として、請求項26または27記載の光路偏向装置を備えたことを特徴とする画像表示装置。
An image display element in which a plurality of pixels capable of controlling light according to image information are two-dimensionally arranged, a light source and an illumination device that illuminate the image display element, and an image pattern displayed on the image display element In an image display device having an optical device, display driving means formed by a plurality of subfields obtained by dividing an image field in time, and optical path deflecting means for deflecting an optical path of light emitted from each pixel,
An image display apparatus comprising the optical path deflecting device according to claim 26 or 27 as the optical path deflecting unit.
請求項28記載の画像表示装置において、
前記光路偏向装置によるサブフィールド毎の光路の偏向状態に応じて表示位置がずれた状態に対応する画像パターンを前記画像表示素子に表示することで、前記画像表示素子の見かけ上の画素数を増倍して表示することを特徴とする画像表示装置。
The image display device according to claim 28, wherein
By displaying on the image display element an image pattern corresponding to a state in which the display position is shifted according to the deflection state of the optical path for each subfield by the optical path deflecting device, the apparent number of pixels of the image display element is increased. An image display device characterized by being displayed in a doubled size.
JP2005125787A 2004-04-30 2005-04-22 Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection apparatus, optical path deflection apparatus, and image display apparatus Expired - Fee Related JP4574428B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005125787A JP4574428B2 (en) 2004-04-30 2005-04-22 Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection apparatus, optical path deflection apparatus, and image display apparatus
US11/409,059 US7489383B2 (en) 2005-04-22 2006-04-24 Optical axis deflecting method, optical axis deflecting element, optical path deflecting unit, method of driving optical axis deflecting element, and image display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004136176 2004-04-30
JP2005125787A JP4574428B2 (en) 2004-04-30 2005-04-22 Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection apparatus, optical path deflection apparatus, and image display apparatus

Publications (2)

Publication Number Publication Date
JP2005338804A JP2005338804A (en) 2005-12-08
JP4574428B2 true JP4574428B2 (en) 2010-11-04

Family

ID=35492397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125787A Expired - Fee Related JP4574428B2 (en) 2004-04-30 2005-04-22 Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection apparatus, optical path deflection apparatus, and image display apparatus

Country Status (1)

Country Link
JP (1) JP4574428B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158020B2 (en) 2006-03-01 2012-04-17 Ricoh Company, Ltd. Liquid crystal element, optical path deflecting element, and image displaying apparatus
JP2007231166A (en) * 2006-03-01 2007-09-13 Ricoh Co Ltd Liquid crystal element, optical path-deflecting element and image display device
JP5261881B2 (en) * 2006-03-01 2013-08-14 株式会社リコー Liquid crystal element, optical path deflecting element, and image display apparatus
JP4833053B2 (en) * 2006-03-14 2011-12-07 株式会社リコー Optical deflection element and image display device
JP2007248799A (en) * 2006-03-16 2007-09-27 Ricoh Co Ltd Light deflecting device and image display device
US20140327862A1 (en) * 2011-11-15 2014-11-06 Dic Corporation Ferroelectric liquid crystal composition and ferroelectric liquid crystal display device
WO2013080819A1 (en) * 2011-11-29 2013-06-06 Tdk株式会社 Liquid-crystal lens
JP5725260B2 (en) 2012-06-06 2015-05-27 Dic株式会社 Liquid crystal light modulator
JP2015166752A (en) * 2012-07-05 2015-09-24 シャープ株式会社 Liquid crystal display device and driving method of liquid crystal display device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153837A (en) * 1985-12-27 1987-07-08 Hitachi Ltd Optical path switch
JPH01120528A (en) * 1987-11-04 1989-05-12 Alps Electric Co Ltd Liquid crystal element
JPH09133904A (en) * 1995-11-07 1997-05-20 Oki Electric Ind Co Ltd Optical deflection switch
JPH11183937A (en) * 1997-10-16 1999-07-09 Toshiba Corp Liquid crystal optical switch element, color shutter and color image display device
JP2000221493A (en) * 1999-01-27 2000-08-11 Nec Corp Liquid crystal optical modulation element and color filter and display device utilizing the same
JP2003090992A (en) * 2001-09-19 2003-03-28 Ricoh Co Ltd Optical deflection device, picture display device using optical deflection device and method for controlling optical deflection device
JP2003090991A (en) * 2001-09-18 2003-03-28 Ricoh Co Ltd Method for manufacturing optical deflection element, optical deflection device and picture display device
JP2003091013A (en) * 2001-09-18 2003-03-28 Ricoh Co Ltd Liquid crystal device, optical deflection element, picture display device using the optical deflection element, method for manufacturing optical deflection element and method for driving the optical deflection element
JP2003091026A (en) * 2001-09-18 2003-03-28 Ricoh Co Ltd Light deflecting device, image display device, image pick up device and optical switching device each using the light deflecting device
JP2003098502A (en) * 2001-09-20 2003-04-03 Ricoh Co Ltd Light deflector and image display device
JP2003098504A (en) * 2001-09-25 2003-04-03 Ricoh Co Ltd Optical deflecting element, optical deflector using it, and picture display device
JP2003528340A (en) * 1999-11-19 2003-09-24 コーニング インコーポレイテッド Liquid crystal lattice based on transverse electric field
JP2003302615A (en) * 2002-04-09 2003-10-24 Ricoh Co Ltd Element and device for optical path deflection, image display device, and driving method for the optical path deflecting element
JP2004021098A (en) * 2002-06-19 2004-01-22 Ricoh Co Ltd Optical path deflection device and picture display device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153837A (en) * 1985-12-27 1987-07-08 Hitachi Ltd Optical path switch
JPH01120528A (en) * 1987-11-04 1989-05-12 Alps Electric Co Ltd Liquid crystal element
JPH09133904A (en) * 1995-11-07 1997-05-20 Oki Electric Ind Co Ltd Optical deflection switch
JPH11183937A (en) * 1997-10-16 1999-07-09 Toshiba Corp Liquid crystal optical switch element, color shutter and color image display device
JP2000221493A (en) * 1999-01-27 2000-08-11 Nec Corp Liquid crystal optical modulation element and color filter and display device utilizing the same
JP2003528340A (en) * 1999-11-19 2003-09-24 コーニング インコーポレイテッド Liquid crystal lattice based on transverse electric field
JP2003090991A (en) * 2001-09-18 2003-03-28 Ricoh Co Ltd Method for manufacturing optical deflection element, optical deflection device and picture display device
JP2003091013A (en) * 2001-09-18 2003-03-28 Ricoh Co Ltd Liquid crystal device, optical deflection element, picture display device using the optical deflection element, method for manufacturing optical deflection element and method for driving the optical deflection element
JP2003091026A (en) * 2001-09-18 2003-03-28 Ricoh Co Ltd Light deflecting device, image display device, image pick up device and optical switching device each using the light deflecting device
JP2003090992A (en) * 2001-09-19 2003-03-28 Ricoh Co Ltd Optical deflection device, picture display device using optical deflection device and method for controlling optical deflection device
JP2003098502A (en) * 2001-09-20 2003-04-03 Ricoh Co Ltd Light deflector and image display device
JP2003098504A (en) * 2001-09-25 2003-04-03 Ricoh Co Ltd Optical deflecting element, optical deflector using it, and picture display device
JP2003302615A (en) * 2002-04-09 2003-10-24 Ricoh Co Ltd Element and device for optical path deflection, image display device, and driving method for the optical path deflecting element
JP2004021098A (en) * 2002-06-19 2004-01-22 Ricoh Co Ltd Optical path deflection device and picture display device

Also Published As

Publication number Publication date
JP2005338804A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4574428B2 (en) Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection apparatus, optical path deflection apparatus, and image display apparatus
KR100478804B1 (en) Optical shifter and optical display system
KR100320693B1 (en) Liquid crystal panel and liquid crystal display
US7489383B2 (en) Optical axis deflecting method, optical axis deflecting element, optical path deflecting unit, method of driving optical axis deflecting element, and image display apparatus
JP2006259182A (en) Optical path shifting device and image display device
JP3987347B2 (en) Optical deflection element, optical deflection device, and image display apparatus
JP2003098504A (en) Optical deflecting element, optical deflector using it, and picture display device
JP4773649B2 (en) Optical deflection apparatus and image display apparatus
JP2007231166A (en) Liquid crystal element, optical path-deflecting element and image display device
JP3980908B2 (en) Optical path deflecting element, optical path deflecting element unit, and image display apparatus
JP4057320B2 (en) Optical path deflecting device and image display device
JP4021697B2 (en) Optical path deflecting element, optical path deflecting device, image display apparatus, and optical path deflecting element driving method
JP4520099B2 (en) Optical element, light deflection element, and image display device
JP2006162686A (en) Optical deflecting element, optical deflector provided with the element, and picture display device
JP4267995B2 (en) Optical deflection apparatus, image display apparatus, and optical deflection method
JP3947067B2 (en) Optical path shift element
JP2009069297A (en) Light deflector and image display device
JP4523802B2 (en) Optical deflection element
JP5261881B2 (en) Liquid crystal element, optical path deflecting element, and image display apparatus
JP3973524B2 (en) Image shift element and image display device
JP2005309100A (en) Optical element, optical deflection element, optical deflection device and image display apparatus
JP2005309160A (en) Light deflecting device and image display device
JP4485773B2 (en) Optical deflection device and image display device
JP2003280041A (en) Light deflecting element, light deflector, and image display device
JP2004021098A (en) Optical path deflection device and picture display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees