JPH0670693B2 - Waveguide type optical control device - Google Patents

Waveguide type optical control device

Info

Publication number
JPH0670693B2
JPH0670693B2 JP5731387A JP5731387A JPH0670693B2 JP H0670693 B2 JPH0670693 B2 JP H0670693B2 JP 5731387 A JP5731387 A JP 5731387A JP 5731387 A JP5731387 A JP 5731387A JP H0670693 B2 JPH0670693 B2 JP H0670693B2
Authority
JP
Japan
Prior art keywords
layer
plzt
optical waveguide
thin film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5731387A
Other languages
Japanese (ja)
Other versions
JPS63221306A (en
Inventor
正明 岩崎
俊哉 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5731387A priority Critical patent/JPH0670693B2/en
Publication of JPS63221306A publication Critical patent/JPS63221306A/en
Publication of JPH0670693B2 publication Critical patent/JPH0670693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導波型光制御デバイスの構造に関する。The present invention relates to a structure of a waveguide type optical control device.

〔従来の技術〕[Conventional technology]

光導波層に電気光学効果を持つ強誘電体を用い、光導波
層上部に電極を設けた導波型光デバイスにおいては、電
極に電圧を印加することにより導波光の制御ができ、ス
イッチ、グレーティング・カプラ,分波器,反射器等の
多くの機能を有する素子を得ることができる。
In a waveguide type optical device in which a ferroelectric material having an electro-optic effect is used for the optical waveguide layer and an electrode is provided on the optical waveguide layer, guided light can be controlled by applying a voltage to the electrode, and a switch, a grating can be used. -It is possible to obtain elements having many functions such as couplers, demultiplexers, and reflectors.

従来、電気光学効果の得られる光導波路材料として広く
用いられているチタン拡散ニオブ酸リチウムによるグレ
ーティング・カプラの例を第5図に示す。ZカットLiNb
O3基板51上にTiを拡散した光導波層52を形成し、光導波
層52上にグレーティング電極53,54を形成する。この電
極53,54間に電圧を印加することにより、光導波層52に
電界55が発生し光導波層の屈折率が周期的に変化し、屈
折率変調型のグレーティングとなり導波光を外部に導く
ことができる。そして印加電圧を変えることにより、屈
折率変化の度合が変わりグレーティング・カプラの結合
効率が変わることが知られている。
FIG. 5 shows an example of a grating coupler made of titanium-diffused lithium niobate, which has been widely used as an optical waveguide material having an electro-optical effect. Z-cut LiNb
An optical waveguide layer 52 in which Ti is diffused is formed on an O 3 substrate 51, and grating electrodes 53 and 54 are formed on the optical waveguide layer 52. By applying a voltage between the electrodes 53 and 54, an electric field 55 is generated in the optical waveguide layer 52, and the refractive index of the optical waveguide layer is periodically changed to form a refractive index modulation type grating and guide the guided light to the outside. be able to. It is known that the degree of change in the refractive index changes and the coupling efficiency of the grating coupler changes by changing the applied voltage.

〔発明が解決しようとする問題点〕 しかしながら、従来のLiNbO3を用いた導波型光制御デバ
イスでは、LiNbO3の屈折率変化が1次の電気光学効果に
よるものであるため、大きな屈折率変化を得るためには
高い電圧を印加しなければならないという欠点があり、
また、電極が同一平面上にあるので屈折率変化に寄与し
ない水平電界成分が存在するため、高い回折効率を得る
には、印加電圧を高くしなければならないという欠点も
あった。
[INVENTION AND SUMMARY Problems] However, in the waveguide type optical control device using the conventional LiNbO 3, the refractive index change of the LiNbO 3 is due to the primary electro-optic effect, large refractive index change Has the drawback that a high voltage must be applied to obtain
Further, since the electrodes are on the same plane, there is a horizontal electric field component that does not contribute to the change in the refractive index, so that there is a drawback that the applied voltage must be increased to obtain high diffraction efficiency.

本発明の目的は、印加電圧が低くとも大きな屈折率変化
が得られる導波型光制御デバイスを提供することにあ
る。
An object of the present invention is to provide a waveguide type optical control device that can obtain a large change in refractive index even when an applied voltage is low.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、シリコン基板上にスピネル層を形成
し、さらにその上に順次屈折率の異なる第1及び第2の
2層のPLZT薄膜層を形成し、第2のPLZT薄膜層上部に電
極を設けた素子と、素子の電極とシリコン基板間に電圧
を印加する手段とを含んで構成され、第2のPLZT薄膜層
は、第1のPLZT薄膜層より大きな屈折率を持ち、第2の
PLZT薄膜層を光導波路として導波光の制御を行う導波型
の光制御デバイスが得られる。
According to the present invention, a spinel layer is formed on a silicon substrate, first and second PLZT thin film layers having different refractive indices are formed thereon, and an electrode is formed on the second PLZT thin film layer. And a means for applying a voltage between the electrode of the element and the silicon substrate, wherein the second PLZT thin film layer has a larger refractive index than the first PLZT thin film layer,
A waveguide type optical control device for controlling guided light by using a PLZT thin film layer as an optical waveguide can be obtained.

〔作用〕[Action]

本発明では光導波層として2次の電気光学効果を持つPL
ZT薄膜層を用いるので1次の電気光学効果に比べてはる
かに大きな屈折率変化が得られる。さらに光導波層上部
の電極とシリコン基板間に電圧を印加することにより、
光導波層に対し垂直電界のみが発生し、発生電界のほと
んどを屈折率変化に用いることができる。また、光導波
層からの光の漏れを低減するバッファ層をPLZT薄膜とス
ピネル層の2層構造にして、PLZT薄膜層に比べて誘電率
が低く電界が集中しやすいスピネル層を薄くすること
で、光導波層に電界を集中させ印加電圧をPLZT薄膜層に
有効に作用させることができる。従って、バッファ層を
2層としスピネル層を薄くすることで低電圧で高い回折
効率が得られる。
In the present invention, a PL having a secondary electro-optical effect is used as the optical waveguide layer.
Since the ZT thin film layer is used, a much larger change in the refractive index can be obtained as compared with the first-order electro-optical effect. Furthermore, by applying a voltage between the electrode on the optical waveguide layer and the silicon substrate,
Only a vertical electric field is generated with respect to the optical waveguide layer, and most of the generated electric field can be used for changing the refractive index. In addition, the buffer layer that reduces the leakage of light from the optical waveguide layer has a two-layer structure of a PLZT thin film and a spinel layer, and the spinel layer, which has a lower dielectric constant than the PLZT thin film layer and is easy to concentrate the electric field, is thinned. , The electric field can be concentrated on the optical waveguide layer and the applied voltage can be effectively applied to the PLZT thin film layer. Therefore, by forming the buffer layer into two layers and thinning the spinel layer, a high diffraction efficiency can be obtained at a low voltage.

〔実施例〕〔Example〕

次に、図面を参照して本発明について詳細に説明する。
第1図は本発明の第1の実施例としてグレーティング・
カプラの構成を示す斜視図である。シリコン基板11上
に、バッファ層としてスピネル(MgAl2O4)層12とPLZT
(PbLaZiTi)バッファ層13、その上部にPLZT光導波層14
を形成し、PLZT光導波層14上にグレーティング電極15を
形成する。スピネル層12は、導波光のシリコン基板11へ
のリークを防ぐためのバッファ層であると共に、PLZTを
単結晶エピタキシャル成長させるための中間層としての
働きもする。また、PLZTバッファ層13は、バッファ層に
要求される条件である(イ)PLZT光導波層14の屈折率よ
り小さくかつ近い,(ロ)PLZT光導波層14との密着が良
いなどを満足している。
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a grating according to a first embodiment of the present invention.
It is a perspective view which shows the structure of a coupler. Spinel (MgAl 2 O 4 ) layer 12 and PLZT as a buffer layer on the silicon substrate 11.
(PbLaZiTi) buffer layer 13, PLZT optical waveguide layer 14 on top of it
And a grating electrode 15 is formed on the PLZT optical waveguide layer 14. The spinel layer 12 is a buffer layer for preventing leak of guided light to the silicon substrate 11, and also functions as an intermediate layer for epitaxially growing single crystal of PLZT. Further, the PLZT buffer layer 13 satisfies the conditions required for the buffer layer: (a) smaller and closer than the refractive index of the PLZT optical waveguide layer 14, (b) good adhesion with the PLZT optical waveguide layer 14, etc. ing.

グレーティング電極15と低抵抗シリコン基板11間に電圧
を印加することにより電界19がPLZT光導波層14に対し垂
直方向に発生し、周期的な屈折率変化が起こる。この結
果、PLZT光導波層14は屈折率変調型のグレーティングと
なり、入射光16を外部にとり出すことができ、出射光17
が得られる。電圧をかけない場合は通常の光導波路とな
り、入射光16はそのまま導波される。電界19が垂直にか
かるため深さ方向の屈折率変化は均一であり、グレーテ
ィングの回折効率も横方向に電界をかけた場合の比べ非
常に高い。また、バッファ層がPLZTバッファ層13とスピ
ネル層12の2層となっているため、誘電率の低いスピネ
ル層12を薄くして、発生電界をPLZT層厚内に集中させる
ことで、グレーティング電極15とシリコン基板11間の印
加電圧を低減できる。さらには、グレーティングのピッ
チを1μm以下とし回折角を大きくすることも可能であ
る。以上のジバイス構造とPLZT光導波層の2次の電気光
学効果により、グレーティング電極への印加電圧を大幅
に低減することが可能である。
By applying a voltage between the grating electrode 15 and the low-resistance silicon substrate 11, an electric field 19 is generated in the direction perpendicular to the PLZT optical waveguide layer 14, and a periodic change in refractive index occurs. As a result, the PLZT optical waveguide layer 14 becomes a refraction index modulation type grating, the incident light 16 can be taken out, and the outgoing light 17
Is obtained. When no voltage is applied, it becomes a normal optical waveguide, and the incident light 16 is guided as it is. Since the electric field 19 is applied vertically, the change in the refractive index in the depth direction is uniform, and the diffraction efficiency of the grating is much higher than that when an electric field is applied in the lateral direction. Further, since the buffer layer is composed of two layers, the PLZT buffer layer 13 and the spinel layer 12, the spinel layer 12 having a low dielectric constant is thinned, and the generated electric field is concentrated within the PLZT layer thickness, so that the grating electrode 15 The applied voltage between the silicon substrate 11 and the silicon substrate 11 can be reduced. Further, it is possible to increase the diffraction angle by setting the grating pitch to 1 μm or less. The voltage applied to the grating electrode can be significantly reduced by the secondary electro-optical effect of the device structure and the PLZT optical waveguide layer.

本実施例において、PLZT光導波層14,PLZTバッファ層13
及びスピネル層12は、マグネトロンスパッタ法により成
膜し、膜厚はそれぞれ9μm,1.4μm,0.01μmとした。
グレーティング電極15は出射光17を防げないように透明
なITOを用い、イオンミリングによりパターン化した。
In this embodiment, the PLZT optical waveguide layer 14 and the PLZT buffer layer 13
The spinel layer 12 and the spinel layer 12 were formed by a magnetron sputtering method, and the film thickness was 9 μm, 1.4 μm, and 0.01 μm, respectively.
The grating electrode 15 is made of transparent ITO so as not to prevent the emitted light 17, and is patterned by ion milling.

次に、本発明の第1の実施例の応用例を示す。第2図は
本発明を光路変換素子へ応用した例を示す斜視図であ
る。第2図において、グレーティング電極25のピッチΛ
を一定にし、周期的な屈折率変化を与えると光偏向も行
える。特に第2図においては、グレーティング電極25の
水平方向に入射光26を角度θで入射させ、グレーティン
グ電極25に電圧を印加すると、グレーティング電極25と
シリコン基板11の間に垂直電界が生じ、PLZT光導波層14
の屈折率変化により、低電圧で出射光27が取り出せる。
電圧を印加しないと、導波光はそのまま直進し出射光28
となる。例えば、波長λ=1.3μmの入射光の場合、グ
レーティングピッチΛ=0.5μmであれば、偏向角2θ
はおよそ55°程度と概算される。従って、グレーティン
グピッチを適当に定めれば任意の偏向が得られる。
Next, an application example of the first embodiment of the present invention will be shown. FIG. 2 is a perspective view showing an example in which the present invention is applied to an optical path changing element. In FIG. 2, the pitch Λ of the grating electrodes 25
The optical deflection can also be performed by keeping the value constant and periodically changing the refractive index. In particular, in FIG. 2, when the incident light 26 is incident in the horizontal direction of the grating electrode 25 at an angle θ and a voltage is applied to the grating electrode 25, a vertical electric field is generated between the grating electrode 25 and the silicon substrate 11, and the PLZT optical waveguide is generated. Wave layer 14
The outgoing light 27 can be extracted at a low voltage due to the change in the refractive index of.
If no voltage is applied, the guided light goes straight on and goes out.
Becomes For example, in the case of incident light with a wavelength λ = 1.3 μm, if the grating pitch Λ = 0.5 μm, the deflection angle 2θ
Is estimated to be about 55 °. Therefore, if the grating pitch is set appropriately, any deflection can be obtained.

第2図はグレーティングの反射型であったが、第3図は
入射光36をグレーティング電極26の垂直方向に角度θで
入射させて光路変換を行う透過型とした場合の例を示
す。
FIG. 2 shows a reflection type of the grating, but FIG. 3 shows an example in which the incident light 36 is made incident on the grating electrode 26 at an angle θ to change the optical path.

第4図は本発明の第2の実施例で、光導波路をパターン
化したチャンネル導波路44とその交差上部に平面電極45
を設けることにより、低電圧で動作可能な全反射型光ス
イッチを示す。入射光46を入射させ、電極45に電圧を印
加すると、電極45とシリコン基板11の間に垂直電界が生
じ、PLZTチャンネル光導波路44の屈折率変化により低電
圧で出射光47が取り出せる。電圧を印加しない場合は、
入射されたチャンネルを入射光46が直進する。
FIG. 4 shows a second embodiment of the present invention in which a channel waveguide 44 having a patterned optical waveguide and a plane electrode 45 on the upper portion of the intersection are provided.
By providing, a total reflection type optical switch capable of operating at a low voltage is shown. When the incident light 46 is made incident and a voltage is applied to the electrode 45, a vertical electric field is generated between the electrode 45 and the silicon substrate 11, and the change in the refractive index of the PLZT channel optical waveguide 44 allows the emitted light 47 to be extracted at a low voltage. If no voltage is applied,
Incident light 46 goes straight through the incident channel.

〔発明の効果〕〔The invention's effect〕

本発明のようにバッファ層を2層(PLZTバッファ層とス
ピネル層)にした場合と、バッファ層すべてをスピネル
層で構成した場合とをその容量により比較して見る。第
1図において、PLZT光導波層14を9μm,PLZTバッファ層
13及びスピネル層12を各々1.4μm,0.01μmとすると、
バッファ層が2層の場合の電極間容量は155×10/s
〔F〕となる(ただし、sは電極面積)。バッファ層を
スピネル層のみで構成する場合(従って、バッファ層の
厚さは1.41μmとなる)の電極間容量は5.53×10/s
〔F〕となる。電極間に多層の誘電体がある場合、各層
に生じる電界は、各層の容量の比に逆比例するから、バ
ッファ層をPLZTバッファ層とスピネル層の2層にするこ
とで、スピネル層のみでバッファ層を構成した場合と同
じ回折効率を得るのに1/30の電圧印加で良いことにな
る。従って、本発明により印加電圧を1/30に低減するこ
とができる。
A comparison will be made between the case where two buffer layers (PLZT buffer layer and spinel layer) as in the present invention and the case where all the buffer layers are composed of spinel layers are compared by their capacities. In FIG. 1, the PLZT optical waveguide layer 14 is 9 μm, and the PLZT buffer layer is
13 and the spinel layer 12 are 1.4 μm and 0.01 μm respectively,
The capacitance between electrodes when there are two buffer layers is 155 × 10 6 / s
[F] (where s is the electrode area). When the buffer layer is composed of only the spinel layer (thus, the thickness of the buffer layer is 1.41 μm), the interelectrode capacitance is 5.53 × 10 6 / s.
[F]. When there are multiple dielectric layers between electrodes, the electric field generated in each layer is inversely proportional to the capacitance ratio of each layer. Therefore, by using two buffer layers, a PLZT buffer layer and a spinel layer, only the spinel layer provides a buffer. It is sufficient to apply a voltage of 1/30 in order to obtain the same diffraction efficiency as when the layers are formed. Therefore, the present invention can reduce the applied voltage to 1/30.

以上のように本発明によれば、導波型光制御デバイスに
おいて、低電圧で導波光の制御を行うことができる。
As described above, according to the present invention, guided light can be controlled at a low voltage in the guided light control device.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の第1の実施例であるグレーティング
カプラを示す斜視図、第2図は、本発明の第1の実施例
を反射型光路変換素子へ応用した例を示す斜視図、第3
図は、本発明の第1の実施例を透過型光路変換素子へ応
用した例を示す斜視図、第4図は本発明の第2の実施例
である内部全反射型スイッチを示す斜視図、第5図はLi
NbO3を用いた従来例を示す斜視図である。 11…シリコン基板、12…スピネル層、13…PLZTバッファ
層、14…PLZT光導波層、15,25,53,54…グレーティング
電極、16,26,36,46…入射光、17,27,37,47…出射光(回
折光)、28,38…出射光(非回折光)、19,55…電界、44
…PLZTチャンネル光導波路、45…平面電極、51…LiNbO3
基板、52…Ti拡散光導波層。
FIG. 1 is a perspective view showing a grating coupler which is a first embodiment of the present invention, and FIG. 2 is a perspective view showing an example in which the first embodiment of the present invention is applied to a reflection type optical path conversion element, Third
FIG. 4 is a perspective view showing an example in which the first embodiment of the present invention is applied to a transmission type optical path conversion element, and FIG. 4 is a perspective view showing an internal total reflection type switch which is a second embodiment of the present invention. Figure 5 shows Li
FIG. 7 is a perspective view showing a conventional example using NbO 3 . 11 ... Silicon substrate, 12 ... Spinel layer, 13 ... PLZT buffer layer, 14 ... PLZT optical waveguide layer, 15, 25, 53, 54 ... Grating electrode, 16, 26, 36, 46 ... Incident light, 17, 27, 37 , 47 ... Emitted light (diffracted light), 28, 38 ... Emitted light (non-diffracted light), 19, 55 ... Electric field, 44
… PLZT channel optical waveguide, 45… Planar electrode, 51… LiNbO 3
Substrate, 52 ... Ti diffuse optical waveguide layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリコン基板上にスピネル層を形成し、さ
らにその上に屈折率の異なる第1及び第2のPLZT薄膜層
を形成し、該第2のPLZT薄膜層上部に電極を形成した素
子と、前記電極とシリコン基板間に電圧を印加する手段
とを有し、前記第2のPLZT薄膜層は前記第1のPLZT薄膜
層より大きな屈折率を持ち、前記第2のPLZT薄膜層を光
導波路として導波光の制御を行うことを特徴とする導波
型光制御デバイス。
1. A device in which a spinel layer is formed on a silicon substrate, first and second PLZT thin film layers having different refractive indexes are further formed thereon, and an electrode is formed on the second PLZT thin film layer. And a means for applying a voltage between the electrode and the silicon substrate, wherein the second PLZT thin film layer has a refractive index larger than that of the first PLZT thin film layer, and the second PLZT thin film layer is optically guided. A waveguide-type optical control device characterized by controlling guided light as a waveguide.
JP5731387A 1987-03-11 1987-03-11 Waveguide type optical control device Expired - Lifetime JPH0670693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5731387A JPH0670693B2 (en) 1987-03-11 1987-03-11 Waveguide type optical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5731387A JPH0670693B2 (en) 1987-03-11 1987-03-11 Waveguide type optical control device

Publications (2)

Publication Number Publication Date
JPS63221306A JPS63221306A (en) 1988-09-14
JPH0670693B2 true JPH0670693B2 (en) 1994-09-07

Family

ID=13052076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5731387A Expired - Lifetime JPH0670693B2 (en) 1987-03-11 1987-03-11 Waveguide type optical control device

Country Status (1)

Country Link
JP (1) JPH0670693B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238877A (en) * 1992-04-30 1993-08-24 The United States Of America As Represented By The Secretary Of The Navy Conformal method of fabricating an optical waveguide on a semiconductor substrate
JP2003295237A (en) * 2002-03-29 2003-10-15 Hitachi Ltd Multi-split type optical switch
JP6290741B2 (en) * 2014-07-24 2018-03-07 日本電信電話株式会社 Grating coupler forming method

Also Published As

Publication number Publication date
JPS63221306A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
US4828362A (en) Optical switch
US5317446A (en) Electrooptic device for scanning using domain reversed regions
US5640267A (en) Optical apparatus
US6353690B1 (en) Electrically adjustable diffraction grating
US5475771A (en) Polarization splitter haivng an anisotropic optical waveguide
US4983006A (en) Polarization-independent optical waveguide switch
US4264125A (en) Transmissive surface layer effect electro-optic device for use in optical modulators and the like
US20060092499A1 (en) Architecture for large-FOR EO-crystal-based agile beam steering
JPH0670693B2 (en) Waveguide type optical control device
US5566258A (en) Waveguide type electro-optical element comprising material having specific resistance ranging between 107-1011 omega CM
JPH045174B2 (en)
US4199221A (en) Electro-optic thin-film waveguide modulator device
JPH0425524B2 (en)
JPH0447805B2 (en)
JPS6223847B2 (en)
JPH0644086B2 (en) Method of manufacturing light control element
JP2635986B2 (en) Optical waveguide switch
JPH0588123A (en) Variable wavelength filter
JPS5944607B2 (en) thin film optical switch array
JPH0886990A (en) Waveguide type optical controlling element
JPS61231522A (en) Optical control type optical switch device
JPH0697286B2 (en) Optical circuit and manufacturing method thereof
JP2679760B2 (en) Optical waveguide
JPS63124022A (en) Optical control device
JPS62194236A (en) Matrix type optical switch