JPH0228852B2 - - Google Patents

Info

Publication number
JPH0228852B2
JPH0228852B2 JP56167912A JP16791281A JPH0228852B2 JP H0228852 B2 JPH0228852 B2 JP H0228852B2 JP 56167912 A JP56167912 A JP 56167912A JP 16791281 A JP16791281 A JP 16791281A JP H0228852 B2 JPH0228852 B2 JP H0228852B2
Authority
JP
Japan
Prior art keywords
waveguide
liquid crystal
electrode
switch
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56167912A
Other languages
Japanese (ja)
Other versions
JPS5870216A (en
Inventor
Morio Kobayashi
Masao Kawachi
Hiroshi Terui
Juichi Noda
Takao Edahiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16791281A priority Critical patent/JPS5870216A/en
Publication of JPS5870216A publication Critical patent/JPS5870216A/en
Publication of JPH0228852B2 publication Critical patent/JPH0228852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/315Digital deflection, i.e. optical switching based on the use of controlled internal reflection

Description

【発明の詳細な説明】 本発明は光伝送や光情報処理の分野で使用され
る導波形光スイツチに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveguide optical switch used in the fields of optical transmission and optical information processing.

全反射を利用した導波形光スイツチとして
LiNbO3を用いたものが多数報告されている。代
表的な光スイツチの構造を第1図に示す。第1図
において、1はLiNbO3基板、2は導波路、3は
電極、4は電源、5は入射光、6―1,6―2は
それぞれ非スイツチ出射光、スイツチ出射光であ
る。導波路2は三つの部分に分割されており、導
波路2―1と2―3の等価屈折率N1とN3(=
NA)が、導波路2―2の等価屈折率N2より大き
くなるように形成されている。導波路2―2の等
価屈折率N2は、電極3に電源4から電圧を印加
すると、電気光学効果のためN2+ΔN2に増加す
る。
As a waveguide optical switch using total internal reflection
Many examples using LiNbO 3 have been reported. Figure 1 shows the structure of a typical optical switch. In FIG. 1, 1 is a LiNbO 3 substrate, 2 is a waveguide, 3 is an electrode, 4 is a power source, 5 is incident light, and 6-1 and 6-2 are non-switch output light and switch output light, respectively. The waveguide 2 is divided into three parts, and the equivalent refractive index of waveguides 2-1 and 2-3 is N 1 and N 3 (=
NA) is formed to be larger than the equivalent refractive index N 2 of the waveguide 2-2. When a voltage is applied to the electrode 3 from the power source 4, the equivalent refractive index N 2 of the waveguide 2-2 increases to N 2 +ΔN 2 due to the electro-optic effect.

入射光5と電極3のなす角度を入射角度θとす
る。電圧無印加時の全反射角度θc(OFF)は、θc
(OFF)=cos-1(N2/N1)となる。電圧印加時の
全反射角度θc(ON)は、θc(ON)=cos-1{(N2
ΔN2)/N1}となるので、θc(OFF)>θc(ON)
である。入射角度θをθc(OFF)>θ>c(ON)に
なるように選定すれば、電圧無印加時には入射光
5は全反射されて非スイツチ光6―1になり、電
圧印加時には導波路2―2を透過してスイツチ光
6―2になる。このように電圧印加の有無によつ
て、入射光5の光路が切り換えられる。
The angle between the incident light 5 and the electrode 3 is defined as an incident angle θ. The total reflection angle θ c (OFF) when no voltage is applied is θ c
(OFF) = cos -1 (N2/N1). The total reflection angle θ c (ON) when voltage is applied is θ c (ON) = cos -1 {(N 2 +
ΔN 2 )/N 1 }, so θ c (OFF) > θ c (ON)
It is. If the incident angle θ is selected so that θ c (OFF) > θ > c (ON), when no voltage is applied, the incident light 5 is totally reflected and becomes non-switched light 6-1, and when a voltage is applied, the incident light 5 is reflected from the waveguide. The light passes through the light 2-2 and becomes the switch light 6-2. In this way, the optical path of the incident light 5 is switched depending on whether or not a voltage is applied.

LiNbO3による光スイツチでは、電圧印加によ
る等価屈折率変化が小さいので、非スイツチ出射
光6―1とスイツチ光6―2の間のスイツチ角度
φが数度〜12度と小さい。このためスイツチ光を
分離しにくいので、光スイツチの製作が困難であ
る。またLiNbO3は結晶材料であるから基板の大
きさに制限があり、前記スイツチ角度が小さいこ
とも影響して、大規模なマトリツクススイツチの
製作が困難である。
In the optical switch using LiNbO 3 , the change in the equivalent refractive index due to voltage application is small, so the switch angle φ between the non-switched output light 6-1 and the switched light 6-2 is small, ranging from several degrees to 12 degrees. For this reason, it is difficult to separate the switch light, making it difficult to manufacture an optical switch. Furthermore, since LiNbO 3 is a crystalline material, there are restrictions on the size of the substrate, and the small switch angle also makes it difficult to manufacture large-scale matrix switches.

本発明はこれらの欠点を解決するため、液晶を
利用した導波形光スイツチを提供するものであ
り、以下図面により詳細に説明する。
In order to solve these drawbacks, the present invention provides a waveguide type optical switch using liquid crystal, which will be explained in detail below with reference to the drawings.

第2図は本発明の第1の実施例を示し、aは斜
視図、bは平面図である。第2図において、7は
基板、8は下部電極、9はバツフア層、10は導
波層、11は液晶層、12は上部電極板である。
FIG. 2 shows a first embodiment of the present invention, in which a is a perspective view and b is a plan view. In FIG. 2, 7 is a substrate, 8 is a lower electrode, 9 is a buffer layer, 10 is a waveguide layer, 11 is a liquid crystal layer, and 12 is an upper electrode plate.

下部電極8には、ガラス基板上にIn2O3,Cr,
Ag等を全面に蒸着した導電膜を用いる。下部電
極8が導電性のために生ずる光吸収の影響を除く
ためにバツフア層9を設けている。上部電極板1
2の下面には、下部電極8と同様の導電膜を用い
るが、第2図に示す斜線部のように、斜めにパタ
ーン化したパターン電極13を設ける。
The lower electrode 8 includes In 2 O 3 , Cr,
A conductive film with Ag etc. deposited on the entire surface is used. A buffer layer 9 is provided to eliminate the influence of light absorption caused by the conductivity of the lower electrode 8. Upper electrode plate 1
A conductive film similar to that of the lower electrode 8 is used on the lower surface of the electrode 2, but a diagonally patterned pattern electrode 13 is provided as shown in the shaded area in FIG.

パターン電極13と下部電極8の間に電圧を印
加しない時の液晶層11の分子配向を規定するた
めに、導波層10の表面と上部電極板12の下面
には液晶分子を配向させる平行配向処理を施して
ある。平行配向処理方法としては、液晶表示製造
で通常行われているラビング法や、斜め蒸着法を
用いることができる。このような平行配向処理に
より、電圧無印加時の液晶分子の長軸をx軸方向
に配向させておく。電圧印加時には電圧の増加と
ともに閾値を境としてパターン電極13下の液晶
分子がZ軸方向に回転し始め、充分な電圧を印加
すると、液晶分子の長軸がZ軸方向に揃う。印加
する電圧としては、直流電圧または1〜10KHz程
度の交番電圧を用いることができるが、交番電圧
の方が電極の劣化を招かない点から望ましい。液
晶分子は長軸方向と短軸方向で屈折率が異なり、
前者の屈折率nLeの方が後者の屈折率nLpより大き
い。
In order to define the molecular orientation of the liquid crystal layer 11 when no voltage is applied between the patterned electrode 13 and the lower electrode 8, parallel alignment is provided on the surface of the waveguide layer 10 and the lower surface of the upper electrode plate 12 to orient the liquid crystal molecules. It has been processed. As the parallel alignment treatment method, a rubbing method or an oblique vapor deposition method that is commonly used in the manufacture of liquid crystal displays can be used. By such parallel alignment processing, the long axes of liquid crystal molecules are aligned in the x-axis direction when no voltage is applied. When a voltage is applied, as the voltage increases, the liquid crystal molecules under the pattern electrode 13 begin to rotate in the Z-axis direction with the threshold value as a boundary, and when a sufficient voltage is applied, the long axes of the liquid crystal molecules align in the Z-axis direction. As the voltage to be applied, a direct current voltage or an alternating voltage of about 1 to 10 KHz can be used, but an alternating voltage is preferable because it does not cause deterioration of the electrode. Liquid crystal molecules have different refractive indexes in the long axis and short axis directions,
The refractive index n Le of the former is larger than the refractive index n Lp of the latter.

バツフア層9と導波層10の屈折率nbとngは、
ng>(nb,nLe)の関係が保たれるように選定す
る。バツフア層9と液晶層11の厚さは、下部電
極8とパターン電極13の光吸収の影響が導波層
10を通過する伝搬光に対して無視できる厚さに
選定する。
The refractive indices n b and n g of the buffer layer 9 and waveguide layer 10 are
Select so that the relationship n g > (n b , n Le ) is maintained. The thicknesses of the buffer layer 9 and the liquid crystal layer 11 are selected to be such that the influence of light absorption by the lower electrode 8 and pattern electrode 13 on propagating light passing through the waveguide layer 10 can be ignored.

以下動作を説明する。第2図bは第2図aを上
面から見た図であり、光路が分かり易いようにし
てある。上部電極板12にパターン電極13が無
い領域の導波路を導波路、パターン電極が付い
ている領域を導波路とする。前述のようにパタ
ーン電極13と下部電極8の影響が無い程度にバ
ツフア層9と液晶層11を厚くした場合には、等
価屈折率Nは3層導波路の固有値方程式で求ま
る。(固有値方程式は、たとえばD.Marcuse;
Theory of Dielectric Optical Waveguide,
Academic Press1974,PP.1〜19に導出されてい
る。) tan-1ζ2 1γ/K+tanζ2 2δ/K=KWg−mπ (1) ここで ζ1={1 ……TEモード (ng/nb2 ……TMモード ζ1={1 ……TEモード (ng/nLn2 ……TMモード K=kp(ng 2−N21/2 γ=kp(nb 2−N21/2 δ=kp(nL 2−N21/2 kp=2π/λ であり、nLnはTMモードのときの液晶層11の
屈折率、nLはTEモードまたはTMモードの伝搬
光に対する液晶層11の屈折率、λは伝搬光の波
長、Wgは導波層の膜厚、mはモードの次数であ
る。
The operation will be explained below. FIG. 2b is a top view of FIG. 2a, and the optical path is made easy to understand. A waveguide is defined as a region of the upper electrode plate 12 where the pattern electrode 13 is not provided, and a waveguide is defined as a region where the pattern electrode is attached. When the buffer layer 9 and the liquid crystal layer 11 are made thick enough to have no influence from the pattern electrode 13 and the lower electrode 8 as described above, the equivalent refractive index N is determined by the eigenvalue equation of the three-layer waveguide. (The eigenvalue equation is, for example, D.Marcuse;
Theory of Dielectric Optical Waveguide
Derived from Academic Press 1974, pp.1-19. ) tan -1 ζ 2 1 γ/K+tanζ 2 2 δ/K=KW g −mπ (1) Here, ζ 1 = { 1 ...TE mode (n g /n b ) 2 ... TM mode ζ 1 = { 1 ...TE mode (n g /n Ln ) 2 ...TM mode K=k p (n g 2 −N 2 ) 1/2 γ=k p (n b 2 −N 2 ) 1/2 δ=k p (n L 2 − N 2 ) 1/2 k p = 2π/λ, where n Ln is the refractive index of the liquid crystal layer 11 in TM mode, and n L is the liquid crystal layer for propagating light in TE mode or TM mode. 11, λ is the wavelength of propagating light, W g is the thickness of the waveguide layer, and m is the order of the mode.

この実施例では伝搬光をTEモードに選定する。
導波路との等価屈折率を、電圧無印加時には
それぞれN1(OFF)とN2(OFF)とし、電圧印加
時にはそれぞれN1(ON)とN2(ON)とする。電
圧無印加時には導波路との液晶分子はすべて
x軸方向に配向しているので、TEモードが実効
的に感ずる屈折率は、液晶の長軸方向の屈折率
nLeであり、導波路との間で差異が無いので、
N1(OFF)=N2(OFF)である。その結果、入射
光14は導波路からに直進して非スイツチ出
射光15―1になる。
In this embodiment, the TE mode is selected as the propagating light.
The equivalent refractive index with the waveguide is set to N 1 (OFF) and N 2 (OFF), respectively, when no voltage is applied, and N 1 (ON) and N 2 (ON), respectively, when voltage is applied. When no voltage is applied, all the liquid crystal molecules in the waveguide are oriented in the x-axis direction, so the refractive index that is effectively sensed by the TE mode is the refractive index in the long axis direction of the liquid crystal.
n Le , and there is no difference between it and the waveguide, so
N 1 (OFF) = N 2 (OFF). As a result, the incident light 14 travels straight from the waveguide to become the non-switched output light 15-1.

一方、充分な電圧を印加すると、導波路の液
晶分子がZ軸方向に揃うので、TEモードの入射
光は、液晶の短軸方向の小さい屈折率nLpを感ず
るようになる。そのためN1(ON)>N2(ON)と
なる。入射光14の入射角度θを全反射角度θc
cos-1{N2(ON)/N1(ON)}より小さくすれば、
入射光14は導波路との境界、すなわちパタ
ーン電極13の端部の位置で全反射して、スイツ
チ出射光15―2となる。スイツチ角度φは2θで
ある。このように電圧無印加時には入射光14は
直進し、電圧印加時には全反射されて光路が切り
換えられる。
On the other hand, when a sufficient voltage is applied, the liquid crystal molecules in the waveguide are aligned in the Z-axis direction, so that the incident light in the TE mode senses a small refractive index n Lp in the short axis direction of the liquid crystal. Therefore, N 1 (ON) > N 2 (ON). The incident angle θ of the incident light 14 is the total reflection angle θ c =
If it is smaller than cos -1 {N 2 (ON)/N 1 (ON)},
The incident light 14 is totally reflected at the boundary with the waveguide, that is, at the end of the pattern electrode 13, and becomes the switch output light 15-2. The switch angle φ is 2θ. In this way, when no voltage is applied, the incident light 14 travels straight, and when a voltage is applied, it is totally reflected and the optical path is switched.

スイツチ作用を確認するために製作した光スイ
ツチではネサ膜(In2O3)を付けたガラス基板上
に、バツフア層9としてSiO2スパツタ膜(nb
1.46)を積層し、その上に導波層10としてSiO2
−Ta2O5系スパツタ膜(ng=1.75)を積層し、そ
の上に液晶層としてメルク社のPCH1132(nLe
1.61,nLp=1.48)をネサ膜のパターン電極13を
有する上部電極板12と導波層10の間に封入し
た。
In the optical switch manufactured to confirm the switch action, a SiO 2 sputtered film (n b =
1.46) and SiO 2 as the waveguide layer 10 on top of it.
- A Ta 2 O 5 based sputtered film (n g = 1.75) is laminated, and Merck's PCH1132 (n Le =
1.61, n Lp = 1.48) was sealed between the upper electrode plate 12 having the patterned electrode 13 of the Nesa film and the waveguide layer 10.

バツフア層9の膜厚を2μm、液晶層11の膜
厚を10μmにしたところ、下部電極8とパターン
電極13の光吸収の影響は認められなかつた。
When the thickness of the buffer layer 9 was 2 μm and the thickness of the liquid crystal layer 11 was 10 μm, no influence of light absorption by the lower electrode 8 and pattern electrode 13 was observed.

ところで非スイツチ出射光15―1とスイツチ
出射光15―2の間のスイツチ角度φnは全反射
角度θcの2倍である。この最大スイツチ角度φn
導波層10の膜厚Wgに依存する。
Incidentally, the switch angle φ n between the non-switch output light 15-1 and the switch output light 15-2 is twice the total reflection angle θ c . This maximum switch angle φ n depends on the film thickness W g of the waveguide layer 10 .

式(1)を用いて計算した最大スイツチ角度φn
膜厚Wgの関係を第3図に示す。膜厚Wgが薄くな
る程、最大スイツチ角度φnが大きくなる。しか
し膜厚Wgが薄くなると伝搬損が増加するので、
光スイツチの製作では膜厚を0.2μmとした。20V
の交番電圧を印加して、基本モードであるTEp
ードの入射光をスイツチすることができた。最大
スイツチ角度は21度が得られ、第3図の結果と良
い一致を示した。
FIG. 3 shows the relationship between the maximum switch angle φ n and the film thickness W g calculated using equation (1). As the film thickness W g becomes thinner, the maximum switch angle φ n becomes larger. However, as the film thickness W g decreases, the propagation loss increases, so
In manufacturing the optical switch, the film thickness was set to 0.2 μm. 20V
By applying an alternating voltage of , we were able to switch the incident light to the TE p mode, which is the fundamental mode. The maximum switch angle was 21 degrees, which showed good agreement with the results shown in Figure 3.

液晶は本来、光の散乱体であり、液晶の中に光
を伝搬させた場合には、数〜10dB/cmという大
きな散乱損失のため光が大幅に減衰してしまうの
で、液晶層を導波層として用いた場合、実用的な
導波形光デバイスを実現できない。そこで本発明
では、光の界分布の大部分は損失の極めて小さい
導波層に存在し、界分布の裾のわずかの部分のみ
を液晶層にしみ出させ、その界分布の裾の部分が
液晶の屈折率変化を感じて光路を切り換えるよう
に工夫してある。そのため、導波光の損失は、格
段に小さくなり、実用的な1dB/cm以下にするこ
とができる。液晶層には導波光の界分布の裾の部
分しかしみ出していないので、液晶の大きな屈折
率変化を100%利用することはできないが、もと
もとその屈折率変化が極めて大きいので、実用上
十分な大きさの光路切り換え角度が得られる。す
なわち、電圧印加による液晶の屈折率変化の値は
約0.1であり、LiNbO3などの無機材料に比べて2
桁以上も大きく、それによつて本発明の全反射利
用の光スイツチでは、光路切り換え角度が約20゜
と大きくなり、従来の無機材料を使つた導波形光
スイツチの光路切り換え角度の約2゜に比べて格段
に改善されている。
Liquid crystals are originally light scatterers, and when light propagates inside a liquid crystal, the light is significantly attenuated due to large scattering loss of several to 10 dB/cm. When used as a layer, a practical waveguide optical device cannot be realized. Therefore, in the present invention, most of the field distribution of light exists in the waveguide layer with extremely low loss, and only a small part of the tail of the field distribution seeps into the liquid crystal layer. The optical path is switched by sensing changes in the refractive index. Therefore, the loss of guided light is significantly reduced and can be reduced to a practical level of 1 dB/cm or less. Since only the bottom part of the field distribution of the guided light protrudes into the liquid crystal layer, it is not possible to make full use of the large refractive index change of the liquid crystal. An optical path switching angle of the same magnitude can be obtained. In other words, the value of the refractive index change of liquid crystal due to voltage application is approximately 0.1, which is 2% compared to inorganic materials such as LiNbO 3 .
As a result, in the optical switch using total internal reflection of the present invention, the optical path switching angle is as large as about 20°, which is about 2° compared to the optical path switching angle of a conventional waveguide optical switch using an inorganic material. It's much improved compared to that.

第4図は本発明の第2の実施例の説明図であつ
て、TMモードの入射光をスイツチする例を示
す。光スイツチの構造と液晶分子の配向方向は第
1図と同様であるが、パターン電極13の位置を
逆にしてある。入射光14は導波路の端部に図
示のように入射角度θで入れる。電圧無印加時に
は、液晶分子がx軸方向に配向しており、基本モ
ードであるTMpモードの光が感ずる屈折率はnLp
であり、導波路との間で差異が無いので、等
価屈折率N1(OFF)とN2(OFF)は等しくなる。
このため入射光14はそのまま直進して非スイツ
チ出射光15―1になる。一方、電圧を印加する
と、導波路の液晶はZ軸方向に揃うので、
TMpモードに対する屈折率が上昇してnLeになる
から、等価屈折率はN1(ON)<N2(ON)になる。
従つて入射光14の入射角度θを全反射角度θc
cos-1{N1(ON)/N2(ON)}より小さくすれば、
入射光14は導波路の端部で全反射して、スイ
ツチ出射光15―2になる。
FIG. 4 is an explanatory diagram of the second embodiment of the present invention, and shows an example in which the incident light in the TM mode is switched. The structure of the optical switch and the alignment direction of the liquid crystal molecules are the same as in FIG. 1, but the position of the pattern electrode 13 is reversed. The incident light 14 enters the end of the waveguide at an incident angle θ as shown. When no voltage is applied, liquid crystal molecules are oriented in the x-axis direction, and the refractive index perceived by light in the fundamental mode TM p mode is n Lp
Since there is no difference between the waveguide and the waveguide, the equivalent refractive index N 1 (OFF) and N 2 (OFF) are equal.
Therefore, the incident light 14 continues straight and becomes the non-switched output light 15-1. On the other hand, when a voltage is applied, the liquid crystal in the waveguide aligns in the Z-axis direction, so
Since the refractive index for the TM p mode increases to n Le , the equivalent refractive index becomes N 1 (ON) < N 2 (ON).
Therefore, the incident angle θ of the incident light 14 is the total reflection angle θ c =
If it is smaller than cos -1 {N 1 (ON)/N 2 (ON)},
The incident light 14 is totally reflected at the end of the waveguide and becomes the switch output light 15-2.

以上述べたように、TMモードの入射光は電圧
無印加時には直進し、印加時には全反射によつて
光路を切り換えることができる。最大スイツチ角
度φnは第1の実施例の場合と同様に、導波層膜
厚Wgに依存する。
As described above, incident light in the TM mode travels straight when no voltage is applied, and when voltage is applied, the optical path can be switched by total reflection. The maximum switch angle φ n depends on the waveguide layer thickness W g as in the first embodiment.

第3図に第1の実施例と同様の材料を用いた場
合のTMpモードについての最大スイツチ角度φn
と導波層膜厚Wgの関係を示す。第1の実施例と
同様の材料と膜厚を用いて製作した光スイツチに
おいて、TMpモードの入射光のスイツチが可能
であつた。
Figure 3 shows the maximum switch angle φ n for TM p mode when using the same material as in the first embodiment.
The relationship between the waveguide layer thickness W g and the waveguide layer thickness W g is shown. In the optical switch manufactured using the same material and film thickness as in the first embodiment, it was possible to switch the incident light in the TM p mode.

以上の説明では、液晶分子の配向方向がx軸方
向であつたが、y軸方向に配向させても、同様の
スイツチ機能を得られることは容易に理解でき
る。
In the above explanation, the orientation direction of the liquid crystal molecules is the x-axis direction, but it is easily understood that the same switching function can be obtained even if the liquid crystal molecules are oriented in the y-axis direction.

第5図は本発明の第3の実施例を説明するため
の図であつて、2×3マトリクス光スイツチの平
面図である。I1,I2は入射ポート、O1,O2,O3
出射ポートである。S11〜S13およびS21〜S23はス
イツチ素子、P11〜P13およびP21〜P23はスイツチ
素子駆動端子である。入射光16―1,16―2
と出射光17―1,17―2,17―3の交点に
スイツチ素子S11〜S13およびS21〜S23を図示のよ
うに配置する。入射光16―1,16―2と出射
光17―1,17―2,17―3はスイツチ角度
φに等しくなるように設定する。下部電極8は入
射光16―1,16―2と平行で、かつスイツチ
素子S11,S12,S13およびS21,S22,S23をそれぞ
れ含むように形成した2本のストライプ状導電膜
を有する。
FIG. 5 is a diagram for explaining the third embodiment of the present invention, and is a plan view of a 2×3 matrix optical switch. I 1 and I 2 are input ports, and O 1 , O 2 and O 3 are output ports. S 11 to S 13 and S 21 to S 23 are switch elements, and P 11 to P 13 and P 21 to P 23 are switch element drive terminals. Incident light 16-1, 16-2
Switch elements S 11 to S 13 and S 21 to S 23 are arranged as shown at the intersections of the output lights 17-1, 17-2, and 17-3. The incident lights 16-1, 16-2 and the outgoing lights 17-1, 17-2, 17-3 are set to be equal to the switch angle φ. The lower electrode 8 has two conductive stripes parallel to the incident light beams 16-1 and 16-2 and formed to include switch elements S 11 , S 12 , S 13 and S 21 , S 22 , S 23, respectively. It has a membrane.

上部電極板12には、各スイツチ素子の位置に
所定の形状の導電膜から成るパターン電極31―
1を配置する。引き出し線13―2は下部電極8
と重ならないようにして、電圧印加時に引き出し
線によつて液晶分子の配向が乱れないようにす
る。下部電極8を接地し、スイツチ素子駆動端子
P11〜P13およびP21〜P23に選択的に電圧を印加す
れば、所望のスイツチ素子によつて入射光が全反
射されて、所望の入射ポートが接続される。たと
えばスイツチ素子駆動端子P12に電圧を印加すれ
ば、I1とO2が接続される。
On the upper electrode plate 12, pattern electrodes 31-- each made of a conductive film having a predetermined shape are provided at the positions of each switch element.
Place 1. The lead wire 13-2 is the lower electrode 8
to prevent the alignment of liquid crystal molecules from being disturbed by the lead wire when voltage is applied. Ground the lower electrode 8 and connect it to the switch element drive terminal.
By selectively applying a voltage to P 11 to P 13 and P 21 to P 23 , the incident light is totally reflected by a desired switch element, and a desired input port is connected. For example, if a voltage is applied to the switch element drive terminal P12 , I1 and O2 are connected.

パターン電極13―1の形状は入射光16―
1,16―2がTEモードかTMモードかによつ
て異なる。スイツチ素子S11を例にして説明する。
The shape of the pattern electrode 13-1 corresponds to the incident light 16-
It differs depending on whether 1 or 16-2 is in TE mode or TM mode. This will be explained using the switch element S11 as an example.

第6図aはTEモード用のものである。液晶分
子は第5図のx軸方向に配向しておく。またパタ
ーン電極13―1の端部の位置を入射光16―1
の全反射の位置とし、これを全反射端部19―1
とする。入射光16―1と全反射端部19―1の
なす角をスイツチ角度φの1/2になるようにする
と、第1の実施例で説明したように、電圧無印加
時には入射光16―1は非スイツチ出射光18に
なり、電圧印加時にはスイツチされた出射光17
―3になる。
Figure 6a is for TE mode. The liquid crystal molecules are aligned in the x-axis direction in FIG. In addition, the position of the end of the pattern electrode 13-1 is determined by the incident light 16-1.
This is the position of total reflection at the total reflection end 19-1.
shall be. If the angle formed by the incident light 16-1 and the total reflection end 19-1 is set to 1/2 of the switch angle φ, as explained in the first embodiment, when no voltage is applied, the incident light 16-1 becomes the non-switched emitted light 18, and when a voltage is applied, it becomes the switched emitted light 17.
-It becomes 3.

第6図bはTMモード用のパターン電極の例を
示す。液晶分子は第5図のx軸またはy軸方向に
配向処理しておく。全反射端部19―1と入射光
16―1のなす角がスイツチ角φの1/2にならる
ようにする。パターン電極13―1の入射側端部
19―2と出射側端部19―3は入射光16―1
を出射光17―3のそれぞれに対して垂直になる
ようにし、電圧印加時の液晶層11の屈折率増加
によつて、入射光16―1と出射光17―3の光
路がスネルの法則に従つた屈折によつて変化しな
いようにしてある。第2の実施例と同様に電圧無
印加時には入射光16―1が非スイツチ出射光1
8になり、電圧印加時にはスイツチされた出射光
17―3になる。第1の実施例と同様の材料を用
いた2×3マトリクス光スイツチを製作して、
TEおよびTMモードともスイツチ機能を確認し
た。
FIG. 6b shows an example of patterned electrodes for TM mode. The liquid crystal molecules are aligned in the x-axis or y-axis direction as shown in FIG. The angle formed between the total reflection end 19-1 and the incident light 16-1 is set to be 1/2 of the switch angle φ. The input side end 19-2 and the output side end 19-3 of the pattern electrode 13-1 receive the incident light 16-1.
are perpendicular to each of the outgoing lights 17-3, and the optical paths of the incoming lights 16-1 and outgoing lights 17-3 conform to Snell's law by increasing the refractive index of the liquid crystal layer 11 when a voltage is applied. It is kept unchanged by the resulting refraction. Similarly to the second embodiment, when no voltage is applied, the incident light 16-1 changes to the non-switched output light 1.
8, and when a voltage is applied, the output light becomes switched 17-3. A 2×3 matrix optical switch was manufactured using the same materials as in the first embodiment, and
We confirmed the switch function in both TE and TM modes.

以上説明したように本発明の導波形光スイツチ
は、導波層の上に液晶層を積層した構造のため液
晶による散乱損失を大幅に抑制し、かつ光導波路
の全反射作用と液晶の大きな屈折率変化を利用し
た導波形光スイツチであるから、低損失で20゜以
上の大きなスイツチ角度が得られる利点があり、
光スイツチを小型化することができる。そのため
大規模なマトリクス光スイツチを容易に構成でき
る利点がある。また液晶を用いているので、20V
以下、数μW以下の低電圧・低電力で光スイツチ
を駆動できる利点がある。
As explained above, the waveguide type optical switch of the present invention has a structure in which a liquid crystal layer is laminated on a waveguide layer, so scattering loss due to the liquid crystal can be greatly suppressed, and the total reflection effect of the optical waveguide and the large refraction of the liquid crystal can be reduced. Since it is a waveguide type optical switch that utilizes rate change, it has the advantage of being able to obtain a large switch angle of 20° or more with low loss.
The optical switch can be downsized. Therefore, there is an advantage that a large-scale optical matrix switch can be easily constructed. Also, since it uses a liquid crystal, 20V
The advantage is that the optical switch can be driven with low voltage and low power of several microwatts or less.

また本発明の導波形光スイツチは、従来の
LiNbO3の光スイツチのように大きさに制限を受
け易い結晶材料を使う必要がなく、ガラス等非晶
質材料による大きな基板を用いて光スイツチを製
作できるので、一活して多数の単体光スイツチを
製作でき、また大規模なマトリクス光スイツチも
製作できる利点がある。
Furthermore, the waveguide optical switch of the present invention is different from the conventional one.
There is no need to use crystalline materials that are subject to size restrictions, such as LiNbO 3 optical switches, and optical switches can be manufactured using large substrates made of amorphous materials such as glass. It has the advantage of being able to manufacture switches as well as large-scale matrix optical switches.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の代表的光スイツチの構造を示す
斜視図、第2図aは本発明の第1の実施例の構造
を示す斜視図、第2図bは第2図aの平面図、第
3図は導波層膜厚Wgと最大スイツチ角度φnとの
関係を示す図、第4図は本発明の第2の実施例の
構造を示す平面図、第5図は本発明の第3の実施
例の説明図、第6図aはTEモード用のスイツチ
素子のパターン電極の例を示す図、第6図bは
TEモード用のスイツチ素子のパターン電極の例
を示す図である。 1……LiNbO3基板、2……導波路、3……電
極、4……電源、5……入射光、6―1……非ス
イツチ出射光、6―2……スイツチ出射光、7…
…基板、8……下部電極、9……バツフア層、1
0……導波層、11……液晶層、12……上部電
極板、13……パターン電極、14……入射光、
15―1……非スイツチ出射光、15―2……ス
イツチ出射光、16―1,16―2……入射光、
17―1,17―2,17―3……出射光、18
……非スイツチ出射光、19―1……全反射端
部、19―2……入射側端部、19―3……出射
側端部。
Fig. 1 is a perspective view showing the structure of a typical conventional optical switch, Fig. 2a is a perspective view showing the structure of the first embodiment of the present invention, Fig. 2b is a plan view of Fig. 2a, FIG. 3 is a diagram showing the relationship between the waveguide layer thickness W g and the maximum switch angle φ n , FIG. 4 is a plan view showing the structure of the second embodiment of the present invention, and FIG. An explanatory diagram of the third embodiment, FIG. 6a is a diagram showing an example of a pattern electrode of a switch element for TE mode, and FIG. 6b is a diagram showing an example of a pattern electrode of a switch element for TE mode.
FIG. 3 is a diagram showing an example of a pattern electrode of a switch element for TE mode. 1... LiNbO 3 substrate, 2... Waveguide, 3... Electrode, 4... Power supply, 5... Incident light, 6-1... Non-switch output light, 6-2... Switch output light, 7...
... Substrate, 8 ... Lower electrode, 9 ... Buffer layer, 1
0... Waveguide layer, 11... Liquid crystal layer, 12... Upper electrode plate, 13... Pattern electrode, 14... Incident light,
15-1... Non-switch output light, 15-2... Switch output light, 16-1, 16-2... Incident light,
17-1, 17-2, 17-3... Outgoing light, 18
... Non-switch output light, 19-1 ... Total reflection end, 19-2 ... Incident side end, 19-3 ... Output side end.

Claims (1)

【特許請求の範囲】 1 基板上に、一様な導電膜から成る下部電極
と、バツフア層と、該バツフア層より屈折率が大
きい導波層と、該導波層より屈折率が小さい液晶
層と、所定の形状のパターン電極を有する上部電
極板を順次積層し、該上部電極板のパターン電極
下にある液晶の分子配向を電圧印加によつて変化
せしめ、導波光を該パターン電極の端部の位置に
おいて全反射させて光路を切り換えることを特徴
とする導波形光スイツチ。 2 基板上に、入射ポート数に等しい複数個のス
トライプ状導電膜から成る下部電極と、バツフア
層と、該バツフア層より屈折率が大きい導波層
と、該バツフア層より屈折率が小さい液晶層と、
該下部電極のストライプ状導電膜と対向する位置
に所定の形状の複数個のパターン電極を配した上
部電極板を順次積層し、該上部電極の所望のパタ
ーン電極に電圧を印加して、該パターン電極下の
液晶の分子配向を変化せしめ、該パターン電極に
入射している導波光を該パターン電極端部の位置
において全反射させて光路を切り換えることを特
徴とする導波形光スイツチ。
[Claims] 1. A lower electrode made of a uniform conductive film, a buffer layer, a waveguide layer having a higher refractive index than the buffer layer, and a liquid crystal layer having a lower refractive index than the waveguide layer, on a substrate. Then, upper electrode plates having patterned electrodes of a predetermined shape are sequentially laminated, and the molecular orientation of the liquid crystal under the patterned electrodes of the upper electrode plate is changed by applying a voltage, and the guided light is directed to the edge of the patterned electrode. A waveguide optical switch that switches the optical path by total reflection at the position. 2. On a substrate, a lower electrode consisting of a plurality of striped conductive films equal to the number of incident ports, a buffer layer, a waveguide layer having a higher refractive index than the buffer layer, and a liquid crystal layer having a lower refractive index than the buffer layer. and,
An upper electrode plate having a plurality of patterned electrodes of a predetermined shape arranged at a position facing the striped conductive film of the lower electrode is sequentially laminated, and a voltage is applied to the desired patterned electrode of the upper electrode to remove the pattern. A waveguide type optical switch characterized in that the molecular orientation of liquid crystal under the electrode is changed, and the guided light incident on the patterned electrode is totally reflected at the end of the patterned electrode to switch the optical path.
JP16791281A 1981-10-22 1981-10-22 Waveguide type optical switch Granted JPS5870216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16791281A JPS5870216A (en) 1981-10-22 1981-10-22 Waveguide type optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16791281A JPS5870216A (en) 1981-10-22 1981-10-22 Waveguide type optical switch

Publications (2)

Publication Number Publication Date
JPS5870216A JPS5870216A (en) 1983-04-26
JPH0228852B2 true JPH0228852B2 (en) 1990-06-26

Family

ID=15858349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16791281A Granted JPS5870216A (en) 1981-10-22 1981-10-22 Waveguide type optical switch

Country Status (1)

Country Link
JP (1) JPS5870216A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208727A (en) * 1982-05-31 1983-12-05 Fujitsu Ltd Optical circuit element
JPH0785143B2 (en) * 1985-09-19 1995-09-13 セイコーエプソン株式会社 Liquid crystal electro-optical device
JPS62127829A (en) * 1985-11-29 1987-06-10 Furukawa Electric Co Ltd:The Waveguide type liquid crystal matrix switch
JPS62194236A (en) * 1986-02-21 1987-08-26 Fujitsu Ltd Matrix type optical switch
JPS62194219A (en) * 1986-02-21 1987-08-26 Fujitsu Ltd Programmable optical ic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925941A (en) * 1972-06-22 1974-03-07
JPS53139551A (en) * 1977-05-11 1978-12-05 Mitsubishi Electric Corp Photo switching board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925941A (en) * 1972-06-22 1974-03-07
JPS53139551A (en) * 1977-05-11 1978-12-05 Mitsubishi Electric Corp Photo switching board

Also Published As

Publication number Publication date
JPS5870216A (en) 1983-04-26

Similar Documents

Publication Publication Date Title
JP2924055B2 (en) Reflective liquid crystal display
KR100325065B1 (en) Reflective liquid crystal display with high brightness and wide viewing angle
JP2003172912A (en) Liquid crystal variable wavelength filter device and driving method therefor
KR100336886B1 (en) Reflective liquid crystal display device with high opening rate and high transmittance and its manufacturing method
US6741311B1 (en) Reflective type-fringe switching mode LCD having liquid crystal retardation (2n+1)λ/4
EP0229287B1 (en) Optical change-over switch
KR101887473B1 (en) Liquid Crystal Element, Liquid Crystal Display
US6950171B2 (en) Liquid crystal color switch and method of manufacture
JPH0228852B2 (en)
US6904207B2 (en) Waveguide type liquid-crystal optical switch
US6563973B1 (en) Low-index waveguide liquid crystal cross-connect
KR100752143B1 (en) reflection type liquid crystal display device with a cholesteric liquid crystal color filter
JPS62153837A (en) Optical path switch
JPS59185311A (en) Light control type optical switch
JPH05249506A (en) Optical switch
JP2004151714A (en) Liquid crystal display device
CN216526651U (en) Liquid crystal display panel and display device
JPH08254719A (en) Optical switch
CN114280840B (en) Dimming glass and glass module
KR100522026B1 (en) Transflective type In-Plane Switching mode Liquid Crystal Display Device
JPH01246529A (en) Waveguide type optical switch
JPH0670693B2 (en) Waveguide type optical control device
JP2003222916A (en) Waveguide type liquid crystal optical switch
JPS61137126A (en) Optical switch
JPH0525096B2 (en)